1932

Abstract

Exact consumer's surplus and deadweight loss are the most widely used welfare and economic efficiency measures. These measures can be computed from demand functions in straightforward ways. Nonparametric estimation can be used to estimate the welfare measures. In doing so, it seems important to account correctly for unobserved heterogeneity, given the high degree of unexplained demand variation often found in applications. This review surveys work on nonparametric welfare analysis, focusing on work that allows for general heterogeneity in demand, such as that of Hausman & Newey (2016).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-economics-080315-015107
2017-08-02
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/economics/9/1/annurev-economics-080315-015107.html?itemId=/content/journals/10.1146/annurev-economics-080315-015107&mimeType=html&fmt=ahah

Literature Cited

  1. Beresteanu A, Molinari F. 2008. Asymptotic properties for a class of partially identified models. Econometrica 76:763–814 [Google Scholar]
  2. Bhattacharya D. 2015. Nonparametric welfare analysis for discrete choice. Econometrica 83:617–49 [Google Scholar]
  3. Blomquist S, Kumar A, Liang C-Y, Newey WK. 2015. Individual heterogeneity, nonlinear budget sets, and taxable income Work. Pap. CWP21/15, Cent Microdata Methods Pract. London: [Google Scholar]
  4. Blomquist S, Newey WK. 2002. Nonparametric estimation with nonlinear budget sets. Econometrica 70:2455–80 [Google Scholar]
  5. Blundell R, Horowitz J, Parey M. 2012. Measuring the price responsiveness of gasoline demand: economic shape restrictions and nonparametric demand estimation. Quant. Econ. 3:29–51 [Google Scholar]
  6. Blundell R, Horowitz J, Parey M. 2017. Nonparametric estimation of a nonseparable demand function under the Slutsky inequality restriction. Rev. Econ. Stat. 99291–304 [Google Scholar]
  7. Blundell R, Kristensen D, Matzkin R. 2014. Bounding quantile demand functions using revealed preference inequalities. J. Econom. 179:112–27 [Google Scholar]
  8. Blundell R, Matzkin R. 2014. Control functions in nonseparable simultaneous equations models. Quant. Econ. 5:271–95 [Google Scholar]
  9. Blundell R, Powell JL. 2003. Endogeneity in nonparametric and semiparametric regression models. Advances in Economics and Econonometrics: Theory and Applications, Eighth World Congress 2 M Dewatripont, LP Hansen, SJ Turnovsky 312–57 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  10. Brown BW, Walker MB. 1989. The random utility hypothesis and inference in demand systems. Econometrica 57:815–29 [Google Scholar]
  11. Burtless G, Hausman JA. 1978. The effect of taxation on labor supply: evaluating the Gary negative income tax experiments. J. Polit. Econ. 86:1103–30 [Google Scholar]
  12. Chernozhukov V, Fernandez-Val I, Hoderlein S, Holzman H, Newey W. 2015. Nonparametric identification in panels using quantiles. J. Econom. 188:378–92 [Google Scholar]
  13. Chernozhukov V, Hansen C. 2005. An IV model of quantile treatment effects. Econometrica 73:245–61 [Google Scholar]
  14. Chernozhukov V, Imbens G, Newey W. 2007. Instrumental variable identification and estimation of nonseparable models. J. Econom. 139:4–14 [Google Scholar]
  15. Cosaert S, Demuynck T. 2014. Nonparametric welfare and demand analysis with unobserved individual heterogeneity Work. Pap. RM/14/10, Sch. Bus. Econ Maastricht Univ. [Google Scholar]
  16. Dette H, Hoderlein S, Neumeyer N. 2016. Testing multivariate economic restrictions using quantiles: the example of Slutsky negative semidefiniteness. J. Econom. 191:129–44 [Google Scholar]
  17. Gorman WM. 1961. On a class of preference fields. Metroeconomica 13:53–56 [Google Scholar]
  18. Hausman JA. 1981. Exact consumer surplus and deadweight loss. Am. Econ. Rev. 71:662–76 [Google Scholar]
  19. Hausman JA, Newey W. 1995. Nonparametric estimation of exact consumer surplus and deadweight loss. Econometrica 63:1445–76 [Google Scholar]
  20. Hausman JA, Newey W. 2016. Individual heterogeneity and average welfare. Econometrica 84:1225–48 [Google Scholar]
  21. Hicks JR. 1939. Value and Capital Oxford, UK: Clarendon Press [Google Scholar]
  22. Hoderlein S, Mammen E. 2007. Identification of marginal effects in nonseparable models without monotonicity. Econometrica 75:1513–18 [Google Scholar]
  23. Hoderlein S, Stoye J. 2014. Revealed preferences in a heterogeneous population. Rev. Econ. Stat. 96:197–213 [Google Scholar]
  24. Hoderlein S, Vanhems A. 2013. Estimating the distribution of welfare effects using quantiles Work. Pap., Dep. Econ. Boston Coll.: [Google Scholar]
  25. Hotelling H. 1938. The general welfare in relation to problems of taxation and of railway and utility rates. Econometrica 6:242–69 [Google Scholar]
  26. Hsiao C. 1983. Identification. The Handbook of Econometrics 1 Z Griliches, M Intriligator 223–83 Amsterdam: North Holland [Google Scholar]
  27. Hurwicz J, Uzawa H. 1971. On the integrability of demand functions. Preferences, Utility and Demand JS Chipman, L Hurwicz, MK Richter, H Sonnenschein 114–48 New York: Harcourt Brace Jovanovich [Google Scholar]
  28. Imbens GW, Newey WK. 2009. Identification and estimation of triangular simultaneous equations models without additivity. Econometrica 77:1481–512 [Google Scholar]
  29. Kitamura Y, Stoye J. 2012. Nonparametric analysis of random utility models Discuss. Pap., Dep. Econ., Cornell Univ Ithaca, NY: [Google Scholar]
  30. Lewbel A. 2001. Demand systems with and without errors. Am. Econ. Rev. 91:611–18 [Google Scholar]
  31. Lewbel A, Pendakur K. 2017. Unobserved preference heterogeneity in demand using generalized random coefficients. J. Polit. Econ. In press [Google Scholar]
  32. Manski CF, Tamer E. 2002. Inference on regressions with interval data on a regressor or outcome. Econometrica 70:519–47 [Google Scholar]
  33. McFadden DL. 2004. Welfare economics at the extensive margin: giving Gorman polar consumers some latitude Work. Pap., Dep. Econ., Univ. Calif. Berkeley: [Google Scholar]
  34. McFadden DL. 2005. Revealed stochastic preference: a synthesis. Econ. Theory 26:245–64 [Google Scholar]
  35. McFadden DL, Richter M. 1991. Stochastic rationality and revealed stochastic preference. Preferences, Uncertainty and Optimality: Essays in Honour of Leonid Hurwicz J Chipman, D McFadden, M Richter 161–86 Boulder, CO: Westview Press [Google Scholar]
  36. Newey WK. 1994. Kernel estimation of partial means and a general variance estimator. Econom. Theory 10:233–53 [Google Scholar]
  37. Newey WK. 1997. Convergence rates and asymptotic normality for series estimators. J. Econom. 79:147–68 [Google Scholar]
  38. Vanhems A. 2006. Nonparametric study of solutions of differential equations. Econom. Theory 22:127–57 [Google Scholar]
  39. Vartia Y. 1983. Efficient methods of measuring welfare change and compensated income in terms of ordinary demand functions. Econometrica 51:79–98 [Google Scholar]
  40. Willig RD. 1976. Consumer surplus without apology. Am. Econ. Rev. 66:589–97 [Google Scholar]
/content/journals/10.1146/annurev-economics-080315-015107
Loading
/content/journals/10.1146/annurev-economics-080315-015107
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error