Social and economic networks are ubiquitous, serving as contexts for job search, technology diffusion, the accumulation of human capital, and even the formulation of norms and values. The systematic empirical study of network formation—the process by which agents form, maintain, and dissolve links—within economics is recent, is associated with extraordinarily challenging modeling and identification issues, and is an area of exciting new developments, with many open questions. This article reviews prominent research on the empirical analysis of network formation, with an emphasis on contributions made by economists.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Albert R, Barabási A-L. 2002. Statistical mechanics of complex networks. Rev. Mod. Phys. 74:47–97 [Google Scholar]
  2. Bala V, Goyal S. 2000. A noncooperative model of network formation. Econometrica 68:1181–229 [Google Scholar]
  3. Banerjee A, Chandrasekhar AG, Duflo E, Jackson MO. 2013. The diffusion of microfinance. Science 341:363–70 [Google Scholar]
  4. Barabási A-L, Albert R. 1999. Emergence of scaling in random networks. Science 286:509–12 [Google Scholar]
  5. Blitzstein J, Diaconis P. 2011. A sequential importance sampling algorithm for generating random graphs with prescribed degrees. Internet Math. 6:489–522 [Google Scholar]
  6. Bloch F, Jackson MO. 2007. The formation of networks with transfers among players. J. Econ. Theory 113:83–110 [Google Scholar]
  7. Blume LE, Block WA, Durlauf SN, Ioannides YM. 2011. Identification of social interactions. Handbook of Social Economics Vol. 1B Benhabib J, Bisin A, Jackson M. 853–964 Amsterdam: North-Holland [Google Scholar]
  8. Bresnahan TF, Reiss PC. 1991. Empirical models of discrete games. J. Econom. 48:57–81 [Google Scholar]
  9. Case AC, Katz LF. 1991. The company you keep: the effects of family and neighborhood on disadvantaged youths. NBER Work. Pap. 3705
  10. Chamberlain G. 1984. Panel data. Handbook of Econometrics Vol. 2 Griliches Z, Intriligator MD. 1247–318 Amsterdam: North-Holland [Google Scholar]
  11. Chamberlain G. 1985. Heterogeneity, omitted variable bias, and duration dependence. Longitudinal Analysis of Labor Market Data Heckman JJ, Singer B. 3–38 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  12. Charbonneau KB. 2014. Multiple fixed effects in binary response panel data models. Work. Pap. 2014-17, Bank Canada, Ottawa
  13. Chatterjee S, Diaconis P, Sly A. 2011. Random graphs with a given degree sequence. Ann. Appl. Probab. 21:1400–35 [Google Scholar]
  14. Christakis NA, Fowler JH, Imbens GW, Kalyanaraman K. 2010. An empirical model of strategic network formation. NBER Work. Pap. 16039
  15. Ciliberto F, Tamer E. 2009. Market structure and multiple equilibria in airline markets. Econometrica 77:1791–828 [Google Scholar]
  16. Comola M, Fafchamps M. 2014. Testing unilateral and bilateral link formation. Econ. J. 124:954–76 [Google Scholar]
  17. Cox DR. 1958. The regression analysis of binary sequences. J. R. Stat. Soc. B 20:215–41 [Google Scholar]
  18. Currarini S, Jackson MO, Pin P. 2010. Identifying the roles of race-based choice and chance in high school friendship network formation. PNAS 107:4857–61 [Google Scholar]
  19. de Paula A, Richards-Shubik S, Tamer E. 2014. Identification of preferences in network formation games. Unpublished manuscript, Carnegie Mellon Univ., Pittsburgh
  20. De Weerdt J. 2004. Risk-sharing and endogenous network formation. Insurance Against Poverty Dercon S. 197–216 New York: Oxford Univ. Press [Google Scholar]
  21. De Weerdt J, Fafchamps M. 2011. Social identity and the formation of health insurance networks. J. Dev. Stud. 47:1152–77 [Google Scholar]
  22. Dutta B, Ghosal S, Ray D. 2005. Farsighted network formation. J. Econ. Theory 122:143–64 [Google Scholar]
  23. Faust K. 2007. Very local structure in social networks. Sociol. Methodol. 37:209–56 [Google Scholar]
  24. Freeman L. 2000. Visualizing social networks. J. Soc. Struct. 1 http://www.cmu.edu/joss/content/articles/volume1/Freeman.html [Google Scholar]
  25. Gaviria A, Raphael S. 2001. School-based peer effects and juvenile behavior. Rev. Econ. Stat. 83:257–68 [Google Scholar]
  26. Goldenberg A, Zheng AX, Fienberg SE, Airoldi EM. 2009. A survey of statistical network models. Found. Trends Mach. Learn. 2:129–233 [Google Scholar]
  27. Goldsmith-Pinkham P, Imbens GW. 2013. Social networks and the identification of peer effects. J. Bus. Econ. Stat. 31:253–64 [Google Scholar]
  28. Graham BS. 2012. Homophily and transitivity in dynamic network formation. Unpublished manuscript, Univ. Calif., Berkeley
  29. Graham BS. 2013. Comment on “Social networks and the identification of peer effects” by Paul Goldsmith-Pinkham and Guido W. Imbens. J. Bus. Econ. Stat. 31:266–70 [Google Scholar]
  30. Graham BS. 2014. An empirical model of network formation: detecting homophily when agents are heterogenous. NBER Work. Pap. 20341
  31. Handcock MS, Raftery A, Tantrum JM. 2007. Model-based clustering for social networks. J. R. Stat. Soc. A 170:301–54 [Google Scholar]
  32. Heckman JJ. 1978a. Dummy endogenous variables in a simultaneous equation system. Econometrica 46:931–59 [Google Scholar]
  33. Heckman JJ. 1978b. Simple statistical models for discrete panel data developed and applied to test the hypothesis of true state dependence against the hypothesis of spurious state dependence. Ann. Insee 30–31:227–70 [Google Scholar]
  34. Heckman JJ. 1981a. Heterogeneity and state dependence. Studies in Labor Markets Rosen S. 91–139 Chicago: Univ. Chicago Press [Google Scholar]
  35. Heckman JJ. 1981b. Statistical models for discrete panel data. Structural Analysis of Discrete Data and Econometric Applications Manski CF, McFadden DL. 114–78 Cambridge, MA: MIT Press [Google Scholar]
  36. Heckman JJ. 1981c. The incidental parameters problem and the problem of initial conditions in estimating a discrete time-discrete data stochastic process. Structural Analysis of Discrete Data and Econometric Applications Manski CF, McFadden DL. 179–95 Cambridge, MA: MIT Press [Google Scholar]
  37. Hellmann T. 2013. On the existence and uniqueness of pairwise stable networks. Int. J. Game Theory 42:211–37 [Google Scholar]
  38. Honoré BE, Kyriazidou E. 2000. Panel data discrete choice models with lagged dependent variables. Econometrica 68:839–74 [Google Scholar]
  39. Jackson MO. 2008. Social and Economic Networks Princeton, NJ: Princeton Univ. Press [Google Scholar]
  40. Jackson MO. 2014. Networks and the identification of economic behaviors. Unpublished manuscript, Stanford Univ., Stanford, CA
  41. Jackson MO, Rogers BW. 2007a. Meeting strangers and friends of friends: How random are social networks?. Am. Econ. Rev. 97:890–915 [Google Scholar]
  42. Jackson MO, Rogers BW. 2007b. Relating network structure to diffusion properties through stochastic dominance. B.E. J. Theor. Econ. 7:16 doi: 10.2202/1935-1704.1341 [Google Scholar]
  43. Jackson MO, Watts A. 2002. The evolution of social and economic networks. J. Econ. Theory 106:265–95 [Google Scholar]
  44. Jackson MO, Wolinsky A. 1996. A strategic model of social and economic networks. J. Econ. Theory 71:44–74 [Google Scholar]
  45. Kolaczyk ED. 2009. Statistical Analysis of Network Data New York: Springer [Google Scholar]
  46. Koster JM, Leckie G. 2014. Food sharing networks in lowland Nicaragua: an application of the social relations model to count data. Soc. Netw. 38:100–10 [Google Scholar]
  47. Kranton RE, Minehart DF. 2001. A theory of buyer-seller networks. Am. Econ. Rev. 91:485–508 [Google Scholar]
  48. Krivitsky PN, Handcock MS, Raftery AE, Hoff PD. 2009. Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Soc. Networks 31:204–13 [Google Scholar]
  49. Loury LD. 2006. Some contacts are more equal than others: informal networks, job tenure, and wages. J. Labor Econ. 24:299–318 [Google Scholar]
  50. Manski CF. 1975. Maximum score estimation of the stochastic utility model of choice. J. Econom. 3:205–28 [Google Scholar]
  51. Manski CF. 1987. Semiparametric analysis of random effects linear models from binary panel data. Econometrica 55:357–62 [Google Scholar]
  52. McFadden DL. 1973. Conditional logit analysis of qualitative choice behavior. Frontiers in Econometrics Zarembka P. 105–42 New York: Academic [Google Scholar]
  53. McPherson M, Smith-Lovin L, Cook JM. 2001. Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27:415–44 [Google Scholar]
  54. Mele A. 2013. A structural model of segregation in social networks. Unpublished manuscript, John Hopkins Univ., Baltimore
  55. Milgram S. 1967. The small-world problem. Psychol. Today 1:61–67 [Google Scholar]
  56. Miyauchi Y. 2013. Structural estimation of a pairwise stable network with nonnegative externality. Unpublished manuscript, Mass. Inst. Technol., Cambridge, MA
  57. Newman MEJ. 2003. The structure and function of complex networks. SIAM Rev. 45:167–256 [Google Scholar]
  58. Read RC, Corneil DG. 1977. The graph isomorphism disease. J. Graph Theory 1:339–63 [Google Scholar]
  59. Sheng S. 2012. Identification and estimation of network formation games. Unpublished manuscript, Univ. South. Calif., Los Angeles
  60. Snijders TAB. 2011. Statistical models for social networks. Annu. Rev. Sociol. 37:131–53 [Google Scholar]
  61. Tamer E. 2003. Incomplete simultaneous discrete response model with multiple equilibria. Rev. Econ. Stud. 70:147–67 [Google Scholar]
  62. Wasserman S, Faust K. 1994. Social Network Analysis Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  63. Watts A. 2001. A dynamic model of network formation. Games Econ. Behav. 34:331–41 [Google Scholar]
  64. Wooldridge JM. 2005. Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity. J. Appl. Econ. 20:39–54 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error