1932

Abstract

We review the current state of the estimation of dynamic stochastic general equilibrium (DSGE) models. After introducing a general framework for dealing with DSGE models, the state-space representation, we discuss how to evaluate moments or the likelihood function implied by such a structure. We discuss, in varying degrees of detail, recent advances in the field, such as the tempered particle filter, approximated Bayesian computation, Hamiltonian Monte Carlo, variational inference, and machine learning. These methods show much promise but have not been fully explored by the DSGE community yet. We conclude by outlining three future challenges for this line of research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-economics-081020-044812
2021-08-05
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/economics/13/1/annurev-economics-081020-044812.html?itemId=/content/journals/10.1146/annurev-economics-081020-044812&mimeType=html&fmt=ahah

Literature Cited

  1. Achdou Y, Han J, Lasry JM, Lions PL, Moll B. 2017. Income and wealth distribution in macroeconomics: a continuous-time approach NBER Work. Pap. 23732
    [Google Scholar]
  2. Andreasen M, Fernández-Villaverde J, Rubio-Ramírez J. 2018. The pruned state-space system for non-linear DSGE models: theory and empirical applications. Rev. Econ. Stud. 85:1–49
    [Google Scholar]
  3. Andrieu C, Thoms J. 2008. A tutorial on adaptive MCMC. Stat. Comput. 18:343–73
    [Google Scholar]
  4. Archer E, Park IM, Buesing L, Cunningham J, Paninski L. 2015. Black box variational inference for state space models Tech. Rep., Columbia Univ. New York:
    [Google Scholar]
  5. Aruoba SB, Fernández-Villaverde J, Rubio-Ramírez JF. 2006. Comparing solution methods for dynamic equilibrium economies. J. Econ. Dyn. Control 30:2477–508
    [Google Scholar]
  6. Azinović M, Gaegauf L, Scheidegger S. 2019. Deep equilibrium nets Work. Pap., Univ. Zurich Zurich, Switz:.
    [Google Scholar]
  7. Bach F. 2017. Breaking the curse of dimensionality with convex neural networks. J. Mach. Learn. Res. 18:629–81
    [Google Scholar]
  8. Barron AR. 1993. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inform. Theory 39:930–45
    [Google Scholar]
  9. Berger J, Wolpert R. 1988. The Likelihood Principle Beachwood, OH: Inst. Math. Stat., 2nd ed..
    [Google Scholar]
  10. Betancourt M. 2017. A conceptual introduction to Hamiltonian Monte Carlo Tech. Rep., Columbia Univ. New York:
    [Google Scholar]
  11. Blei DM, Kucukelbir A, McAuliffe JD. 2017. Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112:859–77
    [Google Scholar]
  12. Boivin J, Giannoni M. 2006. DSGE models in a data-rich environment NBER Work. Pap. 12772
    [Google Scholar]
  13. Brooks S, Gelman A, Jones G, Meng X 2011. Handbook of Markov Chain Monte Carlo Boca Raton, FL: Chapman & Hall/CRC
    [Google Scholar]
  14. Browning M, Hansen L, Heckman J 1999. Micro data and general equilibrium models. Handbook of Macroeconomics JB Taylor, M Woodford , Vol. 1543–633 Amsterdam: Elsevier. , 1st ed..
    [Google Scholar]
  15. Brunnermeier MK, Sannikov Y. 2014. A macroeconomic model with a financial sector. Am. Econ. Rev. 104:379–421
    [Google Scholar]
  16. Canova F, Sala L. 2009. Back to square one: identification issues in DSGE models. J. Monet. Econ. 56:431–49
    [Google Scholar]
  17. Carpenter B. 2017. Typical sets and the curse of dimensionality. Stan Software https://mc-stan.org/users/documentation/case-studies/curse-dims.html
    [Google Scholar]
  18. Casella G, George EI. 1992. Explaining the Gibbs sampler. Am. Stat. 46:167–74
    [Google Scholar]
  19. Casella S, Fernández-Villaverde J, Hansen S. 2020. Structural estimation of dynamic equilibrium models with unstructured data Work. Pap., Univ. Pa. Philadelphia:
    [Google Scholar]
  20. Chernozhukov V, Hong H. 2003. An MCMC approach to classical estimation. J. Econom. 115:293–346
    [Google Scholar]
  21. Childers D, Fernández-Villaverde J, Perla J, Rackauckas C, Wu P 2020. Differentiable state-space models with applications to estimation using Hamiltonian Monte Carlo Work. Pap., Univ. Pa Philadelphia:
    [Google Scholar]
  22. Chopin N, Papaspiliopoulos O. 2020. An Introduction to Sequential Monte Carlo Berlin: Springer Verlag
    [Google Scholar]
  23. Christiano LJ, Eichenbaum M, Evans CL. 2005. Nominal rigidities and the dynamic effects of a shock to monetary policy. J. Political Econ. 113:1–45
    [Google Scholar]
  24. Cover T, Thomas J. 2012. Elements of Information Theory New York: Wiley. , 2nd ed..
    [Google Scholar]
  25. Fernández-Villaverde J. 2010. The econometrics of DSGE models. SERIEs 1:3–49
    [Google Scholar]
  26. Fernández-Villaverde J, Guerrón-Quintana PA. 2020. Uncertainty shocks and business cycle research. Rev. Econ. Dyn. 37:Suppl. 1S118–46
    [Google Scholar]
  27. Fernández-Villaverde J, Guerrón-Quintana PA, Rubio-Ramírez JF, Uribe M. 2011. Risk matters: the real effects of volatility shocks. Am. Econ. Rev. 101:2530–61
    [Google Scholar]
  28. Fernández-Villaverde J, Hurtado S, Nuño G. 2019. Financial frictions and the wealth distribution. NBER Work. Pap. 26302
    [Google Scholar]
  29. Fernández-Villaverde J, Rubio-Ramírez JF. 2007. Estimating macroeconomic models: a likelihood approach. Rev. Econ. Stud. 74:1059–87
    [Google Scholar]
  30. Fernández-Villaverde J, Rubio-Ramírez JF 2008. How structural are structural parameters?. NBER Macroeconomics Annual 2007 22 D Acemoglu, K Rogoff, M Woodford 83–137 Chicago: Univ. Chicago Press
    [Google Scholar]
  31. Fernández-Villaverde J, Rubio-Ramírez JF, Schorfheide F 2016. Solution and estimation methods for DSGE models. Handbook of Macroeconomics JB Taylor, H Uhlig , Vol. 2527–24 Amsterdam: Elsevier
    [Google Scholar]
  32. Fernández-Villaverde J, Valencia DZ. 2018. A practical guide to parallelization in economics NBER Work. Pap. 24561
    [Google Scholar]
  33. Gabaix X. 2020. A behavioral new Keynesian model. Am. Econ. Rev. 110:2271–327
    [Google Scholar]
  34. Girolami M, Calderhead B. 2011. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. Ser. B 73:123–214
    [Google Scholar]
  35. Goodfellow I, Bengio Y, Courville A. 2016. Deep Learning Cambridge, MA: MIT Press
    [Google Scholar]
  36. Gornemann N, Kuester K, Nakajima M. 2012. Monetary policy with heterogeneous agents Work. Pap. 12–21 Fed. Reserve Bank Philadelphia Philadelphia, PA:
    [Google Scholar]
  37. Guerrón-Quintana PA. 2010. What you match does matter: the effects of observable variables on DSGE estimation. J. Appl. Econom. 25:774–804
    [Google Scholar]
  38. Hansen GD, Prescott EC. 1995. Recursive methods for computing equilibria of business cycle models. Frontiers of Business Cycle Research TF Cooley 39–64 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  39. Hansen LP. 1982. Large sample properties of generalized method of moments estimators. Econometrica 50:1029–54
    [Google Scholar]
  40. Harvey AC. 1990. Forecasting, Structural Time Series Models and the Kalman Filter Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  41. Herbst E. 2011. Gradient and Hessian-based MCMC for DSGE models Work. Pap., Univ. Pa Philadelphia:
    [Google Scholar]
  42. Herbst E, Schorfheide F. 2015. Bayesian Estimation of DSGE Models Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  43. Herbst E, Schorfheide F. 2019. Tempered particle filtering. J. Econom. 210:26–44
    [Google Scholar]
  44. Homan MD, Gelman A. 2014. The No-U-Turn Sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15:1593–623
    [Google Scholar]
  45. Ilut CL, Schneider M. 2014. Ambiguous business cycles. Am. Econ. Rev. 104:2368–99
    [Google Scholar]
  46. Iskrev N. 2010. Local identification in DSGE models. J. Monet. Econ. 57:189–202
    [Google Scholar]
  47. Kalman R. 1960. A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82:35–45
    [Google Scholar]
  48. Kaplan G, Moll B, Violante GL 2018. Monetary policy according to HANK. Am. Econ. Rev. 108:697–743
    [Google Scholar]
  49. Khan A, Thomas JK. 2007. Inventories and the business cycle: an equilibrium analysis of (S, s) policies. Am. Econ. Rev. 97:1165–88
    [Google Scholar]
  50. Komunjer I, Ng S. 2011. Dynamic identification of dynamic stochastic general equilibrium models. Econometrica 79:1995–2032
    [Google Scholar]
  51. Künsch HR. 2005. Recursive Monte Carlo filters: algorithms and theoretical analysis. Ann. Stat. 33:1983–2021
    [Google Scholar]
  52. Kydland FE, Prescott EC. 1982. Time to build and aggregate fluctuations. Econometrica 50:1345–70
    [Google Scholar]
  53. Li W, Fearnhead P. 2018. On the asymptotic efficiency of approximate Bayesian computation estimators. Biometrika 105:285–99
    [Google Scholar]
  54. Maliar L, Maliar S, Winant P. 2019. Will artificial intelligence replace computational economists any time soon? CEPR Discuss. Pap. 14024 Cent. Econ. Policy Res. London:
    [Google Scholar]
  55. Marin JM, Pudlo P, Robert CP, Ryder RJ. 2012. Approximate Bayesian computational methods. Stat. Comput. 22:1167–80
    [Google Scholar]
  56. Marjoram P, Molitor J, Plagnol V, Tavaré S 2003. Markov chain Monte Carlo without likelihoods. PNAS 100:15324–28
    [Google Scholar]
  57. Neal RM 2011. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo S Brooks, A Gelman, G Jones, X Meng 113–62 Boca Raton, FL: Chapman & Hall/CRC
    [Google Scholar]
  58. Nishiyama S, Smetters K 2014. Analyzing fiscal policies in a heterogeneous-agent overlapping-generations economy. Handbook of Computational Economics K Schmedders, KL Judd , Vol. 3117–60 Amsterdam: Elsevier
    [Google Scholar]
  59. Primiceri G. 2006. Why inflation rose and fell: policymakers' beliefs and US postwar stabilization policy. Q. J. Econ. 121:867–901
    [Google Scholar]
  60. Robert C, Casella G. 2005. Monte Carlo Statistical Methods New York: Springer. , 2nd ed..
    [Google Scholar]
  61. Roberts GO, Gelman A, Gilks WR. 1997. Weak convergence and optimal scaling of random walk metropolis algorithms. Ann. Appl. Probab. 7:110–20
    [Google Scholar]
  62. Scalone V. 2018. Estimating non-linear DSGEs with the approximate Bayesian computation: an application to the zero lower bound Work. Pap. 688 Banq. Fr. Paris:
    [Google Scholar]
  63. Sisson SA, Fan Y, Tanaka MM 2007. Sequential Monte Carlo without likelihoods. PNAS 104:1760–65
    [Google Scholar]
  64. Strathmann H, Sejdinovic D, Livingstone S, Szabo Z, Gretton A. 2015. Gradient-free Hamiltonian Monte Carlo with efficient Kernel exponential families Tech. rep., Univ. Coll. Lond. London:
    [Google Scholar]
  65. Strid I, Giordani P, Kohn R. 2010. Adaptive hybrid Metropolis-Hastings samplers for DSGE models SSE/EFI Work. Pap. Ser. Econ. Finance 724 Stockh. Sch. Econ. Stockholm, Swed:.
    [Google Scholar]
  66. van Binsbergen JH, Fernández-Villaverde J, Koijen RS, Rubio-Ramírez JF. 2012. The term structure of interest rates in a DSGE model with recursive preferences. J. Monet. Econ. 59:634–48
    [Google Scholar]
  67. Wan E, Van Der Merwe R. 2000. The unscented Kalman filter for nonlinear estimation. Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000153–58 New York: IEEE
    [Google Scholar]
  68. Watson MW. 1989. Recursive solution methods for dynamic linear rational expectations models. J. Econom. 41:65–89
    [Google Scholar]
  69. Woodford M. 2003. Interest and Prices: Foundations of a Theory of Monetary Policy Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
/content/journals/10.1146/annurev-economics-081020-044812
Loading
/content/journals/10.1146/annurev-economics-081020-044812
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error