1932

Abstract

This article reviews recent developments in the study of firm and industry dynamics, with a special emphasis on the econometric endogeneity of market structure. The endogeneity of market structure follows from the presence of serially correlated unobservable shocks to the profitability of firms’ dynamic decisions, a feature common to many empirical settings. Methods that ignore endogeneity can lead to misleading parameter estimates and misleading counterfactual results. We pay particular attention to extensions of standard two-step methods that leverage instrumental variables to address endogeneity in both single-agent and oligopoly models. A first step set-identifies dynamic policy functions together with serial correlation parameters, and a second step quickly solves for profit function parameters using an extension of existing forward-simulation methods. We discuss how these new methods provide a general solution to initial-conditions problems and how they can yield practical estimation strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-economics-081720-120019
2021-08-05
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/economics/13/1/annurev-economics-081720-120019.html?itemId=/content/journals/10.1146/annurev-economics-081720-120019&mimeType=html&fmt=ahah

Literature Cited

  1. Abbring JH, Campbell JR. 2010. Last-in first-out oligopoly dynamics. Econometrica 78:1491–527
    [Google Scholar]
  2. Ackerberg D, Benkard L, Berry S, Pakes A 2007. Econometric tools for analyzing market outcomes. Handbook of Econometrics 6A JJ Heckman, E Leamer 4171–276 Amsterdam: North-Holland
    [Google Scholar]
  3. Aguirregabiria V, Ho CY. 2012. A dynamic oligopoly game of the US airline industry: estimation and policy experiments. J. Econom. 168:156–73
    [Google Scholar]
  4. Aguirregabiria V, Mira P 2007. Sequential estimation of dynamic discrete games. Econometrica 75:1–53
    [Google Scholar]
  5. Aguirregabiria V, Mira P 2010. Dynamic discrete choice structural models: a survey. J. Econom. 156:38–67
    [Google Scholar]
  6. Andrews DW, Shi X. 2013. Inference based on conditional moment inequalities. Econometrica 81:609–66
    [Google Scholar]
  7. Andrews DW, Shi X. 2017. Inference based on many conditional moment inequalities. J. Econom. 196:275–87
    [Google Scholar]
  8. Andrews DW, Soares G. 2010. Inference for parameters defined by moment inequalities using generalized moment selection. Econometrica 78:119–57
    [Google Scholar]
  9. Arcidiacono P, Bayer P, Blevins JR, Ellickson PB. 2016. Estimation of dynamic discrete choice models in continuous time with an application to retail competition. Rev. Econ. Stud. 83:889–931
    [Google Scholar]
  10. Arcidiacono P, Ellickson PB. 2011. Practical methods for estimation of dynamic discrete choice models. Annu. Rev. Econ. 3:363–94
    [Google Scholar]
  11. Arcidiacono P, Miller R. 2011. Conditional choice probability estimation of dynamic discrete choice models with unobserved heterogeneity. Econometrica 7:1823–68
    [Google Scholar]
  12. Bajari P, Benkard CL, Levin J. 2007. Estimating dynamic models of imperfect competition. Econometrica 75:1331–70
    [Google Scholar]
  13. Beresteanu A, Molinari F, Molchanov I. 2011. Sharp identification regions in models with convex moment predictions. Econometrica 79:1785–821
    [Google Scholar]
  14. Berry ST. 1994. Estimating discrete choice models of product differentiation. RAND J. Econ. 23:242–62
    [Google Scholar]
  15. Berry ST, Compiani G 2020. An instrumental variable approach to dynamic models. Tech. Rep. Yale Univ. New Haven, CT:
    [Google Scholar]
  16. Berry ST, Gandhi A, Haile PA. 2013. Connected substitutes and invertibility of demand. Econometrica 81:2087–111
    [Google Scholar]
  17. Berry ST, Haile PA 2018. Nonparametric identification of simultaneous equations models with a residual index structure. Econometrica 86:289–315
    [Google Scholar]
  18. Berry ST, Reiss P 2007. Empirical models of entry and market structure. Handbook of Industrial Organization 3 M Armstrong, R Porter 1845–86 Amsterdam: North Holland
    [Google Scholar]
  19. Berry ST, Tamer E 2007. Identification in models of oligopoly entry. Advances in Economics and Econometrics: Theory and Applications 2 R Blundell, W Newey, T Persson pp. 46–85 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  20. Blundell R, Bond S. 1998. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 87:115–43
    [Google Scholar]
  21. Borkovsky R, Doraszelski U, Kryukov Y. 2012. A dynamic quality ladder model with entry and exit: exploring the equilibrium correspondence using the homotopy method. Quant. Mark. Econ. 10:197–229
    [Google Scholar]
  22. Chamberlain G 1985. Heterogeneity, omitted variable bias, and duration dependence. Longitudinal Analysis of Labor Market Data JJ Heckman, B Singer 3–38 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  23. Chernozhukov V, Chetverikov D, Kato K. 2018. Inference on causal and structural parameters using many moment inequalities. Rev. Econ. Stud. 86:1867–900
    [Google Scholar]
  24. Chernozhukov V, Hansen C. 2005. An IV model of quantile treatment effects. Econometrica 73:245–61
    [Google Scholar]
  25. Chernozhukov V, Hong H, Tamer E. 2007. Estimation and confidence regions for parameter sets in econometric models. Econometrica 75:1243–84
    [Google Scholar]
  26. Chernozhukov V, Lee S, Rosen A. 2013. Intersection bounds: estimation and inference. Econometrica 81:667–737
    [Google Scholar]
  27. Chesher A. 2010. Instrumental variables models for discrete outcomes. Econometrica 78:575–601
    [Google Scholar]
  28. Chesher A, Rosen A. 2017. Generalized instrumental variable models. Econometrica 83:959–89
    [Google Scholar]
  29. Ciliberto F, Tamer E. 2009. Market structure and multiple equilibria in airline markets. Econometrica 77:1791–828
    [Google Scholar]
  30. Collard-Wexler A. 2013. Demand fluctuations in the ready-mix concrete industry. Econometrica 81:1003–37
    [Google Scholar]
  31. Collard-Wexler A. 2014. Mergers and sunk costs: an application to the ready-mix concrete industry. Am. Econ. J. Microecon. 6:407–47
    [Google Scholar]
  32. Dixit A. 1992. Investment and hysteresis. J. Econ. Perspect. 6:107–32
    [Google Scholar]
  33. Doraszelski U, Judd KL. 2012. Avoiding the curse of dimensionality in dynamic stochastic games. Quant. Econ. 3:53–93
    [Google Scholar]
  34. Doraszelski U, Pakes A 2007. A framework for applied dynamic analysis in IO. Handbook of Industrial Organization 3 M Armstrong, R Porter 1887–966 Amsterdam: Elsevier
    [Google Scholar]
  35. Doraszelski U, Satterthwaite M. 2010. Computable Markov-perfect industry dynamics. RAND J. Econ. 41:215–43
    [Google Scholar]
  36. Dubé J, Fox JT, Su C. 2012. Improving the numerical performance of static and dynamic aggregate discrete choice random coefficients demand estimation. Econometrica 80:2231–67
    [Google Scholar]
  37. Dunne T, Klimek SD, Roberts MJ, Xu DY. 2013. Entry, exit, and the determinants of market structure. RAND J. Econ. 44:462–87
    [Google Scholar]
  38. Ericson R, Pakes A. 1995. Markov perfect industry dynamics: a framework for empirical work. Rev. Econ. Stud. 62:53–82
    [Google Scholar]
  39. Fowlie M, Reguant M, Ryan SP. 2016. Market-based emissions regulation and industry dynamics. J. Political Econ. 124:249–302
    [Google Scholar]
  40. Galichon A, Henry M. 2011. Set identification in models with multiple equilibria. Rev. Econ. Stud. 78:1264–98
    [Google Scholar]
  41. Gowrisankaran G, Town RJ. 1997. Dynamic equilibrium in the hospital industry. J. Econ. Manag. Strategy 6:45–74
    [Google Scholar]
  42. Heckman J 1981. The incidental parameters problem and the problem of initial conditions in estimating a discrete time–discrete data stochastic process. Structural Analysis of Discrete Data with Econometric Applications CF Manski, DL McFadden 179–95 Cambridge, MA: MIT Press
    [Google Scholar]
  43. Heckman J, Singer B. 1984. A method for minimizing the impact of distributional assumptions in econometric models for duration data. Econometrica 52:271–320
    [Google Scholar]
  44. Hodgson C. 2019. Information externalities, free riding, and optimal exploration in the UK oil industry. Tech. Rep. Yale Univ. New Haven, CT:
    [Google Scholar]
  45. Holmes TJ. 2011. The diffusion of Wal-Mart and economies of density. Econometrica 79:253–302
    [Google Scholar]
  46. Honoré BE, Tamer E. 2006. Bounds on parameters in panel dynamic discrete choice models. Econometrica 74:611–29
    [Google Scholar]
  47. Hotz VJ, Miller RA. 1993. Conditional choice probabilities and the estimation of dynamic models. Rev. Econ. Stud. 60:497–529
    [Google Scholar]
  48. Hotz VJ, Miller RA, Sanders S, Smith J. 1994. A simulation estimator for dynamic models of discrete choice. Rev. Econ. Stud. 61:265–89
    [Google Scholar]
  49. Ichimura H, Thompson TS. 1998. Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution. J. Econometrics 86:269–95
    [Google Scholar]
  50. Igami M. 2017. Estimating the innovator's dilemma: structural analysis of creative destruction in the hard disk drive industry, 1981–98. J. Political Econ. 125:798–847
    [Google Scholar]
  51. Igami M. 2018. Industry dynamics of offshoring: the case of hard disk drives. Am. Econ. J. Microecon. 10:67–101
    [Google Scholar]
  52. Igami M, Uetake K. 2020. Mergers, innovation, and entry-exit dynamics: consolidation of the hard disk drive industry, 1996–2016. Rev. Econ. Stud. 87:2672–702
    [Google Scholar]
  53. Igami M, Yang N 2016. Unobserved heterogeneity in dynamic games: cannibalization and preemptive entry of hamburger chains in Canada. Quant. Econ. 7:483–521
    [Google Scholar]
  54. Jeziorski P. 2014. Estimation of cost efficiencies from mergers: application to US radio. RAND J. Econ. 45:816–46
    [Google Scholar]
  55. Jofre-Bonet M, Pesendorfer M 2003. Estimation of a dynamic auction game. Econometrica 71:1443–89
    [Google Scholar]
  56. Kalouptsidi M, Scott P, Souza-Rodrigues E. 2020. Linear IV regression estimators for single-agent dynamic discrete choice models. Tech. Rep. Harvard Univ. Cambridge, MA:
    [Google Scholar]
  57. Kasahara H, Shimotsu K. 2009. Nonparametric identification of finite mixture models of dynamic discrete choices. Econometrica 77:135–75
    [Google Scholar]
  58. Magnac T, Thesmar D. 2002. Identifying dynamic discrete decision processes. Econometrica 70:801–16
    [Google Scholar]
  59. Manski CF. 2003. Partial Identification of Probability Distributions New York: Springer
    [Google Scholar]
  60. Manski CF, Tamer E. 2002. Inference on regressions with interval data on a regressor or outcome. Econometrica 70:519–46
    [Google Scholar]
  61. Matzkin RL. 2003. Nonparametric estimation of nonadditive random functions. Econometrica 71:1339–75
    [Google Scholar]
  62. Menzel K. 2014. Consistent estimation with many moment inequalities. J. Econom. 182:329–50
    [Google Scholar]
  63. Olley SG, Pakes A. 1996. The dynamics of productivity in the telecommunications equipment industry. Econometrica 64:1263–97
    [Google Scholar]
  64. Pakes A, Ericson R. 1998. Empirical implications of alternative models of firm dynamics. J. Econ. Theory 79:1–45
    [Google Scholar]
  65. Pakes A, McGuire P. 1994. Computing Markov-perfect Nash equilibria: numerical implications of a dynamic differentiated product model. RAND J. Econ. 25:555–89
    [Google Scholar]
  66. Pakes A, Ostrovsky M, Berry S. 2007. Simple estimators for the parameters of dynamic games, with entry/exit examples. RAND J. Econ. 38:373–99
    [Google Scholar]
  67. Pesendorfer M, Schmidt-Dengler P. 2008. Asymptotic least squares estimators for dynamic games. Rev. Econ. Stud. 75:901–28
    [Google Scholar]
  68. Pesendorfer M, Schmidt-Dengler P. 2010. Sequential estimation of dynamic discrete games: a comment. Econometrica 78:833–42
    [Google Scholar]
  69. Rust J. 1987. Optimal replacement of GMC bus engines: an empirical model of Harold Zurcher. Econometrica 55:999–1033
    [Google Scholar]
  70. Rust J 1994. Estimation of dynamic structural models, problems and prospects: discrete decision processes. Advances in Econometrics C Sims 119–70 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  71. Ryan SP. 2012. The costs of environmental regulation in a concentrated industry. Econometrica 80:1019–61
    [Google Scholar]
  72. Stokey NL, Lucas RE, Prescott EC. 1989. Recursive Methods in Economic Dynamics Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  73. Sweeting A. 2013. Dynamic product positioning in differentiated product markets: the effect of fees for musical performance rights on the commercial radio industry. Econometrica 81:1763–803
    [Google Scholar]
  74. Tamer E. 2003. Incomplete simultaneous discrete response model with multiple equilibria. Rev. Econ. Stud. 70:147–65
    [Google Scholar]
  75. Toivanen O, Waterson M. 2005. Market structure and entry: Where's the beef?. RAND J. Econ. 36:680–99
    [Google Scholar]
  76. Weintraub GY, Benkard CL, Van Roy B. 2008. Markov perfect industry dynamics with many firms. Econometrica 76:1375–411
    [Google Scholar]
  77. Wolpin K, Keane M. 1994. The solution and estimation of discrete choice dynamic programming models by simulation and interpolation: Monte Carlo evidence. Rev. Econ. Stat. 76:648–72
    [Google Scholar]
  78. Wooldridge JM. 2005. Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity. J. Appl. Econ. 20:39–54
    [Google Scholar]
/content/journals/10.1146/annurev-economics-081720-120019
Loading
/content/journals/10.1146/annurev-economics-081720-120019
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error