1932

Abstract

We survey the weak instrumental variables (IV) literature with the aim of giving simple advice to applied researchers. This literature focuses heavily on the problem of size inflation in two-stage least squares (2SLS) two-tailed -tests that arises if instruments are weak. A common standard for acceptable instrument strength is a first-stage of 10, which renders this size inflation modest. However, 2SLS suffers from other important problems that exist at much higher levels of instrument strength. In particular, 2SLS standard errors tend to be artificially small in samples where the 2SLS estimate is close to ordinary least squares (OLS). This power asymmetry means the -test has inflated power to detect false positive effects when the OLS bias is positive. The Anderson-Rubin (AR) test avoids this problem and should be used in lieu of the -test even with strong instruments. We illustrate the practical importance of this issue in IV papers published in the from 2011 to 2023. Use of the AR test often reverses -test results. In particular, IV estimates that are close to OLS and significant according to the -test are often insignificant according to AR. We also show that for first-stage in the 10–20 range there is a high probability that OLS estimates will be closer to the truth than 2SLS. Hence we advocate a higher standard of instrument strength in applied work.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-economics-092123-111021
2024-08-22
2025-02-15
Loading full text...

Full text loading...

/deliver/fulltext/economics/16/1/annurev-economics-092123-111021.html?itemId=/content/journals/10.1146/annurev-economics-092123-111021&mimeType=html&fmt=ahah

Literature Cited

  1. Alesina A, Zhuravskaya E. 2011.. Segregation and the quality of government in a cross section of countries. . Am. Econ. Rev. 101:(5):1872911
    [Crossref] [Google Scholar]
  2. Anderson TW, Rubin H. 1949.. Estimation of the parameters of a single equation in a complete system of stochastic equations. . Ann. Math. Stat. 20:(1):4663
    [Crossref] [Google Scholar]
  3. Andrews I, Armstrong T. 2017.. Unbiased instrumental variables estimation under known first-stage sign. . Quant. Econ. 8:(2):479503
    [Crossref] [Google Scholar]
  4. Andrews I, Stock J, Sun L. 2019.. Weak instruments in instrumental variables regression: theory and practice. . Annu. Rev. Econ. 11::72753
    [Crossref] [Google Scholar]
  5. Angrist J, Kolesár M. 2024.. One instrument to rule them all: the bias and coverage of just-ID IV. . J. Econom. 240:(2):105398
    [Crossref] [Google Scholar]
  6. Angrist J, Pischke JS. 2008.. Mostly Harmless Econometrics: An Empiricist's Companion. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  7. Autor DH, Dorn D. 2013.. The growth of low-skill service jobs and the polarization of the US labor market. . Am. Econ. Rev. 103:(5):155397
    [Crossref] [Google Scholar]
  8. Autor DH, Dorn D, Hanson G, Majlesi K. 2020.. Importing political polarization? The electoral consequences of rising trade exposure. . Am. Econ. Rev. 110:(10):313983
    [Crossref] [Google Scholar]
  9. Bound J, Jaeger D, Baker R. 1995.. Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. . J. Am. Stat. Assoc. 90:(430):44350
    [Google Scholar]
  10. Dufour JM. 2004.. Identification, weak instruments, and statistical inference in econometrics. . Can. J. Econ. Rev. Can. Econ. 36:(4):767808
    [Crossref] [Google Scholar]
  11. Fang H, Gavazza A. 2011.. Dynamic inefficiencies in an employment-based health insurance system: theory and evidence. . Am. Econ. Rev. 101:(7):304777
    [Crossref] [Google Scholar]
  12. Finlay K, Magnusson L. 2009.. Implementing weak-instrument robust tests for a general class of instrumental-variables models. . Stata J. 9:(3):398421
    [Crossref] [Google Scholar]
  13. Finlay K, Magnusson L, Schaffer ME. 2013.. WEAKIV: Stata module to perform weak-instrument-robust tests and confidence intervals for instrumental-variable (IV) estimation. Stat. Softw. Compon. S457684, Econ. Dep. , Boston Coll., Chestnut Hill, MA:
    [Google Scholar]
  14. Hansen LP. 1982.. Large sample properties of generalized method of moments estimators. . Econometrica 50:(4):102954
    [Crossref] [Google Scholar]
  15. Hansen LP, Heaton J, Yaron A. 1996.. Finite-sample properties of some alternative GMM estimators. . J. Bus. Econ. Stat. 14:(3):26280
    [Crossref] [Google Scholar]
  16. Hornung E. 2014.. Immigration and the diffusion of technology: the Huguenot diaspora in Prussia. . Am. Econ. Rev. 104:(1):84122
    [Crossref] [Google Scholar]
  17. Juhász R. 2018.. Temporary protection and technology adoption: evidence from the Napoleonic blockade. . Am. Econ. Rev. 108:(11):333976
    [Crossref] [Google Scholar]
  18. Keane M, Neal T. 2023.. Instrument strength in IV estimation and inference: a guide to theory and practice. . J. Econom. 235:(2):162553
    [Crossref] [Google Scholar]
  19. Keane M, Neal T. 2024.. Robust inference for the Frisch labor supply elasticity. . J. Lab. Econ. In press
    [Google Scholar]
  20. Kleibergen F. 2005.. Testing parameters in GMM without assuming that they are identified. . Econometrica 73:(4):110323
    [Crossref] [Google Scholar]
  21. Kleibergen F, Paap R. 2006.. Generalized reduced rank tests using the singular value decomposition. . J. Econom. 133:(1):97126
    [Crossref] [Google Scholar]
  22. Lee DS, McCrary J, Moreira MJ, Porter J. 2022.. Valid t-ratio inference for IV. . Am. Econ. Rev. 112:(10):326090
    [Crossref] [Google Scholar]
  23. Lee DS, McCrary J, Moreira MJ, Porter JR, Yap L. 2023.. What to do when you can't use `1.96' confidence intervals for IV. NBER Work. Pap. 31893
    [Google Scholar]
  24. Markevich A, Zhuravskaya E. 2018.. The economic effects of the abolition of serfdom: evidence from the Russian Empire. . Am. Econ. Rev. 108:(4–5):1074117
    [Crossref] [Google Scholar]
  25. Moreira H, Moreira MJ. 2019.. Optimal two-sided tests for instrumental variables regression with heteroskedastic and autocorrelated errors. . J. Econom. 213:(2):398433
    [Crossref] [Google Scholar]
  26. Moreira MJ. 2003.. A conditional likelihood ratio test for structural models. . Econometrica 71:(4):102748
    [Crossref] [Google Scholar]
  27. Moreira MJ. 2009.. Tests with correct size when instruments can be arbitrarily weak. . J. Econom. 152:(2):13140
    [Crossref] [Google Scholar]
  28. Nakamura E, Steinsson J. 2014.. Fiscal stimulus in a monetary union: evidence from US regions. . Am. Econ. Rev. 104:(3):75392
    [Crossref] [Google Scholar]
  29. Olea JLM, Pflueger C. 2013.. A robust test for weak instruments. . J. Bus. Econ. Stat. 31:(3):35869
    [Crossref] [Google Scholar]
  30. Pascali L. 2017.. The wind of change: maritime technology, trade, and economic development. . Am. Econ. Rev. 107:(9):282154
    [Crossref] [Google Scholar]
  31. Rao G. 2019.. Familiarity does not breed contempt: generosity, discrimination, and diversity in Delhi schools. . Am. Econ. Rev. 109:(3):774809
    [Crossref] [Google Scholar]
  32. Shapiro JS, Walker R. 2018.. Why is pollution from US manufacturing declining? The roles of environmental regulation, productivity, and trade. . Am. Econ. Rev. 108:(12):381454
    [Crossref] [Google Scholar]
  33. Staiger D, Stock J. 1997.. Instrumental variables regression with weak instruments. . Econometrica 65:(3):55786
    [Crossref] [Google Scholar]
  34. Stock J, Watson M. 2015.. Introduction to Econometrics. London:: Pearson. , 3rd ed..
    [Google Scholar]
  35. Stock J, Yogo M. 2005.. Testing for weak instruments in linear IV regression. . In Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg, ed. DWK Andrews, JH Stock , pp. 80108. New York:: Cambridge Univ. Press
    [Google Scholar]
  36. Voors MJ, Nillesen EEM, Verwimp P, Bulte EH, Lensink R, Soest DPV. 2012.. Violent conflict and behavior: a field experiment in Burundi. . Am. Econ. Rev. 102:(2):94164
    [Crossref] [Google Scholar]
  37. Woolridge JM. 2012.. Introductory Econometrics: A Modern Approach. Mason, OH:: Cengage
    [Google Scholar]
  38. Young A. 2022.. Consistency without inference: instrumental variables in practical application. . Eur. Econ. Rev. 147::104112
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-economics-092123-111021
Loading
/content/journals/10.1146/annurev-economics-092123-111021
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error