1932

Abstract

This review is an introduction to asymptotic methods for portfolio choice problems with small transaction costs. We outline how to derive the corresponding dynamic programming equations and how to simplify them in the small-cost limit. This allows one to obtain explicit solutions in a wide range of settings, which we illustrate for a model with mean-reverting expected returns and proportional transaction costs. For more complex models, we present a policy iteration scheme that allows one to numerically compute the solution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-financial-110716-032445
2017-11-01
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/financial/9/1/annurev-financial-110716-032445.html?itemId=/content/journals/10.1146/annurev-financial-110716-032445&mimeType=html&fmt=ahah

Literature Cited

  1. Ahrens L. 2015. On using shadow prices for the asymptotic analysis of portfolio optimization under proportional transaction costs PhD Thesis, Univ. Kiel, Ger.
  2. Altarovici A, Muhle-Karbe J, Soner HM. 2015. Asymptotics for fixed transaction costs. Finance Stoch. 19:2363–414 [Google Scholar]
  3. Altarovici A, Reppen M, Soner HM. 2016. Optimal consumption and investment with fixed and proportional transaction costs. SIAM J. Control Optim. 55:31673–710 [Google Scholar]
  4. Atkinson C, Wilmott P. 1995. Portfolio management with transaction costs: an asymptotic analysis of the Morton and Pliska model. Math. Finance 5:4357–67 [Google Scholar]
  5. Azimzadeh P, Forsyth PA. 2016. Weakly chained matrices, policy iteration, and impulse control. SIAM J. Numer. Anal. 54:31341–64 [Google Scholar]
  6. Bajgrowicz O, Scaillet O. 2012. Technical trading revisited: persistence tests, transaction costs, and false discoveries. J. Financ. Econ. 106:3473–91 [Google Scholar]
  7. Balduzzi P, Lynch AW. 1999. Transaction costs and predictability: some utility cost calculations. J. Financ. Econ. 52:147–78 [Google Scholar]
  8. Barberis N. 2000. Investing for the long run when returns are predictable. J. Finance 55:1225–64 [Google Scholar]
  9. Beneš VE, Shepp LA, Witsenhausen HS. 1980. Some solvable stochastic control problems. Stochastics 4:139–83 [Google Scholar]
  10. Bichuch M. 2012. Asymptotic analysis for optimal investment in finite time with transaction costs. SIAM J. Financ. Math. 3:1433–58 [Google Scholar]
  11. Bichuch M. 2014. Pricing a contingent claim liability using asymptotic analysis for optimal investment in finite time with transaction costs. Finance Stoch. 18:3651–94 [Google Scholar]
  12. Bichuch M, Shreve SE. 2013. Utility maximization trading two futures with transaction costs. SIAM J. Financ. Math. 4:126–85 [Google Scholar]
  13. Bokanowski O, Maroso S, Zidani H. 2009. Some convergence results for Howard's algorithm. SIAM J. Numer. Anal. 47:43001–26 [Google Scholar]
  14. Bouchard B, Moreau L, Soner HM. 2016. Hedging under an expected loss constraint with small transaction costs. SIAM J. Financ. Math. 7:1508–51 [Google Scholar]
  15. Bouchard B, Nutz M. 2012. Weak dynamic programming for generalized state constraints. SIAM J. Control Optim. 50:63344–73 [Google Scholar]
  16. Bouchard B, Touzi N. 2011. Weak dynamic programming principle for viscosity solutions. SIAM J. Control Optim. 49:3948–62 [Google Scholar]
  17. Cai J, Rosenbaum M, Tankov P. 2017a. Asymptotic lower bounds for optimal tracking: a linear programming approach. Ann. Appl. Probab. 272455–514
  18. Cai J, Rosenbaum M, Tankov P. 2017b. Asymptotic optimal tracking: feedback strategies. Stochastics In press
  19. Chacko G, Viceira L. 2005. Dynamic consumption and portfolio choice with stochastic volatility in incomplete markets. Rev. Financ. Stud. 18:41369–402 [Google Scholar]
  20. Chancelier J-P, Messaoud M, Sulem A. 2007. A policy iteration algorithm for fixed point problems with nonexpansive operators. Math. Methods Oper. Res. 65:2239–59 [Google Scholar]
  21. Cochrane JH. 2008. The dog that did not bark: a defense of return predictability. Rev. Finan. Stud. 21:41533–75 [Google Scholar]
  22. Collin-Dufresne P, Daniel K, Moallemi C, Saglam M. 2012. Strategic asset allocation in the presence of transaction costs Work. Pap., Swiss Finance Inst. Zürich:
  23. Constantinides GM. 1986. Capital market equilibrium with transaction costs. J. Political Econ. 94:4842–62 [Google Scholar]
  24. Cvitanić J, Karatzas I. 1996. Hedging and portfolio optimization under transaction costs: a martingale approach. Math. Finance 6:2133–65 [Google Scholar]
  25. Dai M, Li P, Liu H, Wang Y. 2016. Portfolio choice with market closure and implications for liquidity premia. Manag. Sci. 62:2368–86 [Google Scholar]
  26. Dai M, Yi F. 2009. Finite-horizon optimal investment with transaction costs: a parabolic double obstacle problem. J. Differ. Equ. 246:41445–69 [Google Scholar]
  27. Dai M, Zhong Y. 2010. Penalty methods for continuous-time portfolio selection with proportional transaction costs. J. Comput. Finance 13:31–31 [Google Scholar]
  28. Davis MHA. 1997. Option pricing in incomplete markets. Mathematics of Derivative Securities MAH Dempster, SR Pliska 216–26 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  29. Davis MHA, Norman AR. 1990. Portfolio selection with transaction costs. Math. Oper. Res. 15:4676–713 [Google Scholar]
  30. De Lataillade J, Deremble C, Potters M, Bouchaud J-P. 2012. Optimal trading with linear costs. J. Invest. Strategy 1:391–115 [Google Scholar]
  31. Dixit A. 1991. Analytical approximations in models of hysteresis. Rev. Econ. Stud. 58:1141–51 [Google Scholar]
  32. Duffie D, Epstein LG. 1992. Stochastic differential utility. Econometrica 60:2353–94 [Google Scholar]
  33. Dumas B. 1991. Super contact and related optimality conditions. J. Econ. Dynam. Control 15:4675–85 [Google Scholar]
  34. Dumas B, Luciano E. 1991. An exact solution to a dynamic portfolio choice problem under transactions costs. J. Finance 46:2577–95 [Google Scholar]
  35. El Karoui N, Tan X. 2013. Capacities, measurable selection and dynamic programming. Part II: application in stochastic control problems. Preprint
  36. Evans LC. 1989. The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. R. Soc. Edinburgh A 111:3–4359–75 [Google Scholar]
  37. Evans LC. 1992. Periodic homogenisation of certain fully nonlinear partial differential equations. Proc. R. Soc. Edinburgh A 120:3–4245–65 [Google Scholar]
  38. Feodoria MR. 2016. Optimal investment and utility indifference pricing in the presence of small fixed transaction costs PhD Thesis, Univ. Kiel, Ger.
  39. Fleming WH, Soner HM. 2006. Controlled Markov Processes and Viscosity Solutions New York: Springer, 2nd ed..
  40. Garleanu N, Pedersen LH. 2013. Dynamic trading with predictable returns and transaction costs. J. Finance 68:62309–40 [Google Scholar]
  41. Garleanu N, Pedersen LH. 2016. Dynamic portfolio choice with frictions. J. Econ. Theory 165:487–516 [Google Scholar]
  42. Gerhold S, Guasoni P, Muhle-Karbe J, Schachermayer W. 2014. Transaction costs, trading volume, and the liquidity premium. Finance Stoch. 18:11–37 [Google Scholar]
  43. Gerhold S, Muhle-Karbe J, Schachermayer W. 2012. Asymptotics and duality for the Davis and Norman problem. Stochastics 84:5–6625–41 [Google Scholar]
  44. Gerhold S, Muhle-Karbe J, Schachermayer W. 2013. The dual optimizer for the growth-optimal portfolio under transaction costs. Finance Stoch. 17:2325–54 [Google Scholar]
  45. Grinold R. 2006. A dynamic model of portfolio management. J. Invest. Manag. 4:25–22 [Google Scholar]
  46. Guasoni P, Muhle-Karbe J. 2013. Portfolio choice with transaction costs: a user's guide. Paris–Princeton Lectures on Mathematical Finance 2013 V Henderson, R Sircar 169–201 Cham, Switz.: Springer [Google Scholar]
  47. Guasoni P, Robertson S. 2012. Portfolios and risk premia for the long run. Ann. Appl. Probab. 22:1239–84 [Google Scholar]
  48. Guasoni P, Weber M. 2016. Optimal trading with multiple assets and cross-price impact Preprint
  49. Heston SL. 1993. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6:2327–43 [Google Scholar]
  50. Hindy A, Huang C-F. 1993. Optimal consumption and portfolio rules with durability and local substitution. Econometrica 61:185–121 [Google Scholar]
  51. Hynd R. 2012. The eigenvalue problem of singular ergodic control. Commun. Pure Appl. Math. 65:5649–82 [Google Scholar]
  52. Janeček K, Shreve SE. 2004. Asymptotic analysis for optimal investment and consumption with transaction costs. Fin. Stoch. 8:2181–206 [Google Scholar]
  53. Jang B-G, Koo HK, Liu H, Loewenstein M. 2007. Liquidity premia and transaction costs. J. Finance 62:52329–66 [Google Scholar]
  54. Kallsen J, Muhle-Karbe J. 2015a. Option pricing and hedging with small transaction costs. Math. Finance 25:4702–23 [Google Scholar]
  55. Kallsen J, Muhle-Karbe J. 2015b. The general structure of optimal investment and consumption with small transaction costs. Math. Finance. 27659–703
  56. Karatzas I, Kou SG. 1996. On the pricing of contingent claims under constraints. Ann. Appl. Probab. 6:2321–69 [Google Scholar]
  57. Kim T, Omberg E. 1996. Dynamic nonmyopic portfolio behavior. Rev. Financ. Stud. 9:1141–61 [Google Scholar]
  58. Korn R. 1998. Portfolio optimisation with strictly positive transaction costs and impulse control. Finance Stoch. 2:285–114 [Google Scholar]
  59. Kozlov SM. 1979. The averaging of random operators. Mat. Sb. 109:188–202 [Google Scholar]
  60. Kramkov D, Sirbu M. 2006. Sensitivity analysis of utility-based prices and risk-tolerance wealth processes. Ann. Appl. Probab. 16:42140–94 [Google Scholar]
  61. Liu J. 2007. Portfolio selection in stochastic enviroments. Rev. Financ. Stud. 20:11–39 [Google Scholar]
  62. Lo A, Mamaysky H, Wang J. 2004. Asset prices and trading volume under fixed transactions costs. J. Political Econ. 112:51054–90 [Google Scholar]
  63. Lynch A, Tan S. 2011. Explaining the magnitude of liquidity premia: the roles of return predictability, wealth shocks, and state-dependent transaction costs. J. Finance 66:41329–68 [Google Scholar]
  64. Magill MJP, Constantinides GM. 1976. Portfolio selection with transactions costs. J. Econ. Theory 13:2245–63 [Google Scholar]
  65. Martin R. 2014. Optimal trading under proportional transaction costs. RISK August:54–59 [Google Scholar]
  66. Martin R, Schöneborn T. 2011. Mean reversion pays, but costs. RISK February:96–101 [Google Scholar]
  67. Melnyk Y, Muhle-Karbe J, Seifried FT. 2017. Lifetime investment and consumption with recursive preferences and small transaction costs Preprint
  68. Melnyk Y, Seifried FT. 2017. Small-cost asymptotics for long-term growth rates in incomplete markets. Math. Finance. In press
  69. Menaldi JL, Robin M. 2013. Singular ergodic control for multidimensional Gaussian-Poisson processes. Stochastics 85:4682–91 [Google Scholar]
  70. Merton RC. 1971. Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3:4373–413 [Google Scholar]
  71. Moreau L, Muhle-Karbe J, Soner HM. 2017. Trading with small price impact. Math. Finance 77:2350–400 [Google Scholar]
  72. Muthuraman K, Kumar S. 2006. Multidimensional portfolio optimization with proportional transaction costs. Math. Finance 16:2301–35 [Google Scholar]
  73. Papanicolaou GC, Varadhan SRS. 1981. Boundary value problems with rapidly oscillating random coefficients. Proc. Conf. Random Fields, 1979, Esztergom, Hung.835–73 Amsterdam: North-Holland [Google Scholar]
  74. Possamaï D, Soner HM, Touzi N. 2015. Homogenization and asymptotics for small transaction costs: the multidimensional case. Commun. Partial Differ. Equ. 40:112005–46 [Google Scholar]
  75. Puterman ML. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming New York: Wiley, 1st ed..
  76. Puterman ML, Brumelle SL. 1979. On the convergence of policy iteration in stationary dynamic programming. Math. Oper. Res. 4:160–69 [Google Scholar]
  77. Rogers LCG. 2004. Why is the effect of proportional transaction costs O2/3)?. Mathematics of Finance G Yin, Q Zhang 303–8 Providence, RI: Am. Math. Soc. [Google Scholar]
  78. Rosenbaum M, Tankov P. 2014. Asymptotically optimal discretization of hedging strategies with jumps. Ann. Appl. Probab. 24:31002–48 [Google Scholar]
  79. Santos MS, Rust J. 2004. Convergence properties of policy iteration. SIAM J. Control Optim. 42:62094–115 [Google Scholar]
  80. Scheinkman JA, Xiong W. 2003. Overconfidence and speculative bubbles. J. Political Econ. 111:61183–220 [Google Scholar]
  81. Shreve SE, Soner HM. 1994. Optimal investment and consumption with transaction costs. Ann. Appl. Probab. 4:3609–92 [Google Scholar]
  82. Soner HM, Touzi N. 2013. Homogenization and asymptotics for small transaction costs. SIAM J. Control Optim. 51:42893–921 [Google Scholar]
  83. Taksar M, Klass MJ, Assaf D. 1988. A diffusion model for optimal portfolio selection in the presence of brokerage fees. Math. Oper. Res. 13:2277–94 [Google Scholar]
  84. Welch I, Goyal A. 2008. A comprehensive look at the empirical performance of equity premium prediction. Rev. Financ. Stud. 21:41455–508 [Google Scholar]
  85. Whalley AE, Wilmott P. 1997. An asymptotic analysis of an optimal hedging model for option pricing with transaction costs. Math. Finance 7:3307–24 [Google Scholar]
  86. Witte JH, Reisinger C. 2012. Penalty methods for the solution of discrete HJB equations—continuous control and obstacle problems. SIAM J. Numer. Anal. 50:2595–625 [Google Scholar]
  87. Zariphopoulou T. 2001. A solution approach to valuation with unhedgeable risks. Finance Stoch. 5:161–82 [Google Scholar]
/content/journals/10.1146/annurev-financial-110716-032445
Loading
/content/journals/10.1146/annurev-financial-110716-032445
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error