1932

Abstract

Robo-advice uses big and open data to provide consumers with fully informed and rational-expectation benchmarks in all realms of household finance, including consumption, saving, investment, and debt management choices. It also minimizes the monetary, cognitive, and psychological costs that households face in economic transactions. We review recent research on the features and effects of robo-advice on individual and aggregate economic outcomes through the lens of its differences from traditional human advice. We discuss the distributional implications of robo-advice, its potential role in increasing the effectiveness of economic policies, the role of providers’ incentives, and several questions that are still wide open for researchers in finance, economics, social psychology, and related fields.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-financial-110921-013217
2023-11-01
2025-02-14
Loading full text...

Full text loading...

/deliver/fulltext/financial/15/1/annurev-financial-110921-013217.html?itemId=/content/journals/10.1146/annurev-financial-110921-013217&mimeType=html&fmt=ahah

Literature Cited

  1. Abel AB, Eberly JC, Panageas S. 2007. Optimal inattention to the stock market. Am. Econ. Rev. 97:244–49
    [Google Scholar]
  2. Abel AB, Eberly JC, Panageas S. 2013. Optimal inattention to the stock market with information costs and transactions costs. Econometrica 81:1455–81
    [Google Scholar]
  3. Agarwal S, Basu D, Ghosh P, Pareek B, Zhang J. 2022. Demonetization and digitization SSRN Work. Pap. 3197990
    [Google Scholar]
  4. Agarwal S, Qian W, Ren Y, Tsai H-T, Yeung BY. 2020. The real impact of fintech: evidence from mobile payment technology SSRN Work. Pap. 3556340
    [Google Scholar]
  5. Agarwal S, Qian W, Yeung BY, Zou X. 2019. Mobile wallet and entrepreneurial growth. AEA Pap. Proc. 109:48–53
    [Google Scholar]
  6. Andre P, Pizzinelli C, Roth C, Wohlfart J. 2022. Subjective models of the macroeconomy: evidence from experts and representative samples. Rev. Econ. Stud. 89:2958–91
    [Google Scholar]
  7. Armantier O, Bruine de Bruin W, Topa G, Van Der Klaauw W, Zafar B. 2015. Inflation expectations and behavior: Do survey respondents act on their beliefs?. Int. Econ. Rev. 56:505–36
    [Google Scholar]
  8. Ashraf N, Karlan D, Yin W. 2006. Tying Odysseus to the mast: evidence from a commitment savings product in the Philippines. Q. J. Econ. 121:635–72
    [Google Scholar]
  9. Bailey M, Dávila E, Kuchler T, Stroebel J. 2019. House price beliefs and mortgage leverage choice. Rev. Econ. Stud. 86:2403–52
    [Google Scholar]
  10. Baker SR. 2018. Debt and the response to household income shocks: validation and application of linked financial account data. J. Political Econ. 126:1504–57
    [Google Scholar]
  11. Banerjee AV, Duflo E. 2011. Poor Economics: A Radical Rethinking of the Way to Fight Global Poverty New York: PublicAffairs
    [Google Scholar]
  12. Barberis N, Greenwood R, Jin L, Shleifer A 2015. X-CAPM: an extrapolative capital asset pricing model. J. Financ. Econ. 115:1–24
    [Google Scholar]
  13. Barberis N, Greenwood R, Jin L, Shleifer A 2018. Extrapolation and bubbles. J. Financ. Econ. 129:203–27
    [Google Scholar]
  14. Bernanke BS. 2009. Reflections on a year of crisis Speech presented at the Federal Reserve Bank of Kansas City's Annual Economic Symposium Jackson Hole, Wyoming: Aug. 21
    [Google Scholar]
  15. Bianchi M, Brière M. 2021. Augmenting investment decisions with robo-advice SSRN Work. Pap. 3751620
    [Google Scholar]
  16. Binder CC. 2017. Measuring uncertainty based on rounding: new method and application to inflation expectations. J. Monet. Econ. 90:1–12
    [Google Scholar]
  17. Bruine de Bruin W, Van der Klaauw W, Topa G, Downs JS, Fischhoff B, Armantier O. 2012. The effect of question wording on consumers’ reported inflation expectations. J. Econ. Psychol. 33:749–57
    [Google Scholar]
  18. Bursztyn L, Ederer F, Ferman B, Yuchtman N. 2014. Understanding mechanisms underlying peer effects: evidence from a field experiment on financial decisions. Econometrica 82:1273–301
    [Google Scholar]
  19. Calvet LE, Campbell JY, Sodini P. 2007. Down or out: assessing the welfare costs of household investment mistakes. J. Political Econ. 115:707–47
    [Google Scholar]
  20. Calvet LE, Campbell JY, Sodini P. 2009. Measuring the financial sophistication of households. Am. Econ. Rev. 99:393–98
    [Google Scholar]
  21. Capponi A, Olafsson S, Zariphopoulou T. 2022. Personalized robo-advising: enhancing investment through client interaction. Manag. Sci. 68:2485–512
    [Google Scholar]
  22. Carlin B, Olafsson A, Pagel M. 2023. Mobile apps and financial decision making. Rev. Finance 27:3977–96
    [Google Scholar]
  23. Carroll CD, Crawley E, Slacalek J, Tokuoka K, White MN. 2020. Sticky expectations and consumption dynamics. Am. Econ. J. Macroecon. 12:340–76
    [Google Scholar]
  24. Chak I, Croxson K, D'Acunto F, Reuter J, Rossi A, Shaw J 2022. Robo-advice for borrower repayment decisions. Occas. Pap.61
    [Google Scholar]
  25. Charles KK, Hurst E, Roussanov N. 2009. Conspicuous consumption and race. Q. J. Econ. 124:425–67
    [Google Scholar]
  26. Coibion O, Gorodnichenko Y, Kamdar R. 2018. The formation of expectations, inflation, and the Phillips curve. J. Econ. Lit. 56:1447–91
    [Google Scholar]
  27. Coibion O, Gorodnichenko Y, Knotek ESII, Schoenle R 2020. Average inflation targeting and household expectations NBER Work. Pap. 27836
    [Google Scholar]
  28. Coibion O, Gorodnichenko Y, Weber M. 2022. Monetary policy communications and their effects on household inflation expectations. J. Political Econ. 130:1537–84
    [Google Scholar]
  29. Cole S, Paulson A, Shastry GK. 2014. Smart money? The effect of education on financial outcomes. Rev. Financ. Stud. 27:2022–51
    [Google Scholar]
  30. Crouzet N, Gupta A, Mezzanotti F. 2022. Shocks and technology adoption: Evidence from electronic payment systems Work. Pap. Northwestern Univ., Evanston, IL
    [Google Scholar]
  31. Cutler DM, Poterba JM, Summers LH. 1990. Speculative dynamics and the role of feedback traders NBER Work. Pap. 3243
    [Google Scholar]
  32. Da Z, Huang X. 2020. Harnessing the wisdom of crowds. Manag. Sci. 66:1847–67
    [Google Scholar]
  33. D'Acunto F. 2021. Tear down this Wall Street: Anti-finance rhetoric and investment decisions. SSRN Work. Pap. 3213904
    [Google Scholar]
  34. D'Acunto F, Fuster A, Weber M. 2021. Diverse policy committees can reach underrepresented groups Work. Pap. 2021-95, Univ. Chicago
    [Google Scholar]
  35. D'Acunto F, Ghosh P, Rossi AG. 2022. How costly are cultural biases? Evidence from fintech SSRN Work. Pap. 3736117
    [Google Scholar]
  36. D'Acunto F, Hoang D, Paloviita M, Weber M. 2019. Cognitive abilities and inflation expectations. AEA Pap. Proc. 109:562–66
    [Google Scholar]
  37. D'Acunto F, Hoang D, Paloviita M, Weber M. 2020. Effective policy communication: targets versus instruments Work. Pap. Univ. Chicago
    [Google Scholar]
  38. D'Acunto F, Hoang D, Paloviita M, Weber M. 2021a. Human frictions in the transmission of economic policies NBER Work. Pap. 29279
    [Google Scholar]
  39. D'Acunto F, Hoang D, Paloviita M, Weber M. 2022. IQ, expectations, and choice. Rev. Econ. Stud. https://doi.org/10.1093/restud/rdac075
    [Google Scholar]
  40. D'Acunto F, Hoang D, Weber M. 2022. Managing households’ expectations with unconventional policies. Rev. Financ. Stud. 35:1597–642
    [Google Scholar]
  41. D'Acunto F, Malmendier U, Ospina J, Weber M. 2021b. Exposure to grocery prices and inflation expectations. J. Political Econ. 129:1615–39
    [Google Scholar]
  42. D'Acunto F, Malmendier U, Weber M. 2021. Gender roles produce divergent economic expectations. PNAS 118:21e2008534118
    [Google Scholar]
  43. D'Acunto F, Prabhala N, Rossi AG. 2019. The promises and pitfalls of robo-advising. Rev. Financ. Stud. 32:1983–2020
    [Google Scholar]
  44. D'Acunto F, Prokopczuk M, Weber M. 2019. Historical antisemitism, ethnic specialization, and financial development. Rev. Econ. Stud. 86:31170–206
    [Google Scholar]
  45. D'Acunto F, Rossi AG 2021. Robo-advising. The Palgrave Handbook of Technological Finance R Rau, R Wardrop, L Zingales 725–49. Cham, Switz.: Palgrave Macmillan
    [Google Scholar]
  46. D'Acunto F, Rossi AG. 2022a. IT meets finance: financial decision making in the digital era SSRN Work. Pap. 4100784
    [Google Scholar]
  47. D'Acunto F, Rossi AG. 2022b. New frontiers of robo-advising: consumption, saving, debt management, and taxes. Machine Learning in Financial Markets: A Guide to Contemporary Practice A Capponi, C-A Lehalle 9–28. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  48. D'Acunto F, Rossi AG, Weber M. 2019. Crowdsourcing financial information to change spending behavior CESifo Work. Pap. 7533
    [Google Scholar]
  49. D'Acunto F, Weber M. 2022. Memory and beliefs: evidence from the field Work. Pap. Univ. Chicago
    [Google Scholar]
  50. D'Acunto F, Weber M, Yin X. 2022. Microfounding household debt cycles with extrapolative expectations Work. Pap. Univ. Chicago Booth Sch. Bus.
    [Google Scholar]
  51. Das S, Kuhnen CM, Nagel S. 2020. Socioeconomic status and macroeconomic expectations. Rev. Financ. Stud. 33:395–432
    [Google Scholar]
  52. Dawes RM. 1979. The robust beauty of improper linear models in decision making. Am. Psychol. 34:571–82
    [Google Scholar]
  53. De Long JB, Shleifer A, Summers LH, Waldmann RJ. 1990. Positive feedback investment strategies and destabilizing rational speculation. J. Finance 45:379–95
    [Google Scholar]
  54. DellaVigna S, Malmendier U. 2004. Contract design and self-control: theory and evidence. Q. J. Econ. 119:353–402
    [Google Scholar]
  55. Foster AD, Rosenzweig MR. 2010. Microeconomics of technology adoption. Annu. Rev. Econ. 2:395–424
    [Google Scholar]
  56. Gargano A, Rossi AG. 2018. Does it pay to pay attention?. Rev. Financ. Stud. 31:4595–649
    [Google Scholar]
  57. Gargano A, Rossi AG. 2020. Goal setting and saving in the fintech era SSRN Work. Pap. 3579275
    [Google Scholar]
  58. Gargano A, Rossi AG, Wermers R. 2017. The Freedom of Information Act and the race toward information acquisition. Rev. Financ. Stud. 30:2179–228
    [Google Scholar]
  59. Gelman M, Kariv S, Shapiro MD, Silverman D, Tadelis S. 2014. Harnessing naturally occurring data to measure the response of spending to income. Science 345:212–15
    [Google Scholar]
  60. Gennaioli N, Ma Y, Shleifer A. 2016. Expectations and investment. NBER Macroecon. Annu. 30:379–431
    [Google Scholar]
  61. Gennaioli N, Shleifer A, Vishny R. 2015. Money doctors. J. Finance 70:91–114
    [Google Scholar]
  62. Giannetti M, Wang TY. 2016. Corporate scandals and household stock market participation. J. Finance 71:2591–636
    [Google Scholar]
  63. Greenwood R, Shleifer A. 2014. Expectations of returns and expected returns. Rev. Financ. Stud. 27:714–46
    [Google Scholar]
  64. Guiso L, Sapienza P, Zingales L. 2009. Cultural biases in economic exchange?. Q. J. Econ. 124:1095–131
    [Google Scholar]
  65. Gurun UG, Stoffman N, Yonker SE. 2018. Trust busting: the effect of fraud on investor behavior. Rev. Financ. Stud. 31:1341–76
    [Google Scholar]
  66. Haltiwanger J, Jarmin RS, Miranda J. 2013. Who creates jobs? Small versus large versus young. Rev. Econ. Stat. 95:347–61
    [Google Scholar]
  67. Han B, Hirshleifer D, Walden J. 2019. Visibility bias in the transmission of consumption beliefs and undersaving NBER Work. Pap. 25566
    [Google Scholar]
  68. Hao R, Hu C, Xu X, Zhang Y. 2022. Beyond performance: the financial education role of robo-advising SSRN Work. Pap. 4230191
    [Google Scholar]
  69. Heimer RZ, Myrseth KOR, Schoenle RS. 2019. Yolo: mortality beliefs and household finance puzzles. J. Finance 74:2957–96
    [Google Scholar]
  70. Hirshleifer D. 2020. Presidential address: social transmission bias in economics and finance. J. Finance 75:1779–831
    [Google Scholar]
  71. Iyengar SS, Lepper MR. 2000. When choice is demotivating: Can one desire too much of a good thing?. J. Personal. Soc. Psychol. 79:6995–1006
    [Google Scholar]
  72. Kalda A. 2020. Peer financial distress and individual leverage. Rev. Financ. Stud. 33:3348–90
    [Google Scholar]
  73. Karlan D, McConnell M, Mullainathan S, Zinman J. 2016. Getting to the top of mind: how reminders increase saving. Manag. Sci. 62:3393–411
    [Google Scholar]
  74. Karlsson N, Loewenstein G, Seppi D. 2009. The ostrich effect: selective attention to information. J. Risk Uncertain. 38:295–115
    [Google Scholar]
  75. Kuchler T, Stroebel J. 2021. Social finance. Annu. Rev. Financ. Econ. 13:37–55
    [Google Scholar]
  76. Kuhnen CM, Miu AC. 2017. Socioeconomic status and learning from financial information. J. Financ. Econ. 124:349–72
    [Google Scholar]
  77. Laibson D. 1997. Golden eggs and hyperbolic discounting. Q. J. Econ. 112:443–78
    [Google Scholar]
  78. Lee SK. 2019. Fintech nudges: overspending messages and personal finance management SSRN Work. Pap. 3390777
    [Google Scholar]
  79. Levi Y, Benartzi S. 2020. Mind the app: access to financial information and consumer behavior SSRN Work. Pap. 3557689
    [Google Scholar]
  80. Linnainmaa JT, Melzer BT, Previtero A. 2021. The misguided beliefs of financial advisors. J. Finance 76:587–621
    [Google Scholar]
  81. Linnainmaa JT, Melzer BT, Previtero A, Foerster S. 2022. Investor protections and stock market participation: an evaluation of financial advisor oversight Work. Pap. Indiana Univ., Bloomington
    [Google Scholar]
  82. Logg J, Minson J, Moore D. 2019. Algorithm appreciation: People prefer algorithmic to human judgement. Organ. Behav. Hum. Decis. Proc. 151:90–103
    [Google Scholar]
  83. Lusardi A, Mitchell OS. 2014. The economic importance of financial literacy: theory and evidence. J. Econ. Lit. 52:5–44
    [Google Scholar]
  84. Madrian BC, Shea DF. 2001. The power of suggestion: inertia in 401(k) participation and saving behavior. Q. J. Econ. 116:41149–87
    [Google Scholar]
  85. Malmendier U, Nagel S. 2016. Learning from inflation experiences. Q. J. Econ. 131:53–87
    [Google Scholar]
  86. Maturana G, Nickerson J. 2019. Teachers teaching teachers: the role of workplace peer effects in financial decisions. Rev. Financ. Stud. 32:3920–57
    [Google Scholar]
  87. Moskowitz TJ, Vissing-Jørgensen A. 2002. The returns to entrepreneurial investment: a private equity premium puzzle?. Am. Econ. Rev. 92:745–78
    [Google Scholar]
  88. Mullainathan S, Noeth M, Schoar A. 2012. The market for financial advice: an audit study NBER Work. Pap. 17929
    [Google Scholar]
  89. O'Donoghue T, Rabin M. 1999. Doing it now or later. Am. Econ. Rev. 89:1103–24
    [Google Scholar]
  90. Olafsson A, Pagel M. 2018. The liquid hand-to-mouth: evidence from personal finance management software. Rev. Financ. Stud. 31:4398–446
    [Google Scholar]
  91. Olafsson A, Pagel M. 2022. The ostrich in us: selective attention to financial accounts, income, spending, and liquidity NBER Work. Pap. 23945
    [Google Scholar]
  92. Ouimet P, Tate G. 2020. Learning from coworkers: peer effects on individual investment decisions. J. Finance 75:133–72
    [Google Scholar]
  93. Philippon T. 2019. The fintech opportunity NBER Work. Pap. 22476
    [Google Scholar]
  94. Ramadorai T, Rossi AG, Utkus S, Walther A. 2022. Algorithm aversion: theory and evidence from robo-advice SSRN Work. Pap. 4301514
    [Google Scholar]
  95. Reher M, Sokolinski S. 2021. Automation and inequality in wealth management Work. Pap. Univ. North Carolina, Chapel Hill
    [Google Scholar]
  96. Reher M, Sun C. 2019. Automated financial management: diversification and account-size flexibility. J. Invest. Manag. 17:263–75
    [Google Scholar]
  97. Rossi AG, Utkus SP. 2020a. The needs and wants in financial advice: human versus robo-advising SSRN Work. Pap. 3759041
    [Google Scholar]
  98. Rossi AG, Utkus SP. 2020b. Who benefits from robo-advising? Evidence from machine learning SSRN Work. Pap. 3552671
    [Google Scholar]
  99. Ru H, Schoar A. 2018. Do credit card companies screen for behavioral biases? NBER Work. Pap. 22360
    [Google Scholar]
  100. Stango V, Zinman J. 2023. We are all behavioral, more or less: a taxonomy of consumer decision-making. Rev. Econ. Studies 90:1470–98
    [Google Scholar]
  101. Sunstein CR. 2017. Nudges that fail. Behav. Public Policy 1:4–25
    [Google Scholar]
  102. Sweet E, Nandi A, Adam EK, McDade TW. 2013. The high price of debt: household financial debt and its impact on mental and physical health. Soc. Sci. Med. 91:94–100
    [Google Scholar]
  103. Tang H. 2019. The value of privacy: evidence from online borrowers Work. Pap. HEC Paris:
    [Google Scholar]
  104. Thaler RH, Sunstein CR. 2009. Nudge: Improving Decisions About Health, Wealth, and Happiness New York: Penguin
    [Google Scholar]
  105. Wang X. 2018. Catering innovation: entrepreneurship and the acquisition market SSRN Work. Pap. 3247274
    [Google Scholar]
  106. Weber M, D'Acunto F, Gorodnichenko Y, Coibion O 2022. The subjective inflation expectations of households and firms: measurement, determinants, and implications. J. Econ. Perspect. 36:157–84
    [Google Scholar]
  107. Zinman J. 2015. Household debt: facts, puzzles, theories, and policies. Annu. Rev. Econ. 7:251–76
    [Google Scholar]
/content/journals/10.1146/annurev-financial-110921-013217
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error