1932

Abstract

The placenta is a multifunctional organ that exchanges blood gases and nutrients between a mother and her developing fetus. In humans, fetal blood flows through intricate networks of vessels confined within villous trees, the branches of which are bathed in pools of maternal blood. Fluid mechanics and transport processes play a central role in understanding how these elaborate structures contribute to the function of the placenta and how their disorganization may lead to disease. Recent advances in imaging and computation have spurred significant advances in simulations of fetal and maternal flows within the placenta across a range of length scales. Models describe jets of maternal blood emerging from spiral arteries into a disordered and deformable porous medium, as well as solute uptake by fetal blood flowing through elaborate three-dimensional capillary networks. We survey recent developments and emerging challenges in modeling flow and transport in this complex organ.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010518-040219
2019-01-05
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/fluid/51/1/annurev-fluid-010518-040219.html?itemId=/content/journals/10.1146/annurev-fluid-010518-040219&mimeType=html&fmt=ahah

Literature Cited

  1. Alim K, Parsa S, Weitz DA, Brenner MP 2017. Local pore size correlations determine flow distributions in porous media. Phys. Rev. Lett. 119:144501
    [Google Scholar]
  2. Atabek HB, Lew HS 1966. Wave propagation through a viscous incompressible fluid contained in an initially stressed elastic tube. Biophys. J. 6:481–503
    [Google Scholar]
  3. Balogh P, Bagchi P 2017. Direct numerical simulation of cellular-scale blood flow in 3D microvascular networks. Biophys. J. 113:2815–26
    [Google Scholar]
  4. Bappoo N, Kelsey LJ, Parker L, Crough T, Moran CM et al. 2017. Viscosity and haemodynamics in a late gestation rat feto-placental arterial network. Biomech. Model. Mechanobiol. 16:1361–72
    [Google Scholar]
  5. Barker DJP 2012. Developmental origins of chronic disease. Public Health 126:185–89
    [Google Scholar]
  6. Barta E, Drugan A 2010. Glucose transport from mother to fetus—a theoretical study. J. Theor. Biol. 263:295–302
    [Google Scholar]
  7. Benirschke K, Burton GJ, Baergen RN 2012. Pathology of the Human Placenta Berlin: Springer-Verlag. , 6th ed..
    [Google Scholar]
  8. Brownbill P, Sibley CP 2006. Regulation of transplacental water transfer: the role of fetoplacental venous tone. Placenta 27:560–67
    [Google Scholar]
  9. Burton GJ, Fowden AL 2015. The placenta: a multifaceted, transient organ. Philos. Trans. R. Soc. B 370:20140066
    [Google Scholar]
  10. Burton GJ, Jauniaux E 1995. Sonographic, stereological and Doppler flow velocimetric assessments of placental maturity. Br. J. Obstet. Gynaecol. 102:818–25
    [Google Scholar]
  11. Burton GJ, Jauniaux E, Murray AJ 2017. Oxygen and placental development; parallels and differences with tumour biology. Placenta 56:14–18
    [Google Scholar]
  12. Burton GJ, Jauniaux E, Watson AL 1999. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd Collection revisited. Am. J. Obstet. Gynecol. 181:718–24
    [Google Scholar]
  13. Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E 2002. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J. Clin. Endocrin. Metab. 87:2954–59
    [Google Scholar]
  14. Burton GJ, Woods AW, Jauniaux E, Kingdom JCP 2009. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30:473–82
    [Google Scholar]
  15. Carter AM 2007. Animal models of human placentation—a review. Placenta 28:S41–47
    [Google Scholar]
  16. Chernyavsky IL, Dryden IL, Jensen OE 2012. Characterizing the multiscale structure of fluctuations of transported quantities in a disordered medium. IMA J. Appl. Math. 77:697–725
    [Google Scholar]
  17. Chernyavsky IL, Jensen OE, Leach L 2010. A mathematical model of intervillous blood flow in the human placentone. Placenta 31:44–52
    [Google Scholar]
  18. Chernyavsky IL, Leach L, Dryden IL, Jensen OE 2011. Transport in the placenta: homogenizing haemodynamics in a disordered medium. Philos. Trans. R. Soc. A 369:4162–82
    [Google Scholar]
  19. Clark AR, Kruger JA 2017. Mathematical modeling of the female reproductive system: from oocyte to delivery. WIREs Syst. Biol. Med. 9:e1353
    [Google Scholar]
  20. Clark AR, Lin M, Tawhai M, Saghian R, James JL 2015. Multiscale modelling of the feto-placental vasculature. Interface Focus 5:20140078
    [Google Scholar]
  21. Collins SL, Birks JS, Stevenson GN, Papageorghiou AT, Noble JA, Impey L 2012. Measurement of spiral artery jets: general principles and differences observed in small-for-gestational-age pregnancies. Ultrasound Obstet. Gynecol. 40:171–78
    [Google Scholar]
  22. Cotter SL, Klika V, Kimpton L, Collins S, Heazell AEP 2014. A stochastic model for early placental development. J. R. Soc. Interface 11:20140149
    [Google Scholar]
  23. de Anna P, Le Borgne T, Dentz M, Tartakovsky AM, Bolster D, Davy P 2013. Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110:184502
    [Google Scholar]
  24. de Laat M, Franx A, van Alderen E, Nikkels P, Visser G 2005. The umbilical coiling index, a review of the literature. J. Matern.-Fetal Neonat. Med. 17:93–100
    [Google Scholar]
  25. Desforges M, Sibley CP 2010. Placental nutrient supply and fetal growth. Int. J. Dev. Biol. 54:377–90
    [Google Scholar]
  26. Erian FF, Corrsin S, Davis SH 1977. Maternal, placental blood flow: a model with velocity-dependent permeability. J. Biomech. 10:807–14
    [Google Scholar]
  27. Faber JJ 1995. Review of flow limited transfer in the placenta. Int. J. Obstet. Anaesth. 4:230–37
    [Google Scholar]
  28. Fauci LJ, Dillon R 2006. Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38:371–94
    [Google Scholar]
  29. Fedosov DA, Caswell B, Karniadakis GE 2010. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98:2215–25
    [Google Scholar]
  30. Ferguson VL, Dodson RB 2009. Bioengineering aspects of the umbilical cord. Eur. J. Obstet. Gynecol. Reprod. Biol. 144:S108–13
    [Google Scholar]
  31. Franke VE, Parker KH, Wee LY, Fisk NM, Sherwin SJ 2003. Time domain computational modelling of 1D arterial networks in monochorionic placentas. ESAIM Math. Model. Numer. Anal. 37:557–80
    [Google Scholar]
  32. Freund JB 2014. Numerical simulation of flowing blood cells. Annu. Rev. Fluid Mech. 46:67–95
    [Google Scholar]
  33. Gill JS, Salafia CM, Grebenkov D, Vvedensky DD 2011. Modeling oxygen transport in human placental terminal villi. J. Theor. Biol. 291:33–41
    [Google Scholar]
  34. Gordon Z, Eytan O, Jaffa AJ, Elad D 2007. Fetal blood flow in branching models of the chorionic arterial vasculature. Ann. N.Y. Acad. Sci. 1101:250–65
    [Google Scholar]
  35. Gordon Z, Glaubach L, Elad D, Zaretsky U, Jaffa AJ 2016. Ex vivo human placental perfusion model for analysis of fetal circulation in the chorionic plate. J. Ultrasound Med. 35:553–60
    [Google Scholar]
  36. Guiot C, Piantà PG, Todros T 1992. Modelling the feto-placental circulation: I. A distributed network predicting umbilical haemodynamics throughout pregnancy. Ultrasound Med. Biol. 18:535–44
    [Google Scholar]
  37. Habibi HA, Davutoglu EA, Kandemirli SG, Aslan M, Ozel A et al. 2017. In vivo assessment of placental elasticity in intrauterine growth restriction by shear-wave elastography. Eur. J. Radiol. 97:16–20
    [Google Scholar]
  38. Hay WW Jr., Molina RA, DiGiacomo JE, Meschia G 1990. Model of placental glucose consumption and glucose transfer. Am. J. Physiol. Regul. Integr. Comp. Physiol. 258:R569–77
    [Google Scholar]
  39. Hu J, Klinich KD, Miller CS, Nazmi G, Pearlman MD et al. 2009. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models. J. Biomech. 42:2528–34
    [Google Scholar]
  40. Ismail KI, Hannigan A, O'Donoghue K, Cotter A 2017. Abnormal placental cord insertion and adverse pregnancy outcomes: a systematic review and meta-analysis. Syst. Rev. 6:242
    [Google Scholar]
  41. James JL, Chamley LW, Clark AR 2017. Feeding your baby in utero: how the uteroplacental circulation impacts pregnancy. Physiology 32:234–45
    [Google Scholar]
  42. Jauniaux E, Watson AL, Hempstock J, Bao YP, Skepper JN, Burton GJ 2000. Onset of maternal arterial blood flow and placental oxidative stress: a possible factor in human early pregnancy failure. Am. J. Pathol. 157:2111–22
    [Google Scholar]
  43. Jirkovská M, Janáček J, Kaláb J, Kubínová L 2008. Three-dimensional arrangement of the capillary bed and its relationship to microrheology in the terminal villi of normal term placenta. Placenta 29:892–97
    [Google Scholar]
  44. Jones S, Bischof H, Lang I, Desoye G, Greenwood SL et al. 2015. Dysregulated flow-mediated vasodilatation in the human placenta in fetal growth restriction. J. Physiol. 593:3077–92
    [Google Scholar]
  45. Junaid TO, Bradley RS, Lewis RM, Aplin JD, Johnstone ED 2017. Whole organ vascular casting and microCT examination of the human placental vascular tree reveals novel alterations associated with pregnancy disease. Sci. Rep. 7:4144
    [Google Scholar]
  46. Kaplan AD, Jaffa AJ, Timor IE, Elad D 2010. Hemodynamic analysis of arterial blood flow in the coiled umbilical cord. Reprod. Sci. 17:258–68
    [Google Scholar]
  47. Karimu AL, Burton GJ 1994. The effects of maternal vascular pressure on the dimensions of the placental capillaries. Br. J. Obstet. Gynecol. 101:57–63
    [Google Scholar]
  48. Kato Y, Oyen ML, Burton GJ 2014. Placental villous tree models for evaluating the mechanical environment in the human placenta. 2014 IEEE International Conference on Imaging Systems and Techniques (IST) Proceedings107–11 New York: IEEE
    [Google Scholar]
  49. Kaufmann P, Mayhew TM, Charnock-Jones DS 2004. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta 25:114–26
    [Google Scholar]
  50. Kiani MF, Pries AR, Hsu LL, Sarelius IH, Cokelet GR 1994. Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms. Am. J. Physiol. Heart Circ. Physiol. 266:H1822–28
    [Google Scholar]
  51. Kleiner-Assaf A, Jaffa AJ, Elad D 1999. Hemodynamic model for analysis of Doppler ultrasound indexes of umbilical blood flow. Am. J. Physiol. Heart Circ. Physiol. 276:H2204–14
    [Google Scholar]
  52. Koumoutsakos P, Pivkin I, Milde F 2013. The fluid mechanics of cancer and its therapy. Annu. Rev. Fluid Mech. 45:325–55
    [Google Scholar]
  53. Krüger T, Gross M, Raabe D, Varnik F 2013. Crossover from tumbling to tank-treading-like motion in dense simulated suspensions of red blood cells. Soft Matter 9:9008–15
    [Google Scholar]
  54. Leach L 2011. Placental vascular dysfunction in diabetic pregnancies: intimations of fetal cardiovascular disease. ? Microcirculation 18:263–69
    [Google Scholar]
  55. Lecarpentier E, Bhatt M, Bertin GI, Deloison B, Salomon LJ et al. 2016. Computational fluid dynamic simulations of maternal circulation: wall shear stress in the human placenta and its biological implications. PLOS ONE 11:e0147262
    [Google Scholar]
  56. Lecarpentier Y, Claes V, Lecarpentier E, Guerin C, Hébert JL et al. 2014. Ultraslow myosin molecular motors of placental contractile stem villi in humans. PLOS ONE 9:e108814
    [Google Scholar]
  57. Lévque MA 1928. Les lois de la transmission de chaleur par convection. Ann. Mines 12–13:201–99, 305–62, 318–415
    [Google Scholar]
  58. Lin M, Mauroy B, James JL, Tawhai MH, Clark AR 2016. A multiscale model of placental oxygen exchange: the effect of villous tree structure on exchange efficiency. J. Theor. Biol. 408:1–12
    [Google Scholar]
  59. Mayhew TM 2006. Stereology and the placenta: Where's the point?—a review. Placenta 27:17–25
    [Google Scholar]
  60. Nye GA, Ingram E, Johnstone ED, Jensen OE, Lewis RM et al. 2018. Human placental oxygenation in late gestation: experimental and theoretical approaches. J. Physiol. In press
    [Google Scholar]
  61. Panitchob N, Widdows KL, Crocker IP, Hanson MA, Johnstone ED et al. 2015. Computational modelling of amino acid exchange and facilitated transport in placental membrane vesicles. J. Theor. Biol. 365:352–64
    [Google Scholar]
  62. Pearce P, Brownbill P, Janáček J, Jirkovská M, Kubínová L et al. 2016. Image-based modeling of blood flow and oxygen transfer in feto-placental capillaries. PLOS ONE 11:e0165369
    [Google Scholar]
  63. Pennati G, Socci L, Rigano S, Boito S, Ferrazzi E 2008. Computational patient-specific models based on 3-D ultrasound data to quantify uterine arterial flow during pregnancy. IEEE Trans. Med. Imaging 27:1715–22
    [Google Scholar]
  64. Perazzolo S, Hirschmugl B, Wadsack C, Desoye G, Lewis RM, Sengers BG 2017.a The influence of placental metabolism on fatty acid transfer to the fetus. J. Lipid Res. 58:443–54
    [Google Scholar]
  65. Perazzolo S, Lewis RM, Sengers BG 2017.b Modelling the effect of intervillous flow on solute transfer based on 3D imaging of the human placental microstructure. Placenta 60:21–27
    [Google Scholar]
  66. Pijnenborg R, Vercruysse L, Hanssens M 2006. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 27:939–58
    [Google Scholar]
  67. Plitman Mayo R, Charnock-Jones DS, Burton GJ, Oyen ML 2016.a Three-dimensional modeling of human placental terminal villi. Placenta 43:54–60
    [Google Scholar]
  68. Plitman Mayo R, Olsthoorn J, Charnock-Jones DS, Burton G, Oyen ML 2016.b Computational modeling of the structure-function relationship in human placental terminal villi. J. Biomech. 49:3780–87
    [Google Scholar]
  69. Pop SR, Richardson G, Waters SL, Jensen OE 2007. Shock formation and non-linear dispersion in a microvascular capillary network. Math. Med. Biol. 24:379–400
    [Google Scholar]
  70. Popel AS, Johnson PC 2005. Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37:43–69
    [Google Scholar]
  71. Pries AR, Secomb TW, Gaehtgens P 1996. Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32:654–67
    [Google Scholar]
  72. Pries AR, Secomb TW, Gaehtgens P, Gross JF 1990. Blood flow in microvascular networks: experiments and simulation. Circ. Res. 67:826–34
    [Google Scholar]
  73. Ragavendra N, Tarantal A 2001. Intervillous blood flow in the third trimester gravid rhesus monkey (Macaca mulatta): use of sonographic contrast agent and harmonic imaging. Placenta 22:200–5
    [Google Scholar]
  74. Rainey A, Mayhew TM 2010. Volumes and numbers of intervillous pores and villous domains in placentas associated with intrauterine growth restriction and/or pre-eclampsia. Placenta 31:602–6
    [Google Scholar]
  75. Ramsey EM, Harris JWS 1966. Comparison of uteroplacental vasculature and circulation in the rhesus monkey and man. Contributions to Embryology 3859–70 Washington, DC: Carnegie Inst. Wash.
    [Google Scholar]
  76. Rennie MY, Cahill LS, Adamson SL, Sled JG 2017. Arterio-venous fetoplacental vascular geometry and hemodynamics in the mouse placenta. Placenta 58:46–51
    [Google Scholar]
  77. Rigano S, Ferrazzi E, Boito S, Pennati G, Padoan A, Galan H 2010. Blood flow volume of uterine arteries in human pregnancies determined using 3D and bi-dimensional imaging, angio-Doppler, and fluid-dynamic modeling. Placenta 31:37–43
    [Google Scholar]
  78. Roth CJ, Haeussner E, Ruebelmann T, Koch F, Schmitz C et al. 2017. Dynamic modeling of uteroplacental blood flow in IUGR indicates vortices and elevated pressure in the intervillous space—a pilot study. Sci. Rep. 7:40771
    [Google Scholar]
  79. Russell MJ, Jensen OE 2018. Homogenization approximations for unidirectional transport past randomly distributed sinks. arXiv:1708.08153 [cond-mat.dis-nn]
  80. Russell MJ, Jensen OE, Galla T 2016. Stochastic transport in the presence of spatial disorder: fluctuation-induced corrections to homogenization. Phys. Rev. E 94:042121
    [Google Scholar]
  81. Saghian R, James JL, Tawhai MH, Collins SL, Clark AR 2017. Association of placental jets and mega-jets with reduced villous density. J. Biomech. Eng. 139:051001
    [Google Scholar]
  82. Saw SN, Dawn C, Biswas A, Mattar CNZ, Yap CH 2017. Characterization of the in vivo wall shear stress environment of human fetus umbilical arteries and veins. Biomech. Model. Mechanobiol. 16:197–211
    [Google Scholar]
  83. Schneider H 2011. Oxygenation of the placental–fetal unit in humans. Respir. Physiol. Neurobiol. 178:51–58
    [Google Scholar]
  84. Sebire N, Talbert D 2002. The role of intraplacental vascular smooth muscle in the dynamic placenta: a conceptual framework for understanding uteroplacental disease. Med. Hypoth. 58:347–51
    [Google Scholar]
  85. Secomb TW 2017. Blood flow in the microcirculation. Annu. Rev. Fluid Mech. 49:443–61
    [Google Scholar]
  86. Sengers BG, Please CP, Lewis RM 2010. Computational modelling of amino acid transfer interactions in the placenta. Exp. Physiol. 95:829–40
    [Google Scholar]
  87. Serov AS, Salafia C, Grebenkov DS, Filoche M 2016. The role of morphology in mathematical models of placental gas exchange. J. Appl. Physiol. 120:17–28
    [Google Scholar]
  88. Serov AS, Salafia CM, Brownbill P, Grebenkov DS, Filoche M 2015.a Optimal villi density for maximal oxygen uptake in the human placenta. J. Theor. Biol. 364:383–96
    [Google Scholar]
  89. Serov AS, Salafia CM, Filoche M, Grebenkov DS 2015.b Analytical theory of oxygen transport in the human placenta. J. Theor. Biol. 368:133–44
    [Google Scholar]
  90. Sibley CP, Brownbill P, Glazier JD, Greenwood SL 2018. Knowledge needed about the exchange physiology of the placenta. Placenta 64:S9–15
    [Google Scholar]
  91. Strahler AN 1957. Quantitative analysis of watershed geomorphology. Eos Trans. AGU 38:913–20
    [Google Scholar]
  92. Thompson RS, Trudinger BJ 1990. Doppler waveform pulsatility index and resistance, pressure and flow in the umbilical placental circulation: an investigation using a mathematical model. Ultrasound Med. Biol. 16:449–58
    [Google Scholar]
  93. van de Vosse FN, Stergiopulos N 2011. Pulse wave propagation in the arterial tree. Annu. Rev. Fluid Mech. 43:467–99
    [Google Scholar]
  94. Wang W, Sangani AS 1997. Nusselt number for flow perpendicular to arrays of cylinders in the limit of small Reynolds and large Peclet numbers. Phys. Fluids 9:1529–39
    [Google Scholar]
  95. Widdows KL, Panitchob N, Crocker IP, Please CP, Hanson MA et al. 2015. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. FASEB J 29:2583–94
    [Google Scholar]
  96. Wilbur WJ, Power GG, Longo LD 1978. Water exchange in the placenta: a mathematical model. Am. J. Physiol. Regul. Integr. Comp. Physiol. 235:R181–99
    [Google Scholar]
  97. Yampolsky M, Salafia CM, Shlakhter O, Haas D, Eucker B, Thorp J 2008. Modeling the variability of shapes of a human placenta. Placenta 29:790–97
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010518-040219
Loading
/content/journals/10.1146/annurev-fluid-010518-040219
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error