1932

Abstract

The systematic breaking of left–right body symmetry is a familiar feature of human physiology. In humans and many animals, this process originates with asymmetric fluid flow driven by rotating cilia, occurring in a short-lived embryonic organizing structure termed the node. The very low–Reynolds number fluid mechanics of this system is reviewed; important features include how cilia rotation combines with tilt to produce asymmetric flow, boundary effects, time dependence, and the interpretation of particle tracking experiments. The effect of perturbing cilia length and number is discussed and compared in mouse and zebrafish. Whereas understanding of this process has advanced significantly over the past two decades, there is still no consensus on how flow is converted to asymmetric gene expression, with most research focusing on resolving mechanical versus morphogen sensing. The underlying process may be more subtle, probably involving a combination of these effects, with fluid mechanics playing a central role.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010518-040231
2019-01-05
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/fluid/51/1/annurev-fluid-010518-040231.html?itemId=/content/journals/10.1146/annurev-fluid-010518-040231&mimeType=html&fmt=ahah

Literature Cited

  1. Afzelius B 1976. A human syndrome caused by immotile cilia. Science 193:317–19
    [Google Scholar]
  2. Ainley J, Durkin S, Embid R, Boindala P, Cortez R 2008. The method of images for regularized Stokeslets. J. Comput. Phys. 227:4600–16
    [Google Scholar]
  3. Berdon W, McManus C, Afzelius B 2004. More on Kartagener's syndrome and the contributions of Afzelius and A.K. Siewert. Pediatr. Radiol. 34:585–86
    [Google Scholar]
  4. Berdon W, Willi U 2004. Situs inversus, bronchiectasis, and sinusitis and its relation to immotile cilia: history of the diseases and their discoverers—Manes Kartagener and Bjorn Afzelius. Pediatr. Radiol. 34:38–42
    [Google Scholar]
  5. Blake J 1971. A note on the image system for a stokeslet in a no-slip boundary. Math. Proc. Camb. Philos. Soc. 70:303–10
    [Google Scholar]
  6. Blake J, Chwang A 1974. Fundamental singularities of viscous flow. J. Eng. Math. 8:23–29
    [Google Scholar]
  7. Blum M, Feistel K, Thumberger T, Schweickert A 2014. The evolution and conservation of left-right patterning mechanisms. Development 141:1603–13
    [Google Scholar]
  8. Brokaw C 2005. Computer simulation of flagellar movement IX. Oscillation and symmetry breaking in a model for short flagella and nodal cilia. Cell Motil. Cytoskel. 60:35–47
    [Google Scholar]
  9. Brueckner M 2001. Cilia propel the embryo in the right direction. Am. J. Med. Genet. A 101:339–44
    [Google Scholar]
  10. Buceta J, Ibañes M, Rasskin-Gutman D, Okada Y, Hirokawa N, Izpisúa-Belmonte J 2005. Nodal cilia dynamics and the specification of the left/right axis in early vertebrate embryo development. Biophys. J. 89:2199–209
    [Google Scholar]
  11. Cartwright J, Piro N, Piro O, Tuval I 2007. Embryonic nodal flow and the dynamics of nodal vesicular parcels. J. R. Soc. Interface 4:49–56
    [Google Scholar]
  12. Cartwright J, Piro O, Tuval I 2004. Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates. PNAS 101:7234–39
    [Google Scholar]
  13. Chen D, Zhong Y 2015. A computational model of dynein activation patterns that can explain nodal cilia rotation. Biophys. J. 109:35–48
    [Google Scholar]
  14. Cortez R 2001. The method of regularized Stokeslets. SIAM J. Sci. Comput. 23:1204–25
    [Google Scholar]
  15. Cortez R, Fauci L, Medovikov A 2005. The method of regularized Stokeslets in three dimensions: analysis, validation, and application to helical swimming. Phys. Fluids 17:031504
    [Google Scholar]
  16. Delling M, Indzhykulian A, Liu X, Li Y, Xie T et al. 2016. Primary cilia are not calcium-responsive mechanosensors. Nature 531:656–60
    [Google Scholar]
  17. Eloy C, Lauga E 2012. Kinematics of the most efficient cilium. Phys. Rev. Lett. 109:038101
    [Google Scholar]
  18. Essner J, Amack J, Nyholm M, Harris E, Yost H 2005. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132:1247–60
    [Google Scholar]
  19. Ferreira R, Vilfan A, Jülicher F, Supatto W, Vermot J 2017. Physical limits of flow sensing in the left-right organizer. eLife 6:e25078
    [Google Scholar]
  20. Freund J, Goetz J, Hill K, Vermot J 2012. Fluid flows and forces in development: functions, features and biophysical principles. Development 139:1229–45
    [Google Scholar]
  21. Gokey J, Ji Y, Tay H, Litts B, Amack J 2016. Kupffer's vesicle size threshold for robust left–right patterning of the zebrafish embryo. Dev. Dyn. 245:22–33
    [Google Scholar]
  22. Gray J, Hancock G 1955. The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32:802–14
    [Google Scholar]
  23. Gros J, Feistel K, Viebahn C, Blum M, Tabin C 2009. Cell movements at Hensen's node establish left/right asymmetric gene expression in the chick. Science 324:941–44
    [Google Scholar]
  24. Handel M, Kennedy J 1984. Situs inversus in homozygous mice without immotile cilia. J. Hered. 75:498
    [Google Scholar]
  25. Hashimoto M, Shinohara K, Wang J, Ikeuchi S, Yoshiba S et al. 2010. Planar polarization of node cells determines the rotational axis of node cilia. Nat. Cell Biol. 12:170–76
    [Google Scholar]
  26. Hirokawa N, Okada Y, Tanaka Y 2009. Fluid dynamic mechanism responsible for breaking the left-right symmetry of the human body: the nodal flow. Annu. Rev. Fluid Mech. 41:53–72
    [Google Scholar]
  27. Hirokawa N, Tanaka Y, Okada Y, Takeda S 2006. Nodal flow and the generation of left-right asymmetry. Cell 125:33–45
    [Google Scholar]
  28. Hummel K, Chapman D 1959. Visceral inversion and associated anomalies in the mouse. J. Hered. 50:9–13
    [Google Scholar]
  29. Kramer-Zucker A, Olale F, Haycraft C, Yoder B, Schier A, Drummond I 2005. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis. Development 132:1907–21
    [Google Scholar]
  30. Kreiling J, Williams G, Creton R 2007. Analysis of Kupffer's vesicle in zebrafish embryos using a cave automated virtual environment. Dev. Dyn. 236:1963–69
    [Google Scholar]
  31. Levin M, Johnson R, Sterna C, Kuehn M, Tabin C 1995. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82:803–14
    [Google Scholar]
  32. Liron N 1978. Fluid transport by cilia between parallel plates. J. Fluid Mech. 86:705–26
    [Google Scholar]
  33. Lopes S, Lourenço R, Pacheco L, Moreno N, Kreiling J, Saúde L 2010. Notch signalling regulates left-right asymmetry through ciliary length control. Development 137:3625–32
    [Google Scholar]
  34. McGrath J, Somlo S, Makova S, Tian X, Brueckner M 2003. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73
    [Google Scholar]
  35. Montenegro-Johnson T, Baker D, Smith D, Lopes S 2016. Three-dimensional flow in Kupffer's vesicle. J. Math. Biol. 73:705–25
    [Google Scholar]
  36. Montenegro-Johnson T, Smith A, Smith D, Loghin D, Blake J 2012. Modelling the fluid mechanics of cilia and flagella in reproduction and development. Eur. Phys. J. E 35:1–17
    [Google Scholar]
  37. Nonaka S, Shiratori H, Saijoh Y, Hamada H 2002. Determination of left–right patterning of the mouse embryo by artificial nodal flow. Nature 418:96–99
    [Google Scholar]
  38. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A et al. 1998. Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–37
    [Google Scholar]
  39. Nonaka S, Yoshiba S, Watanabe D, Ikeuchi S, Goto T et al. 2005. De novo formation of left–right asymmetry by posterior tilt of nodal cilia. PLOS Biol. 3:e268
    [Google Scholar]
  40. Norris D 2012. Cilia, calcium and the basis of left-right asymmetry. BMC Biol. 10:102
    [Google Scholar]
  41. Norris D, Jackson P 2016. Cell biology: calcium contradictions in cilia. Nature 531:582
    [Google Scholar]
  42. Okabe N, Xu B, Burdine R 2008. Fluid dynamics in zebrafish Kupffer's vesicle. Dev. Dyn. 237:3602–12
    [Google Scholar]
  43. Okada Y, Nonaka S, Tanaka Y, Saijoh Y, Hamada H, Hirokawa N 1999. Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol. Cell 4:459–68
    [Google Scholar]
  44. Okada Y, Takeda S, Tanaka Y, Belmonte JC, Hirokawa N 2005. Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 121:633–44
    [Google Scholar]
  45. Omori T, Sugai H, Imai Y, Ishikawa T 2017. Nodal cilia-driven flow: development of a computational model of the nodal cilia axoneme. J. Biomech. 61:242–49
    [Google Scholar]
  46. Pennekamp P, Menchen T, Dworniczak B, Hamada H 2015. Situs inversus and ciliary abnormalities: 20 years later, what is the connection?. Cilia 4:1
    [Google Scholar]
  47. Pintado P, Sampaio P, Tavares B, Montenegro-Johnson T, Smith D, Lopes S 2017. Dynamics of cilia length in left–right development. R. Soc. Open Sci. 4:161102
    [Google Scholar]
  48. Pozrikidis C 1992. Boundary Integral and Singularity Methods for Linearized Viscous Flow Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  49. Qian B, Powers T, Breuer K 2008. Shape transition and propulsive force of an elastic rod rotating in a viscous fluid. Phys. Rev. Lett. 100:078101
    [Google Scholar]
  50. Sampaio P, Ferreira R, Guerrero A, Pintado P, Tavares B et al. 2014. Left-right organizer flow dynamics: How much cilia activity reliably yields laterality?. Dev. Cell 29:716–28
    [Google Scholar]
  51. Schoenwolf G, Bleyl S, Brauer P, Francis-West P 2014. Larsen's Human Embryology Philadelphia: Churchill Livingsone. 5th ed.
    [Google Scholar]
  52. Schweickert A, Ott T, Kurz S, Tingler M, Maerker M et al. 2018. Vertebrate left-right asymmetry: What can nodal cascade gene expression patterns tell us?. J. Cardiovasc. Dev. Dis. 5:1
    [Google Scholar]
  53. Schweickert A, Vick P, Getwan M, Weber T, Schneider I et al. 2010. The nodal inhibitor Coco is a critical target of leftward flow in Xenopus. Curr. Biol. 20:738–43
    [Google Scholar]
  54. Schweickert A, Weber T, Beyer T, Vick P, Bogusch S et al. 2007. Cilia-driven leftward flow determines laterality in Xenopus. Curr. Biol. 17:60–66
    [Google Scholar]
  55. Shinohara K, Hamada H 2017. Cilia in left–right symmetry breaking. Cold Spring Harb. Perspect. Biol. 9:a028282
    [Google Scholar]
  56. Shinohara K, Kawasumi A, Takamatsu A, Yoshiba S, Botilde Y et al. 2012. Two rotating cilia in the node cavity are sufficient to break left–right symmetry in the mouse embryo. Nat. Commun. 3:622
    [Google Scholar]
  57. Smith A, Johnson T, Smith D, Blake J 2012. Symmetry breaking cilia-driven flow in the zebrafish embryo. J. Fluid Mech. 705:26–45
    [Google Scholar]
  58. Smith DJ 2009. A boundary element regularized Stokeslet method applied to cilia-and flagella-driven flow. 465:3605–26
    [Google Scholar]
  59. Smith DJ 2018. Biological fluid mechanics under the microscope: a tribute to John Blake. ANZIAM J. 59:416–42
    [Google Scholar]
  60. Smith DJ, Blake JR, Gaffney EA 2008. Fluid mechanics of nodal flow due to embryonic primary cilia. J. R. Soc. Interface 5:567–73
    [Google Scholar]
  61. Smith DJ, Gaffney EA, Blake JR 2007. Discrete cilia modelling with singularity distributions: application to the embryonic node and the airway surface liquid. B. Math. Biol. 69:1477–510
    [Google Scholar]
  62. Smith DJ, Montenegro-Johnson TD, Lopes SS 2014. Organized chaos in Kupffer's vesicle: how a heterogeneous structure achieves consistent left-right patterning. Bioarch. 4:119–25
    [Google Scholar]
  63. Smith DJ, Smith AA, Blake JR 2011. Mathematical embryology: the fluid mechanics of nodal cilia. J. Eng. Math. 70:255–79
    [Google Scholar]
  64. Sulik K, Dehart D, Inagaki T, Carson J, Vrablic T et al. 1994. Morphogenesis of the murine node and notochordal plate. Dev. Dyn. 201:260–78
    [Google Scholar]
  65. Supatto W, Fraser S, Vermot J 2008. An all-optical approach for probing microscopic flows in living embryos. Biophys. J. 95:L29–31
    [Google Scholar]
  66. Supp D, Witte D, Potter S, Brueckner M 1997. Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice. Nature 389:963–66
    [Google Scholar]
  67. Tabin C, Vogan K 2003. A two-cilia model for vertebrate left-right axis specification. Genes Dev. 17:1–6
    [Google Scholar]
  68. Takeda S, Yonekawa Y, Tanaka Y, Okada Y, Nonaka S, Hirokawa N 1999. Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A−/− mice analysis. J. Cell Biol. 145:825–36
    [Google Scholar]
  69. Tanaka Y, Okada Y, Hirokawa N 2005. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left–right determination. Nature 435:172–77
    [Google Scholar]
  70. Vilfan A 2012. Generic flow profiles induced by a beating cilium. Eur. Phys. J. E 35:72
    [Google Scholar]
  71. Wang G, Manning M, Amack J 2012. Regional cell shape changes control form and function of Kupffer's vesicle in the zebrafish embryo. Dev. Biol. 370:52–62
    [Google Scholar]
  72. Yoshiba S, Shiratori H, Kuo I, Kawasumi A, Shinohara K et al. 2012. Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 338:226–31
    [Google Scholar]
  73. Yuan S, Li J, Diener D, Choma M, Rosenbaum J, Sun Z 2012. Target-of-rapamycin complex 1 (Torc1) signaling modulates cilia size and function through protein synthesis regulation. PNAS 109:2021–26
    [Google Scholar]
  74. Yuan S, Zhao L, Brueckner M, Sun Z 2015. Intraciliary calcium oscillations initiate vertebrate left-right asymmetry. Curr. Biol. 25:556–67
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010518-040231
Loading
/content/journals/10.1146/annurev-fluid-010518-040231
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error