1932

Abstract

Hypersonic flows are energetic and result in regions of high temperature, causing internal energy excitation, chemical reactions, ionization, and gas-surface interactions. At typical flight conditions, the rates of these processes are often similar to the rate of fluid motion. Thus, the gas state is out of local thermodynamic equilibrium and must be described by conservation equations for the internal energy and chemical state. Examples illustrate how competition between rates in hypersonic flows can affect aerodynamic performance, convective heating, boundary layer transition, and ablation. The conservation equations are outlined, and the most widely used models for internal energy relaxation, reaction rates, and transport properties are reviewed. Gas-surface boundary conditions are described, including finite-rate catalysis and slip effects. Recent progress in the use of first-principles calculations to understand and quantify critical gas-phase reactions is discussed. An advanced finite-rate carbon ablation model is introduced and is used to illustrate the role of rate processes at hypersonic conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010518-040258
2019-01-05
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/fluid/51/1/annurev-fluid-010518-040258.html?itemId=/content/journals/10.1146/annurev-fluid-010518-040258&mimeType=html&fmt=ahah

Literature Cited

  1. Adam PH 1997. Enthalpy effects on hypervelocity boundary layers Ph.D. Thesis, Calif. Inst. Technol., Pasadena, CA
  2. Adam PH, Hornung HG 1997. Enthalpy effects on hypervelocity boundary-layer transition: ground test and flight data. J. Spacecr. Rockets 34:5614–19
    [Google Scholar]
  3. Alba CR, Greendyke RB, Lewis SW, Morgan RG, McIntyre TJ 2016. Numerical modeling of Earth reentry flow with surface ablation. J. Spacecr. Rockets 53:184–97
    [Google Scholar]
  4. Andrienko DA, Boyd ID 2016. Kinetic models of oxygen thermochemistry based on quasi-classical trajectory analysis. J. Thermophys. Heat Trans. 30: https://doi.org/10.2514/1.T4968
    [Crossref] [Google Scholar]
  5. Bender J, Valentini P, Nompelis I, Paukku Y, Varga Z et al. 2015. An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of N2 + N2 dissociation reactions. J. Chem. Phys. 143:5054304
    [Google Scholar]
  6. Bhide PM, Singh N, Schwartzentruber TE, Nompelis I, Candler GV 2018. Slip effects in near continuum hypersonic flow over canonical geometries Paper presented at AIAA Aerospace Sciences Meeting, 56th, Kissimmee, FL, AIAA Pap. 2018-1235
  7. Bird GA 1994. Molecular Gas Dynamics and the Direct Simulation of Gas Flows Oxford: Oxford Univ. Press
  8. Blottner FG, Johnson M, Ellis M 1971. Chemically reacting viscous flow program for multi-component gas mixtures Tech. Rep. SC-RR-70-754, Sandia Lab., Albuquerque, NM
  9. Boyd ID, Chen G, Candler GV 1995. Predicting failure of the continuum fluid equations in transitional hypersonic flows. Phys. Fluids 7:1210–19
    [Google Scholar]
  10. Boyd ID, Schwartzentruber TE 2017. Nonequilibrium Gas Dynamics and Molecular Simulation Cambridge, UK: Cambridge Univ. Press
  11. Candler GV, Johnson HB, Nompelis I, Subbareddy PK, Drayna TW et al. 2015. Development of the US3D code for advanced compressible and reacting flow simulations Paper presented at AIAA Aerospace Sciences Meeting, 53rd, Kissimmee, FL, AIAA Pap. 2015-1893
  12. Candler GV, Subbareddy PK, Brock JM 2014. Advances in computational fluid dynamics methods for hypersonic flows. J. Spacecr. Rockets 52:117–28
    [Google Scholar]
  13. Curry DM 1993. Space Shuttle Orbiter Thermal Protection System design and flight experience NASA Tech. Memo. 104773, Natl. Aeronaut. Space Admin., Washington, DC
  14. Emanuel G 1992. Effect of bulk viscosity on a hypersonic boundary layer. Phys. Fluids A 4:3491–95
    [Google Scholar]
  15. Fay JA, Riddell FR 1958. Theory of stagnation point heat transfer in dissociated air. J. Aerosp. Sci. 25:273–85
    [Google Scholar]
  16. Fujii K, Hornung HG 2001. A procedure to estimate the absorption rate of sound propagating through high temperature gas Tech. Rep. 2001-004, GALCIT-FM (Grad. Aerosp. Lab. Calif. Inst. Technol.—Fluid Mech.), Pasedena, CA
  17. Germain P, Hornung HG 1997. Transition on a slender cone in hypervelocity flow. Exp. Fluids 22:3183–90
    [Google Scholar]
  18. Gnoffo PA 1999. Planetary-entry gas dynamics. Annu. Rev. Fluid Mech. 31:1459–94
    [Google Scholar]
  19. Gnoffo PA, Gupta RN, Shinn J 1989. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium NASA Tech. Pap. 2867, Natl. Aeronaut. Space Admin., Washington, DC
  20. Gnoffo PA, Weilmuenster KJ, Braun RD, Cruz CI 1996. Influence of sonic-line location on Mars Pathfinder probe aerothermodynamics. J. Spacecr. Rockets 33:2169–77
    [Google Scholar]
  21. Gokcen T 1989. Computation of hypersonic low density flows with thermochemical nonequilibrium PhD Thesis, Stanford Univ.
  22. Gupta RN, Scott CD, Moss JN 1985. Slip boundary equations for multicomponent nonequilibrium airflow NASA Tech. Pap. 2452, Natl. Aeronaut. Space Admin., Washington, DC
  23. Gupta RN, Yos JM, Thompson RA, Lee KP 1990. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30,000 K NASA Ref. Pub. 1232, Natl. Aeronaut. Space Admin., Washington, DC
  24. Hirschfelder O, Curtiss CF, Bird RB 1954. Molecular Theory of Gases and Liquids New York: Wiley
  25. Hornung HG 1972.a Induction time for nitrogen dissociation. J. Chem. Phys. 56:63172–73
    [Google Scholar]
  26. Hornung HG 1972.b Non-equilibrium dissociating nitrogen flow over spheres and circular cylinders. J. Fluid Mech. 53:1149–76
    [Google Scholar]
  27. Hudson ML, Chokani N, Candler GV 1997. Linear stability of hypersonic flow in thermochemical nonequilibrium. AIAA J. 35:958–64
    [Google Scholar]
  28. Iliff KW, Shafer MF 1993. Space Shuttle hypersonic aerodynamic and aerothermodynamic flight research and the comparison to ground test results NASA Tech. Memo. 4499, Natl. Aeronaut. Space Admin., Washington, DC
  29. Jewell J, Wagnild R, Leyva IA, Candler GV, Shepherd J 2013. Transition within a hypervelocity boundary layer on a 5-degree half-angle cone in air/CO2 mixtures Paper presented at AIAA Aerospace Sciences Meeting, 51st, Grapevine, TX, AIAA Pap. 2013-0523
  30. Johnson HB 2000. Thermochemical interactions in hypersonic boundary layer stability Ph.D. Thesis, Univ. Minn., Minneapolis, MN
  31. Kennard EH 1938. Kinetic Theory of Gases New York: McGraw-Hill
  32. Kim JG, Boyd ID 2013. State-resolved master equation analysis of thermochemical nonequilibrium of nitrogen. Chem. Phys. 415:237–46
    [Google Scholar]
  33. Knab O, Frühauf H-H, Messerschmid EW 1995. Theory and validation of the physically consistent vibration-chemistry-vibration model. J. Thermophys. Heat Transf. 9:2219–26
    [Google Scholar]
  34. Knisely CP, Zhong X 2018. Supersonic modes in hot-wall hypersonic boundary layers with thermochemical nonequilibrium effects Paper presented at AIAA Aerospace Sciences Meeting, Kissimmee, FL, AIAA Pap. 2018-2085
  35. Koppenwallner G 1987. Low Reynolds number influence on aerodynamic performance of hypersonic lifting vehicles. AGARD Conference Proceedings, No. 428, Aerodynamics of Hypersonic Lifting Vehicles Pap. 11 Neuilly-sur-Seine, Fr.: Advis. Group Aerosp. Res. Dev.
    [Google Scholar]
  36. Lee JH 1985. Basic governing equations for the flight regimes of aeroassisted orbital transfer vehicles. Thermal Design of Aeroassisted Orbital Transfer Vehicles HF Nelson3–53 Reston, VA: Am. Inst. Astronaut. Aeronaut.
    [Google Scholar]
  37. Leyva IA 2017. The relentless pursuit of hypersonic flight. Phys. Today 70:30–36
    [Google Scholar]
  38. Leyva IA, Laurence S, Beierholm AW-K, Hornung HG, Wagnild W, Candler GV 2009. Transition delay in hypervelocity boundary layers by means of CO2/acoustic instability interactions Paper presented at AIAA Aerospace Sciences Meeting, 47th, Orlando, FL, AIAA Pap. 2009-1287
  39. Lofthouse AJ, Scalabrin LC, Boyd ID 2008. Velocity slip and temperature jump in hypersonic aerothermodynamics. J. Thermophys. Heat Trans. 22:138–49
    [Google Scholar]
  40. Luo H, Alexeenko AA, Macheret SO 2018. Assessment of classical impulsive models of dissociation in thermochemical nonequilibrium. J. Thermophys. Heat Transf. In press
  41. Macdonald RL, Jaffe RL, Schwenke DW, Panesi M 2018. Construction of a coarse-grain quasi-classical trajectory method. I. Theory and application to N2–N2 system. J. Chem. Phys. 148:5054309
    [Google Scholar]
  42. Mack LM 1975. Linear stability theory and the problem of supersonic boundary-layer transition. AIAA J. 13:3278–89
    [Google Scholar]
  43. MacLean M, Marschall J, Driver DM 2011. Finite-rate surface chemistry model, II: coupling to viscous Navier-Stokes code Paper presented at AIAA Thermophys. Conf., 42nd, Honolulu, HI, AIAA Pap. 2011-3784
  44. Marrone PV, Treanor CE 1963. Chemical relaxation with preferential dissociation from excited vibrational levels. Phys. Fluids 6:91215–21
    [Google Scholar]
  45. Marschall J, MacLean M 2011. Finite-rate surface chemistry model, I: formulation and reaction system examples Paper presented at AIAA Thermophys. Conf., 42nd, Honolulu, HI, AIAA Pap. 2011-3783
  46. Marschall J, MacLean M, Norman PE, Schwartzentruber TE 2015. Surface chemistry in non-equilibrium flows. Hypersonic Nonequilibrium Flows: Fundamentals and Recent Advances E Josyula239–327 Reston, VA: Am. Inst. Astronaut. Aeronaut.
    [Google Scholar]
  47. Martin A, Cozmuta I, Wright MJ, Boyd ID 2015. Kinetic rates for gas-phase chemistry of phenolic-based carbon ablator in atmospheric air. J. Thermophys. Heat Transf. 29:222–40
    [Google Scholar]
  48. Maus JR, Griffith BJ, Szema KY 1984. Hypersonic Mach number and real gas effects on Space Shuttle Orbiter aerodynamics. J. Spacecr. Rockets 21:136–41
    [Google Scholar]
  49. Maxwell JC 1879. The Scientific Papers of J.C. Maxwell New York: Dover
  50. McBride BJ, Zehe MJ, Gordon S 2002. NASA Glenn coefficients for calculating thermodynamic properties of individual species. NASA Tech. Pap. 211556, Natl. Aeronaut. Space Admin., Washington, DC
  51. Meador WE, Miner GA, Townsend LW 1996. Bulk viscosity as a relaxation parameter: Fact or fiction?. Phys. Fluids 8:258–61
    [Google Scholar]
  52. Millikan RC, White DR 1963. Systematics of vibrational relaxation. J. Chem. Phys. 39:3209–13
    [Google Scholar]
  53. Murray VJ, Marshall BC, Woodburn PJ, Minton TK 2015. Inelastic and reactive scattering dynamics of hyperthermal O and O2 on hot vitreous carbon surfaces. J. Phys. Chem. C 119:2614780–96
    [Google Scholar]
  54. Nompelis I, Candler GV, Holden MS 2003. Effect of vibrational nonequilibrium on hypersonic double-cone experiments. AIAA J. 41:112162–69
    [Google Scholar]
  55. Panesi M, Munafò A, Magin TE, Jaffe RL 2014. Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method. Phys. Rev. E 90:1013009
    [Google Scholar]
  56. Park C 1986. Assessment of two-temperature kinetic model for dissociating and weakly ionizing nitrogen Paper presented at AIAA/ASME Jt. Thermophys. Heat Transf. Conf., 4th, Boston, AIAA Pap. 86-1347
  57. Park C 1987. Assessment of two-temperature kinetic model for ionizing air Paper presented at AIAA Thermophys. Conf., 22nd, Honolulu, HI, AIAA Pap. 87-1574
  58. Park C 1993. Review of chemical-kinetic problems of future NASA missions, I: Earth entries. J. Thermophys. Heat Transf. 7:3385–98
    [Google Scholar]
  59. Paukku Y, Yang KR, Varga Z, Truhlar DG 2013. Global ab initio ground-state potential energy surface of N4. J. Chem. Phys. 139:4044309
    [Google Scholar]
  60. Poovathingal S, Schwartzentruber TE, Murray VJ, Minton TK, Candler GV 2017. Finite-rate oxidation model for carbon surfaces from molecular beam experiments. AIAA J. 55:51644–58
    [Google Scholar]
  61. Ramshaw JD, Chang CH 1993. Ambipolar diffusion in two-temperature multicomponent plasmas. Plasma Chem. Plasma Process. 13:3489–98
    [Google Scholar]
  62. Schwartzentruber TE, Grover MS, Valentini P 2017. Direct molecular simulation of nonequilibrium dilute gases. J. Thermophys. Heat Transf. In press
  63. Scoggins JB, Magin TE 2014. Development of Mutation++: multicomponent thermodynamic and transport properties for ionized plasmas written in C++ Paper presented at AIAA/ASME Jt. Thermophys. Heat Transf. Conf., 11th, Atlanta, GA, AIAA Pap. 2014-2966
  64. Singh N, Schwartzentruber TE 2018. Non-equilibrium internal energy distributions during dissociation. PNAS 115:147–52
    [Google Scholar]
  65. Stewart DA, Rakich JV, Lanfranco MJ 1983. Catalytic surface effects on Space Shuttle thermal protection system during Earth entry of flights STS-2 through STS-5. Shuttle Performance: Lessons Learned827–45 Washington, DC: Natl. Aeronaut. Space Admin.
    [Google Scholar]
  66. Tauber ME, Menees GP, Adelman HG 1987. Aerothermodynamics of transatmospheric vehicles. J. Aircraft 24:594–602
    [Google Scholar]
  67. Thompson PA 1988. Compressible-Fluid Dynamics Troy, NY: Rensselaer Polytech. Inst. Press
  68. Urzay J 2018. Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50:593–627
    [Google Scholar]
  69. Valentini P, Schwartzentruber TE, Bender JD, Candler GV 2016. Dynamics of nitrogen dissociation from direct molecular simulation. Phys. Rev. Fluids 1:4043402
    [Google Scholar]
  70. Wagnild R, Candler GV 2014. Computational verification of acoustic damping in high-enthalpy environments. AIAA J. 52:112615–18
    [Google Scholar]
  71. Weilmuenster K, Gnoffo PA, Greene F 1994. Navier-Stokes simulations of the Shuttle Orbiter aerodynamic characteristics with emphasis on pitch trim and body flap. J. Spacecr. Rockets 31:3355–66
    [Google Scholar]
  72. Wilke CR 1950. A viscosity equation for gas mixtures. J. Chem. Phys. 18:517–19
    [Google Scholar]
  73. Wright MJ, Bose D, Palmer GE, Levin E 2005. Recommended collision integrals for transport property computations part 1: air species. AIAA J. 43:122558–64
    [Google Scholar]
  74. Zhluktov SV, Abe T 1999. Viscous shock-layer simulation of airflow past ablating blunt body with carbon surface. J. Thermophys. Heat Transf. 13:150–59
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010518-040258
Loading
/content/journals/10.1146/annurev-fluid-010518-040258
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error