1932

Abstract

Bubbles are present in a large variety of emerging applications, from advanced materials to biology and medicine, as either laser-generated or acoustically driven bubbles. In these applications, the bubbles undergo oscillatory dynamics and collapse inside—or near—soft and biological materials. The presence of a soft, viscoelastic medium strongly affects the bubble dynamics, both its linear resonance properties and its nonlinear behavior. Surfactant molecules or solid particles adsorbed on a bubble surface can also modify the bubble dynamics through the rheological properties of the interfacial layer. Furthermore, the interaction of bubbles with biological cells and tissues is highly dependent on the mechanical properties of these soft deformable media. This review covers recent developments in bubble dynamics in soft and biological matter for different confinement conditions: bubbles in a viscoelastic medium, coated by a viscoelastic layer, or in the vicinity of soft confinement or objects. The review surveys current work in the field and illustrates open questions for future research.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Bubble Dynamics in Soft and Biological Matter
Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010518-040352
2019-01-05
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/fluid/51/1/annurev-fluid-010518-040352.html?itemId=/content/journals/10.1146/annurev-fluid-010518-040352&mimeType=html&fmt=ahah

Literature Cited

  1. Abkarian M, Subramaniam AB, Kim SH, Larsen RJ, Yang SM, Stone HA 2007. Dissolution arrest and stability of particle-covered bubbles. Phys. Rev. Lett. 99:188301
    [Google Scholar]
  2. Allen JS, Roy RA 2000.a Dynamics of gas bubbles in viscoelastic fluids. I. Linear viscoelasticity. J. Acoust. Soc. Am. 107:3167–78A model of bubble dynamics in a viscoelastic liquid using a linear constitutive equation (Maxwell model).
    [Google Scholar]
  3. Allen JS, Roy RA 2000.b Dynamics of gas bubbles in viscoelastic fluids. II. Nonlinear viscoelasticity. J. Acoust. Soc. Am. 108:1640–50
    [Google Scholar]
  4. Asaki TJ, Marston PL 1997. The effects of a soluble surfactant on quadrupole shape oscillations and dissolution of air bubbles in water. J. Acoust. Soc. Am. 102:3372–77
    [Google Scholar]
  5. Asaki TJ, Thiessen DB, Marston PL 1995. Effect of an insoluble surfactant on capillary oscillations of bubbles in water: observation of a maximum in the damping. Phys. Rev. Lett. 75:2686–89
    [Google Scholar]
  6. Blake JR, Gibson DC 1987. Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19:99–123
    [Google Scholar]
  7. Böhmer M, Schroeders R, Steenbakkers JAM, de Winter SHPM, Duineveld PA et al. 2006. Preparation of monodisperse polymer particles and capsules by ink-jet printing. Colloids Surf. A 289:96–104
    [Google Scholar]
  8. Borden MA, Longo ML 2002. Dissolution behavior of lipid monolayer-coated, air-filled microbubbles: effect of lipid hydrophobic chain length. Langmuir 18:9225–33
    [Google Scholar]
  9. Brujan EA 2010. Cavitation in Non-Newtonian Fluids: With Biomedical and Bioengineering Applications Berlin: Springer-Verlag
  10. Brujan EA, Nahen K, Schmidt P, Vogel A 2001. Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus. J. Fluid Mech. 433:283–314An experimental study of bubble collapse near a soft boundary showing jet reversal below a threshold in elastic modulus.
    [Google Scholar]
  11. Brujan EA, Vogel A 2006. Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom. J. Fluid Mech. 558:281–308
    [Google Scholar]
  12. Caskey CF, Kruse DE, Dayton PA, Kitano TK, Ferrara KW 2006. Microbubble oscillation in tubes with diameters of 12, 25, and 195 microns. Appl. Phys. Lett. 88:033902
    [Google Scholar]
  13. Caskey CF, Stieger SM, Qin S, Dayton PA, Ferrara KW 2007. Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall. J. Acoust. Soc. Am. 122:1191–200
    [Google Scholar]
  14. Caupin F, Herbert E 2006. Cavitation in water: a review. C. R. Phys. 7:1000–17
    [Google Scholar]
  15. Cavalieri F, Ashokkumar M, Grieser F, Caruso F 2008. Ultrasonic synthesis of stable, functional lysozyme microbubbles. Langmuir 24:10078–83
    [Google Scholar]
  16. Chatterjee D, Sarkar K 2003. A Newtonian rheological model for the interface of microbubble contrast agents. Ultrasound Med. Biol. 29:1749–57
    [Google Scholar]
  17. Chen C, Gu Y, Tu J, Guo X, Zhang D 2016. Microbubble oscillating in a microvessel filled with viscous fluid: a finite element modeling study. Ultrasonics 66:54–64
    [Google Scholar]
  18. Chen DT, Wen Q, Janmey PA, Crocker JC, Yodh AG 2010. Rheology of soft materials. Annu. Rev. Condens. Matter Phys. 1:301–22
    [Google Scholar]
  19. Chen H, Kreider W, Brayman AA, Bailey MR, Matula TJ 2011. Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Phys. Rev. Lett. 106:034301A time-resolved visualization of blood vessel deformation during bubble collapse in an ex vivo experiment.
    [Google Scholar]
  20. Choi JJ, Selert K, Vlachos F, Wong A, Konofagou EE 2011. Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles. PNAS 108:16539–44
    [Google Scholar]
  21. Church CC 1995. The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J. Acoust. Soc. Am. 97:1510–21
    [Google Scholar]
  22. Coussios CC, Roy RA 2008. Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annu. Rev. Fluid Mech. 40:395–420
    [Google Scholar]
  23. de Jong N, Hoff L, Skotland T, Bom N 1992. Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements. Ultrasonics 30:95–103
    [Google Scholar]
  24. Doinikov AA, Aired L, Bouakaz A 2011. Acoustic scattering from a contrast agent microbubble near an elastic wall of finite thickness. Phys. Med. Biol. 56:6951–67A theoretical model for the dynamics of a bubble near an elastic wall of arbitrary thickness.
    [Google Scholar]
  25. Doinikov AA, Bouakaz A 2011. Review of shell models for contrast agent microbubbles. IEEE Trans. Ultrason. Ferroelec. Freq. Control 58:981–93
    [Google Scholar]
  26. Doinikov AA, Bouakaz A 2013. Ultrasonically induced dynamics of a contrast agent microbubble between two parallel elastic walls. Phys. Med. Biol. 58:6797–814
    [Google Scholar]
  27. Doinikov AA, Dayton PA 2007. Maxwell rheological model for lipid-shelled ultrasound microbubble contrast agents. J. Acoust. Soc. Am. 121:3331–40
    [Google Scholar]
  28. Dollet B, van der Meer SM, Garbin V, de Jong N, Lohse D, Versluis M 2008. Nonspherical oscillations of ultrasound contrast agent microbubbles. Ultrasound Med. Biol. 34:1465–73
    [Google Scholar]
  29. Edwards DA, Brenner H, Wasan DT, eds 1991. Interfacial Transport Processes and Rheology Boston: Butterworth-Heinemann
  30. Emmer M, van Wamel A, Goertz DE, de Jong N 2007. The onset of microbubble vibration. Ultrasound Med. Biol. 33:941–49
    [Google Scholar]
  31. Estrada JB, Barajas C, Henann DL, Johnsen E, Franck C 2018. High strain-rate soft material characterization via inertial cavitation. J. Mech. Phys. Solids 112:291–317
    [Google Scholar]
  32. Everitt S, Harlen O, Wilson H, Read D 2003. Bubble dynamics in viscoelastic fluids with application to reacting and non-reacting polymer foams. J. Non-Newton. Fluid Mech. 114:83–107
    [Google Scholar]
  33. Faez T, Emmer M, Kooiman K, Versluis M, van der Steen AFW, de Jong N 2013. 20 years of ultrasound contrast agent modeling. IEEE Trans. Ultrason. Ferroelec. Freq. Control 60:7–20
    [Google Scholar]
  34. Fogler HS, Goddard JD 1970. Collapse of spherical cavities in viscoelastic fluids. Phys. Fluids 13:1135–41
    [Google Scholar]
  35. Frinking PJA, de Jong N 1998. Acoustic modeling of shell-encapsulated gas bubbles. Ultrasound Med. Biol. 24:523–33
    [Google Scholar]
  36. Fujii S, Nakamura Y 2017. Stimuli-responsive bubbles and foams stabilized with solid particles. Langmuir 33:7365–79
    [Google Scholar]
  37. Gao Y, Chan CU, Gu Q, Lin X, Zhang W et al. 2016. Controlled nanoparticle release from stable magnetic microbubble oscillations. NPG Asia Mater. 8:e260
    [Google Scholar]
  38. Garbin V, Cojoc D, Ferrari E, Di Fabrizio E, Overvelde M et al. 2007. Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging. Appl. Phys. Lett. 90:114103
    [Google Scholar]
  39. Gaudron R, Warnez M, Johnsen E 2015. Bubble dynamics in a viscoelastic medium with nonlinear elasticity. J. Fluid Mech. 766:54–75
    [Google Scholar]
  40. Gorce JM, Arditi M, Schneider M 2000. Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: a study of SonoVueTM. Investig. Radiol. 35:661–71
    [Google Scholar]
  41. Hamaguchi F, Ando K 2015. Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation. Phys. Fluids 27:113103
    [Google Scholar]
  42. Hay TA, Ilinskii YA, Zabolotskaya EA, Hamilton MF 2012. Model for bubble pulsation in liquid between parallel viscoelastic layers. J. Acoust. Soc. Am. 132:124–37
    [Google Scholar]
  43. Helfield BL, Leung BY, Goertz DE 2014. The effect of boundary proximity on the response of individual ultrasound contrast agent microbubbles. Phys. Med. Biol. 59:1721–45
    [Google Scholar]
  44. Hoff L, Sontum PC, Hovem JM 2000. Oscillations of polymeric microbubbles: effect of the encapsulating shell. J. Acoust. Soc. Am. 107:2272–80
    [Google Scholar]
  45. Hosseinkhah N, Chen H, Matula TJ, Burns PN, Hynynen K 2013. Mechanisms of microbubble–vessel interactions and induced stresses: a numerical study. J. Acoust. Soc. Am. 134:1875–85
    [Google Scholar]
  46. Hua C, Johnsen E 2013. Nonlinear oscillations following the Rayleigh collapse of a gas bubble in a linear viscoelastic (tissue-like) medium. Phys. Fluids 25:083101
    [Google Scholar]
  47. Ichihara M 2008. Dynamics of a spherical viscoelastic shell: implications to a criterion for fragmentation/expansion of bubbly magma. Earth Planet. Sci. Lett. 265:18–32
    [Google Scholar]
  48. Jamburidze A, De Corato M, Huerre A, Pommella A, Garbin V 2017. High-frequency linear rheology of hydrogels probed by ultrasound-driven microbubble dynamics. Soft Matter 13:3946–53
    [Google Scholar]
  49. Jiménez-Fernández J, Crespo A 2005. Bubble oscillation and inertial cavitation in viscoelastic fluids. Ultrasonics 43:643–51
    [Google Scholar]
  50. Kawchuk GN, Fryer J, Jaremko JL, Zeng H, Rowe L, Thompson R 2015. Real-time visualization of joint cavitation. PLOS ONE 10:e0119470
    [Google Scholar]
  51. Keller JB, Miksis M 1980. Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68:628–33
    [Google Scholar]
  52. Krasovitski B, Frenkel V, Shoham S, Kimmel E 2011. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. PNAS 108:3258–63
    [Google Scholar]
  53. Kundu S, Crosby AJ 2009. Cavitation and fracture behavior of polyacrylamide hydrogels. Soft Matter 5:3963–68
    [Google Scholar]
  54. Langevin D 2014. Rheology of adsorbed surfactant monolayers at fluid surfaces. Annu. Rev. Fluid Mech. 46:47–65
    [Google Scholar]
  55. Le Gac S, Zwaan E, van den Berg A, Ohl CD 2007. Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement. Lab Chip 7:1666–72
    [Google Scholar]
  56. Leighton TG 1994. The Acoustic Bubble London: Academic
  57. Liu Y, Sugiyama K, Takagi S, Matsumoto Y 2012. Surface instability of an encapsulated bubble induced by an ultrasonic pressure wave. J. Fluid Mech. 691:315–40
    [Google Scholar]
  58. Lotsberg O, Hovem JM, Aksum B 1996. Experimental observations of subharmonic oscillations in Infoson bubbles. J. Acoust. Soc. Am. 99:1366–69
    [Google Scholar]
  59. Luan Y, Lajoinie G, Gelderblow E, Skachkov I, van der Steen AFW et al. 2014. Lipid shedding from single oscillating microbubbles. Ultrasound Med. Biol. 40:1834–46
    [Google Scholar]
  60. Lum JS, Dove JD, Murray TW, Borden MA 2016. Single microbubble measurements of lipid monolayer viscoelastic properties for small-amplitude oscillations. Langmuir 32:9410–17An analysis of freely decaying oscillations of coated bubbles to measure surface elasticity of lipid monolayers at strain rates of 106 s−1.
    [Google Scholar]
  61. Macosko C 1994. Rheology: Principles, Measurements, and Applications New York: Wiley-VCH
  62. Marmottant P, Biben T, Hilgenfeldt S 2008. Deformation and rupture of lipid vesicles in the strong shear flow generated by ultrasound-driven microbubbles. Proc. R. Soc. Lond. A 464:1781–800
    [Google Scholar]
  63. Marmottant P, Bouakaz A, de Jong N, Quilliet C 2011. Buckling resistance of solid shell bubbles under ultrasound. J. Acoust. Soc. Am. 129:1231–39
    [Google Scholar]
  64. Marmottant P, Hilgenfeldt S 2003. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423:153–56
    [Google Scholar]
  65. Marmottant P, van der Meer S, Emmer M, Versluis M, de Jong N et al. 2005. A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J. Acoust. Soc. Am. 118:3499–505Discovered “compression only” of oscillating coated bubbles and proposed a constitutive equation that accurately captures this behavior and other nonlinearities.
    [Google Scholar]
  66. Martynov S, Stride E, Saffari N 2009. The natural frequencies of microbubble oscillation in elastic vessels. J. Acoust. Soc. Am. 126:2963–72A theoretical model describing the coupling of the oscillations of a bubble with a surrounding compliant tube.
    [Google Scholar]
  67. Morgan KE, Allen JS, Dayton PA, Chomas JE, Klibanov AL, Ferrara KW 2000. Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size. IEEE Trans. Ultrason. Ferroelec. Freq. Control 47:1494–509
    [Google Scholar]
  68. Naude J, Méndez F 2008. Periodic and chaotic acoustic oscillations of a bubble gas immersed in an upper convective maxwell fluid. J. Non-Newton. Fluid Mech. 155:30–38
    [Google Scholar]
  69. Noblin X, Rojas N, Westbrook J, Llorens C, Argentina M, Dumais J 2012. The fern sporangium: a unique catapult. Science 335:1322
    [Google Scholar]
  70. Oğuz HN, Prosperetti A 1998. The natural frequency of oscillation of gas bubbles in tubes. J. Acoust. Soc. Am. 103:3301–8
    [Google Scholar]
  71. Ohl S, Klaseboer E, Khoo B 2009. The dynamics of a non-equilibrium bubble near bio-materials. Phys. Med. Biol. 54:6313–36
    [Google Scholar]
  72. Overvelde M, Garbin V, Sijl J, Dollet B, de Jong N et al. 2010. Nonlinear shell behavior of phospholipid-coated microbubbles. Ultrasound Med. Biol. 36:2080–92A comprehensive experimental study of the various manifestations of nonlinear oscillations of lipid-coated bubbles.
    [Google Scholar]
  73. Pagani G, Green MJ, Poulin P, Pasquali M 2012. Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication. PNAS 109:11599–604
    [Google Scholar]
  74. Parrales MA, Fernández JM, Pérez-Saborid M, Kopechek JA, Porter TM 2014. Acoustic characterization of monodisperse lipid-coated microbubbles: relationship between size and shell viscoelastic properties. J. Acoust. Soc. Am. 136:1077–84
    [Google Scholar]
  75. Paul S, Katiyar A, Sarkar K, Chatterjee D, Shi WT, Forsberg F 2010. Material characterization of the encapsulation of an ultrasound contrast agent microbubble and its subharmonic response: strain-softening interfacial model. J. Acoust. Soc. Am. 127:3846–57
    [Google Scholar]
  76. Plesset MS, Prosperetti A 1977. Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9:145–85
    [Google Scholar]
  77. Pommella A, Brooks NJ, Seddon JM, Garbin V 2015. Selective flow-induced vesicle rupture to sort by membrane mechanical properties. Sci. Rep. 5:13163
    [Google Scholar]
  78. Postema M, Marmottant P, Lancée CT, Hilgenfeldt S, de Jong N 2004. Ultrasound-induced microbubble coalescence. Ultrasound Med. Biol. 30:1337–44
    [Google Scholar]
  79. Poulichet V, Garbin V 2015. Ultrafast desorption of colloidal particles from fluid interfaces. PNAS 112:5932–37
    [Google Scholar]
  80. Poulichet V, Huerre A, Garbin V 2017. Shape oscillations of particle-coated bubbles and directional particle expulsion. Soft Matter 13:125–33
    [Google Scholar]
  81. Prosperetti A 1974. Nonlinear oscillations of gas bubbles in liquids: steady-state solutions. J. Acoust. Soc. Am. 56:878–85
    [Google Scholar]
  82. Prosperetti A 1977. Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids. J. Acoust. Soc. Am. 61:17–27
    [Google Scholar]
  83. Prosperetti A 1982. A generalization of the Rayleigh–Plesset equation of bubble dynamics. Phys. Fluids 25:409–10
    [Google Scholar]
  84. Prosperetti A 2013. A general derivation of the subharmonic threshold for non-linear bubble oscillations. J. Acoust. Soc. Am. 133:3719–26
    [Google Scholar]
  85. Qin S, Ferrara KW 2007. The natural frequency of nonlinear oscillations of ultrasound contrast agents in microvessels. Ultrasound Med. Biol. 33:1140–48
    [Google Scholar]
  86. Sarkar K, Shi WT, Chatterjee D, Forsberg F 2005. Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation. J. Acoust. Soc. Am. 118:539–50
    [Google Scholar]
  87. Sassaroli E, Hynynen K 2004. Forced linear oscillations of microbubbles in blood capillaries. J. Acoust. Soc. Am. 115:3235–43
    [Google Scholar]
  88. Shankar PM, Krishna PD, Newhouse VL 1998. Advantages of subharmonic over second harmonic backscatter for contrast-to-tissue echo enhancement. Ultrasound Med. Biol. 24:395–99
    [Google Scholar]
  89. Shankar PM, Krishna PD, Newhouse VL 1999. Subharmonic backscattering from ultrasound contrast agents. J. Acoust. Soc. Am. 106:2104–10
    [Google Scholar]
  90. Sijl J, Dollet B, Overvelde M, Garbin V, Rozendal T et al. 2010. Subharmonic behavior of phospholipid-coated ultrasound contrast agent microbubbles. J. Acoust. Soc. Am. 128:3239–52
    [Google Scholar]
  91. Strasberg M 1953. The pulsation frequency of nonspherical gas bubbles in liquids. J. Acoust. Soc. Am. 25:536–37
    [Google Scholar]
  92. Stride E 2008. The influence of surface adsorption on microbubble dynamics. Philos. Trans. R. Soc. A 366:2103–15
    [Google Scholar]
  93. Stride E, Pancholi K, Edirisinghe M, Samarasinghe S 2008. Increasing the nonlinear character of microbubble oscillations at low acoustic pressures. J. R. Soc. Interface 5:807–11
    [Google Scholar]
  94. Strybulevych A, Leroy V, Scanlon MG, Page JH 2009. Acoustic microrheology: shear moduli of soft materials determined from single bubble oscillations. Proceedings of Symposium on Ultrasonic Electronics 30395–96 http://www.use-jp.org/USE2010/proceedings/USE09/pdf/2E1-2.pdf
    [Google Scholar]
  95. Sun Y, Kruse DE, Dayton PA, Ferrara KW 2005. High-frequency dynamics of ultrasound contrast agents. IEEE Trans. Ultrason. Ferroelec. Freq. Control 52:1981–91
    [Google Scholar]
  96. Tandiono T, Ow DS, Driessen L, Chin CS, Klaseboer E et al. 2012. Sonolysis of Escherichia coli and Pichia pastoris in microfluidics. Lab Chip 12:780–86
    [Google Scholar]
  97. Thomas DH, Sboros V, Emmer M, Vos H, de Jong N 2013. Microbubble oscillations in capillary tubes. IEEE Trans. Ultrason. Ferroelec. Freq. Control 60:105–14
    [Google Scholar]
  98. Tinguely M, Hennessy MG, Pommella A, Matar OK, Garbin V 2016. Surface waves on a soft viscoelastic layer produced by an oscillating microbubble. Soft Matter 12:4247–56
    [Google Scholar]
  99. Tsiglifis K, Pelekasis NA 2008. Nonlinear radial oscillations of encapsulated microbubbles subject to ultrasound: the effect of membrane constitutive law. J. Acoust. Soc. Am. 123:4059–70
    [Google Scholar]
  100. Tsiglifis K, Pelekasis NA 2011. Parametric stability and dynamic buckling of an encapsulated microbubble subject to acoustic disturbances. Phys. Fluids 23:012102
    [Google Scholar]
  101. Tu J, Guan J, Qiu Y, Matula TJ 2009. Estimating the shell parameters of SonoVue® microbubbles using light scattering. J. Acoust. Soc. Am. 126:2954–62
    [Google Scholar]
  102. Tyree M, Sperry J 1989. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Physiol. Mol. Biol. 40:19–36
    [Google Scholar]
  103. van der Meer SM, Dollet B, Voormolen MM, Chin CT, Bouakaz A et al. 2007. Microbubble spectroscopy of ultrasound contrast agents. J. Acoust. Soc. Am. 121:648–56
    [Google Scholar]
  104. van Rooij T, Luan Y, Renaud G, van der Steen AFW, Versluis M et al. 2015. Non-linear response and viscoelastic properties of lipid-coated microbubbles: DSPC versus DPPC. Ultrasound Med. Biol. 41:1432–45
    [Google Scholar]
  105. Versluis M 2013. High-speed imaging in fluids. Exp. Fluids 54:1–35
    [Google Scholar]
  106. Versluis M, Goertz DE, Palanchon P, Heitman IL, van der Meer SM et al. 2010. Microbubble shape oscillations excited through ultrasonic parametric driving. Phys. Rev. E 82:026321
    [Google Scholar]
  107. Vincent O, Marmottant P 2017. On the statics and dynamics of fully confined bubbles. J. Fluid Mech. 827:194–224
    [Google Scholar]
  108. Vincent O, Marmottant P, Gonzalez-Avila SR, Ando K, Ohl C-D 2014. The fast dynamics of cavitation bubbles within water conned in elastic solids. Soft Matter 10:1455–61
    [Google Scholar]
  109. Vincent O, Marmottant P, Quinto-Su PA, Ohl CD 2012. Birth and growth of cavitation bubbles within water under tension confined in a simple synthetic tree. Phys. Rev. Lett. 108:184502
    [Google Scholar]
  110. Vos H, Dollet B, Versluis M, de Jong N 2011. Nonspherical shape oscillations of coated microbubbles in contact with a wall. Ultrasound Med. Biol. 37:935–48
    [Google Scholar]
  111. Warnez MT, Johnsen E 2015. Numerical modeling of bubble dynamics in viscoelastic media with relaxation. Phys. Fluids 27:063103A model of bubble dynamics in a viscoelastic medium using a highly general constitutive equation for the linear and nonlinear cases.
    [Google Scholar]
  112. Wheeler TD, Stroock AD 2008. The transpiration of water at negative pressures in a synthetic tree. Nature 455:208–12
    [Google Scholar]
  113. Yang X, Church CC 2005. A model for the dynamics of gas bubbles in soft tissue. J. Acoust. Soc. Am. 118:3595–606A model of bubble dynamics in a viscoelastic solid using a linear constitutive equation (Kelvin–Voigt model).
    [Google Scholar]
  114. Zhao X, Quinto-Su PA, Ohl CD 2009. Dynamics of magnetic bubbles in acoustic and magnetic fields. Phys. Rev. Lett. 102:024501
    [Google Scholar]
  115. Zimberlin JA, Sanabria-DeLong N, Tew GN, Crosby AJ 2007. Cavitation rheology for soft materials. Soft Matter 3:763–67
    [Google Scholar]
  116. Zinin PV, Allen JS 2009. Deformation of biological cells in the acoustic field of an oscillating bubble. Phys. Rev. E 79:021910
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010518-040352
Loading
/content/journals/10.1146/annurev-fluid-010518-040352
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error