1932

Abstract

Soft porous solids can change their shapes by absorbing liquids via capillarity. Such poro-elasto-capillary interactions can be seen in the wrinkling of paper, swelling of cellulose sponges, and morphing of resurrection plants. Here, we introduce physical principles relevant to the phenomena and survey recent advances in the understanding of swelling and shrinkage of bulk soft porous media due to wetting and drying. We then consider various morphing modes of porous sheets, which are induced by localized wetting and swelling of soft porous materials. We focus on physical insights with the aim of triggering novel experimental findings and promoting practical applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010518-040419
2020-01-05
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/fluid/52/1/annurev-fluid-010518-040419.html?itemId=/content/journals/10.1146/annurev-fluid-010518-040419&mimeType=html&fmt=ahah

Literature Cited

  1. Adam NK 1930. Physics and Chemistry of Surfaces London: Oxford Univ. Press
    [Google Scholar]
  2. Adamson AW, Gast AP 1997. Physical Chemistry of Surfaces New York: Wiley. 6th ed.
    [Google Scholar]
  3. Adler PM, Brenner H 1988. Multiphase flow in porous media. Annu. Rev. Fluid Mech. 20:35–59
    [Google Scholar]
  4. Alava M, Niskanen K 2006. The physics of paper. Rep. Prog. Phys. 69:669–723
    [Google Scholar]
  5. Allain C, Limat L 1995. Regular patterns of cracks formed by directional drying of a collodial suspension. Phys. Rev. Lett. 74:2981–84
    [Google Scholar]
  6. Allen JRL 1986. On the curl of desiccation polygons. Sediment. Geol. 46:23–31
    [Google Scholar]
  7. Bacchin P, Brutin D, Davaille A, Di Giuseppe E, Chen XD et al. 2018. Drying colloidal systems: laboratory models for a wide range of applications. Eur. Phys. J. E 41:94
    [Google Scholar]
  8. Bal K, Fan J, Sarkar MK, Ye L 2011. Differential spontaneous capillary flow through heterogeneous porous media. Int. J. Heat Mass Transf. 54:3096–99
    [Google Scholar]
  9. Bear J 1972. Dynamics of Fluids in Porous Media New York: Elsevier
    [Google Scholar]
  10. Bell JM, Cameron FK 1906. The flow of liquids through capillary spaces. J. Phys. Chem. 10:658–74
    [Google Scholar]
  11. Bertrand T, Peixinho J, Mukhopadhyay S, MacMinn CW 2016. Dynamics of swelling and drying in a spherical gel. Phys. Rev. Appl. 6:064010
    [Google Scholar]
  12. Bico J, Reyssat É, Roman B 2018. Elastocapillarity: when surface tension deforms elastic solids. Annu. Rev. Fluid Mech. 50:629–59
    [Google Scholar]
  13. Bico J, Roman B, Moulin L, Boudaoud A 2004. Elastocapillary coalescence in wet hair. Nature 432:690
    [Google Scholar]
  14. Bico J, Tordeux C, Quéré D 2001. Rough wetting. Europhys. Lett. 55:214–20
    [Google Scholar]
  15. Biot MA 1941. General theory of three dimensional consolidation. J. Appl. Phys. 12:155–64
    [Google Scholar]
  16. Bou Zeid W, Vicente J, Brutin D 2013. Influence of evaporation rate on cracks’ formation of a drying drop of whole blood. Colloids Surf. A 432:139–46
    [Google Scholar]
  17. Boyle R 1662. New Experiments Physico-Mechanicall, Touching the Spring of the Air, and Its Effects Oxford: H. Hall
    [Google Scholar]
  18. Carman PC 1937. Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15:150–67
    [Google Scholar]
  19. Chang S, Seo J, Hong S, Lee DG, Kim W 2018. Dynamics of liquid imbibition through paper with intra-fiber pores. J. Fluid Mech. 845:36–50
    [Google Scholar]
  20. Chen X, Mahadevan L, Driks A, Sahin O 2014. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nat. Nanotechnol. 9:137–41
    [Google Scholar]
  21. Cheng AEH 2016. Poroelasticity Cham, Switz.: Springer
    [Google Scholar]
  22. Childs EC, Collis-George N 1950. The permeability of porous materials. Proc. R. Soc. A 201:392–405
    [Google Scholar]
  23. Chung JY, Regev I, Mahadevan L 2016. Spontaneous exfoliation of a drying gel. Soft Matter 12:7855–62
    [Google Scholar]
  24. Cohen AE, Mahadevan L 2003. Kinks, rings, and rackets in filamentous structures. PNAS 100:12141–46
    [Google Scholar]
  25. Coussy O 2007. Revisiting the constitutive equations of unsaturated porous solids using a Lagrangian saturation concept. Int. J. Numer. Anal. Methods Geomech. 31:1675–94
    [Google Scholar]
  26. Cuerto-Felgueroso L, Juanes R 2008. Nonlocal interface dynamics and pattern formation in gravity-driven unsaturated flow through porous media. Phys. Rev. Lett. 101:244504
    [Google Scholar]
  27. Darcy H 1856. Les Fontaines Publiques de la Ville de Dijon Paris: Victor Dalmont
    [Google Scholar]
  28. Dawson C, Vincent JFV, Rocca AM 1997. How pine cones open. Nature 390:668
    [Google Scholar]
  29. de Gennes PG 1985. Wetting: statics and dynamics. Rev. Mod. Phys. 57:827–63
    [Google Scholar]
  30. de Gennes PG, Brochard-Wyart F, Quéré D 2004. Capillarity and Wetting Phenomena New York: Springer
    [Google Scholar]
  31. Dervaux J, Couder Y, Guedeau-Boudeville MA, Ben Amar M 2011. Shape transition in artificial tumors: from smooth buckles to singular creases. Phys. Rev. Lett. 107:018103
    [Google Scholar]
  32. Doi M 2009. Gel dynamics. J. Phys. Soc. Jpn. 78:052001
    [Google Scholar]
  33. Douezan S, Wyart M, Brochard-Wyart F, Cuvelier D 2011. Curling instability induced by swelling. Soft Matter 7:1506–11
    [Google Scholar]
  34. Dufresne ER, Stark DJ, Greenblatt NA, Cheng JX, Hutchinson JW et al. 2006. Dynamics of fracture in drying suspensions. Langmuir 22:7144–47
    [Google Scholar]
  35. Dumais J, Forterre Y 2012. “Vegetable dynamicks”: the role of water in plant movements. Annu. Rev. Fluid Mech. 44:453–78
    [Google Scholar]
  36. Duprat C, Aristoff JM, Stone HA 2011. Dynamics of elastocapillary rise. J. Fluid Mech. 679:641–54
    [Google Scholar]
  37. Duprat C, Protiére S, Beebe AY, Stone HA 2012. Wetting of flexible fibre arrays. Nature 482:510–13
    [Google Scholar]
  38. Fisher L 1999. Physics takes the biscuit. Nature 397:469
    [Google Scholar]
  39. Flory PJ 1953. Principles of Polymer Chemistry Ithaca, NY: Cornell Univ. Press
    [Google Scholar]
  40. Ghezzehei TA, Or D 2000. Dynamics of soil aggregate coalescence governed by capillary and rheological processes. Water Resour. Res. 36:367–79
    [Google Scholar]
  41. Giorgiutti-Dauphiné F, Pauchard L 2014. Elapsed time for crack formation during drying. Eur. Phys. J. E 37:39
    [Google Scholar]
  42. Goehring L 2009. Drying and cracking mechanisms in a starch slurry. Phys. Rev. E 80:036116
    [Google Scholar]
  43. Goehring L, Mahadevan L, Morris SW 2009. Nonequilibrium scale selection mechanism for columnar jointing. PNAS 106:387–92
    [Google Scholar]
  44. Gorce JB, Hewitt IJ, Vella D 2016. Capillary imbibition into converging tubes: beating Washburn's law and the optimal imbibition of liquids. Langmuir 32:1560–67
    [Google Scholar]
  45. Gummerson RJ, Hall C, Hoff WD, Hawkes R, Holland GN, Moore WS 1979. Unsaturated water flow within porous materials observed by NMR imaging. Nature 281:56–57
    [Google Scholar]
  46. Ha J, Kim J, Jung Y, Yun G, Kim DN et al. 2018. Poro-elasto-capillary wicking of cellulose sponges. Sci. Adv. 4:eaao7051
    [Google Scholar]
  47. Hall C, Tse TKM 1986. Water movement in porous building materials—VII. The sorptivity of mortars. Build. Environ. 21:113–18
    [Google Scholar]
  48. Hines L, Petersen K, Lum GZ, Sitti M 2017. Soft actuators for smallscale robotics. Adv. Mater. 29:1603483
    [Google Scholar]
  49. Hoberg TB, Verneuil E, Hosoi AE 2014. Elastocapillary flows in flexible tubes. Phys Fluids 26:122103
    [Google Scholar]
  50. Holmes DP, Brun PT, Pandey A, Protière S 2016. Rising beyond elastocapillarity. Soft Matter 12:4886–90
    [Google Scholar]
  51. Holmes DP, Roché M, Sinha T, Stone HA 2011. Bending and twisting of soft materials by non-homogenous swelling. Soft Matter 7:5188–93
    [Google Scholar]
  52. Hu C, Pané S, Nelson BJ 2018. Soft micro- and nanorobotics. Annu. Rev. Control Robot. Auton. Syst. 1:53–75
    [Google Scholar]
  53. Hu Y, Zhao X, Vlassak JJ, Suo Z 2010. Using indentation to characterize the poroelasticity of gels. Appl. Phys. Lett. 96:121904
    [Google Scholar]
  54. Johnson DL 1982. Elastodynamics of gels. J. Chem. Phys. 77:1531–39
    [Google Scholar]
  55. Jung W, Kim W, Kim HY 2014. Self-burial mechanics of hygroscopically responsive awns. Integr. Comp. Biol. 54:1034–42
    [Google Scholar]
  56. Jurin J 1718. An account of some experiments shown before the Royal Society; with an enquiry into the cause of the ascent and suspension of water in capillary tubes. Philos. Trans. R. Soc. Lond. 30:739–47
    [Google Scholar]
  57. Kalnin JR, Kotomin E 1998. Modified Maxwell-Garnett equation for the effective transport coefficients in inhomogeneous media. J. Phys. A 31:7227–34
    [Google Scholar]
  58. Karlsson JO, Andersson M, Berntsson P, Chihani T, Gatenholm P 1998. Swelling behavior of stimuli-responsive cellulose fibers. Polymer 39:3589–95
    [Google Scholar]
  59. Keck S 1969. Mechanical alteration of the paint film. Stud. Conserv. 14:9–30
    [Google Scholar]
  60. Kim HY 2007. On thermocapillary propulsion of microliquid slug. Nanosc. Microsc. Therm. 11:351–62
    [Google Scholar]
  61. Kim HY, Mahadevan L 2006. Capillary rise between elastic sheets. J. Fluid Mech. 548:141–50
    [Google Scholar]
  62. Kim J, Ha J, Kim HY 2017. Capillary rise of non-aqueous liquids in cellulose sponges. J. Fluid Mech. 818:R2
    [Google Scholar]
  63. Kim J, Moon MW, Kim HY 2016. Dynamics of hemiwicking. J. Fluid Mech. 80057–71
    [Google Scholar]
  64. Kim J, Moon MW, Lee KR, Mahadevan L, Kim HY 2011. Hydrodynamics of writing with ink. Phys. Rev. Lett. 107:264501
    [Google Scholar]
  65. Kimber JA, Kazarian SG, Štěpánek F 2012. Modelling of pharmaceutical tablet swelling and dissolution using discrete element method. Chem. Eng. Sci. 69:394–403
    [Google Scholar]
  66. Kindle EM 1917. Some factors affecting the development of mud-cracks. J. Geol. 25:135–44
    [Google Scholar]
  67. Kozeny J 1927. Über kapillare Leitung des Wassers im Boden. Stizungsber. Akad. Wiss. Wien 136:271–306
    [Google Scholar]
  68. Laloui L, Ferrari A, Li C, Eichenberger J 2016. Hydro-mechanical analysis of volcanic ash slopes during rainfall. Géotechnique 66:220–31
    [Google Scholar]
  69. Lee H, Xia C, Fang NX 2010. First jump of microgel: actuation speed enhancement by elastic instability. Soft Matter 6:4342–45
    [Google Scholar]
  70. Lee M, Kim S, Kim HY, Mahadevan L 2016. Bending and buckling of wet paper. Phys. Fluids 28:042101
    [Google Scholar]
  71. Lee WP, Routh AF 2004. Why do drying films crack. Langmuir 209885–88
    [Google Scholar]
  72. Leocmach M, Nespoulous M, Manneville S, Gibaud T 2015. Hierarchical wrinkling in a confined permeable biogel. Sci. Adv. 1:e1500608
    [Google Scholar]
  73. Liu M, Suo S, Wu J, Gan Y, Hanaor DA, Chen CQ 2018. Tailoring porous media for controllable capillary flow. J. Colloid Interf. Sci. 539:379–87
    [Google Scholar]
  74. Lucantonio A, Nardinocchi P 2012. Reduced models of swelling-induced bending of gel bars. Int. J. Solids Struct. 49:1399–405
    [Google Scholar]
  75. Lucas R 1918. Über das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Kolloid Z. 23:15–22
    [Google Scholar]
  76. Markl D, Yassin S, Wilson DI, Goodwin DJ, Anderson A, Zeitler JA 2017. Mathematical modelling of liquid transport in swelling pharmaceutical immediate release tablets. Int. J. Pharm. 526:1–10
    [Google Scholar]
  77. Masoodi R, Pillai KM 2010. Darcy's law–based model for wicking in paperlike swelling porous media. AIChE J. 56:2257–67
    [Google Scholar]
  78. Mirzajanzadeh M, Deshpande VS, Fleck NA 2019. Water rise in a cellulose foam: By capillary or diffusional flow. J. Mech. Phys. Solids 124206–19
    [Google Scholar]
  79. Monaenkova D, Andrukh T, Kornev KG 2012. Wicking of liquids into sagged fabrics. Soft Matter 8:4725–30
    [Google Scholar]
  80. Mulakkal MC, Seddon AM, Whittell G, Manners I, Trask RS 2016. 4D fibrous materials: characterising the deployment of paper architectures. Smart Mater. Struct. 25:095052
    [Google Scholar]
  81. Nasouri B, Thorne B, Elfring GJ 2019. Dynamics of poroelastocapillary rise. J. Fluids Struct. 85:220–28
    [Google Scholar]
  82. Nielsen AF 1972. Gamma-ray-attenuation used for measuring the moisture content and homogeneity of porous concrete. Build. Sci. 7:257–63
    [Google Scholar]
  83. Obara N, Okumura K 2012. Imbibition of a textured surface decorated by short pillars with rounded edges. Phys. Rev. E 86:020601
    [Google Scholar]
  84. Or D, Tuller M, Wraith JM 2005. Water potential. Encyclopedia of Soils in the Environment D Hillel, C Rosenzweig, D Powlson, K Scow, M Singer 270–77 Oxford: Academic
    [Google Scholar]
  85. Pandey A, Holmes DP 2013. Swelling-induced deformations: a materials-defined transition from macroscale to microscale deformations. Soft Matter 9:5524–28
    [Google Scholar]
  86. Park SJ, Weon BM, Lee JS, Lee J, Kim J, Je JH 2014. Visualization of asymmetric wetting ridges on soft solids with X-ray microscopy. Nat. Commun. 5:4369
    [Google Scholar]
  87. Paulsen JD, Démery V, Santangelo CD, Russell TP, Davidovitch B, Menon N 2015. Optimal wrapping of liquid droplets with ultrathin sheets. Nat. Mater. 14:1206–9
    [Google Scholar]
  88. Peev G, Tzibranska I 1997. Modelling of fluid–solid mass transfer in packed beds: cases of nonuniform particles and concentration dependent internal diffusivity. Chem. Eng. Process. 36:317–25
    [Google Scholar]
  89. Perez-Cruz A, Stiharu I, Dominguez-Gonzalez A 2017. Nonlinear imbibition influence on the hygro-mechanical bending response of paper due to its interaction with water. Int. J. Nonlin. Mech. 97:89–95
    [Google Scholar]
  90. Philip JR 1970. Flow in porous media. Annu. Rev. Fluid Mech. 2:177–204
    [Google Scholar]
  91. Ponomarenko A, Quéré D, Clanet C 2011. A universal law for capillary rise in corners. J. Fluid Mech. 666:146–54
    [Google Scholar]
  92. Py C, Reverdy P, Doppler L, Bico J, Roman B, Baroud CN 2007. Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett. 98:156103
    [Google Scholar]
  93. Rafsanjani A, Brulé V, Western TL, Pasini D 2015a. Hydro-responsive curling of the resurrection plant Selaginella lepidophylla. Sci. Rep. 5:8064
    [Google Scholar]
  94. Rafsanjani A, Derome D, Carmeliet J 2015b. Poromechanical modeling of moisture induced swelling anisotropy in cellular tissues of softwoods. RSC Adv. 5:3560–66
    [Google Scholar]
  95. Rey J, Vandamme M 2013. On the shrinkage and stiffening of a cellulose sponge upon drying. J. Appl. Mech. 80:020908
    [Google Scholar]
  96. Reyssat E, Mahadevan L 2009. Hygromorphs: from pine cones to biomimetic bilayers. J. R. Soc. Interface 6:951–57
    [Google Scholar]
  97. Reyssat E, Mahadevan L 2011. How wet paper curls. Europhys. Lett. 93:54001
    [Google Scholar]
  98. Reyssat M, Courbin L, Reyssat E, Stone HA 2008. Imbibition in geometries with axial variations. J. Fluid Mech. 615:335–44
    [Google Scholar]
  99. Reyssat M, Sangne LY, van Nierop EA, Stone HA 2009. Imbibition in layered systems of packed beads. Europhys. Lett. 86:56002
    [Google Scholar]
  100. Richards LA 1931. Capillary conduction of liquids through porous mediums. J. Appl. Phys. 1:318–33
    [Google Scholar]
  101. Saguy IS, Marabi A, Wallach R 2005. Liquid imbibition during rehydration of dry porous foods. Innov. Food Sci. Emerg. Technol. 6:37–43
    [Google Scholar]
  102. Scherer GW 1989. Drying gels: VIII. Revision and review. J. Non-Cryst. Solids 109:171–82
    [Google Scholar]
  103. Scherer GW 1990. Stress and fracture during drying of gels. J. Non-Cryst. Solids 121:104–9
    [Google Scholar]
  104. Schuchardt DR, Berg JC 1991. Liquid transport in composite cellulose—superabsorbent fiber networks. Wood Fiber Sci. 23:342–57
    [Google Scholar]
  105. Shi SQ, Gardner DJ 2000. A new model to determine contact angles on swelling polymer particles by the column wicking method. J. Adhes. Sci. Technol. 14:301–14
    [Google Scholar]
  106. Shin B, Ha J, Lee M, Park K, Park GH et al. 2018. Hygrobot: a self-locomotive ratcheted actuator powered by environmental humidity. Sci. Robot. 3:eaar2629
    [Google Scholar]
  107. Siddique JI, Anderson DM, Bondarev A 2009. Capillary rise of a liquid into a deformable porous material. Phys. Fluids 21:013106
    [Google Scholar]
  108. Singh K, Jung M, Brinkmann M, Seemann R 2019. Capillary-dominated fluid displacement in porous media. Annu. Rev. Fluid Mech. 51:429–49
    [Google Scholar]
  109. Skotheim JM, Mahadevan L 2004. Dynamics of poroelastic filaments. Proc. R. Soc. Lond. A 460:1995–2020
    [Google Scholar]
  110. Skotheim JM, Mahadevan L 2005. Physical limits and design principles for plant and fungal movements. Science 308:1308–10
    [Google Scholar]
  111. Smith DM, Scherer GW, Anderson JM 1995. Shrinkage during drying of silica gel. J. Non-Cryst. Solids 188:191–206
    [Google Scholar]
  112. Sojoudi H, Kim S, Zhao H, Annavarapu RK, Mariappan D et al. 2017. Stable wettability control of nanoporous microstructures by iCVD coating of carbon nanotubes. ACS Appl. Mater. Interfaces 9:43287–99
    [Google Scholar]
  113. Song KM, Mitchell J, Jaffel H, Gladden LF 2011. Magnetic resonance imaging studies of spontaneous capillary water imbibition in aerated gypsum. J. Phys. D 44:115403
    [Google Scholar]
  114. Style PW, Peppin SSL, Cocks ACF 2011. Mud peeling and horizontal crack formation in drying clays. J. Geophys. Res. 116:F01025
    [Google Scholar]
  115. Sweijen T, Chareyre B, Hassanizadeh SM, Karadimitriou NK 2017. Grain-scale modelling of swelling granular materials; application to super absorbent polymers. Powder Technol. 318:411–22
    [Google Scholar]
  116. Sweijen T, Nikooee E, Hassanizadeh SM, Chareyre B 2016. The effects of swelling and porosity change on capillarity: DEM coupled with a pore-unit assembly method. Transp. Porous Media 113:207–26
    [Google Scholar]
  117. Tanaka H, Tomita H, Takasu A, Hayashi T, Nishi T 1992. Morphological and kinetic evolution of surface patterns in gels during the swelling process: evidence of dynamic pattern ordering. Phys. Rev. Lett. 68:2794–97
    [Google Scholar]
  118. Tanaka T, Fillmore DJ 1979. Kinetics of swelling of gels. J. Chem. Phys. 70:1214–18
    [Google Scholar]
  119. Terzaghi K 1925. Erdbaumechanik auf bodenphysikalischer Grundanlage Vienna: Deuticke
    [Google Scholar]
  120. Timoshenko S 1925. Analysis of bi-metal thermostats. J. Opt. Soc. Am. 11:233–55
    [Google Scholar]
  121. Uzuoka R, Borja RI 2012. Dynamics of unsaturated poroelastic solids at finite strain. Int. J. Numer. Anal. Geomech. 36:1535–73
    [Google Scholar]
  122. Wålinder MEP, Gardner DJ 1999. Factors influencing contact angle measurements on wood particles by column wicking. J. Adhes. Sci. Technol. 13:1363–74
    [Google Scholar]
  123. Wang HF 2000. Theory of Linear Poroelasticity Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  124. Washburn EW 1921. The dynamics of capillary flow. Phys. Rev. 17:273–83
    [Google Scholar]
  125. Wijmans JG, Baker RW 1995. The solution-diffusion model: a review. J. Membr. Sci. 107:1–21
    [Google Scholar]
  126. Wittmann FH 1976. On the action of capillary pressure in fresh concrete. Cem. Concr. Res. 6:49–56
    [Google Scholar]
  127. Witztum A, Schulgasser K 1995. The mechanics of seed expulsion in Acanthaceae. J. Theor. Biol. 176:531–42
    [Google Scholar]
  128. Woignier T, Phalippou J, Vacher R 1989. Parameters affecting elastic properties of silica aerogels. J. Mater. Res. 4:688–92
    [Google Scholar]
  129. Wong WS, Li M, Nisbet DR, Craig VS, Wang Z, Tricoli A 2016. Mimosa origami: a nanostructure-enabled directional self-organization regime of materials. Sci. Adv. 2:e1600417
    [Google Scholar]
  130. Xu P, Yu B 2008. Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry. Adv. Water Resour. 31:74–81
    [Google Scholar]
  131. Yoon J, Cai S, Suo Z, Hayward RC 2010. Poroelastic swelling kinetics of thin hydrogel layers: comparison of theory and experiment. Soft Matter 6:6004–12
    [Google Scholar]
  132. Young T 1805. III. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95:65–87
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010518-040419
Loading
/content/journals/10.1146/annurev-fluid-010518-040419
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error