1932

Abstract

Since the discovery of Brownian motion in bulk fluids by Robert Brown in 1827, Brownian motion at long timescales has been extensively studied both theoretically and experimentally for over a century. The theory for short-timescale Brownian motion was also well established in the last century, while experimental studies were not accessible until this decade. This article reviews experimental progress on short-timescale Brownian motion and related applications. The ability to measure instantaneous velocity enables new fundamental tests of statistical mechanics of Brownian particles, such as the Maxwell–Boltzmann velocity distribution and the energy equipartition theorem. In addition, Brownian particles can be used as probes to study boundary effects imposed by a solid wall, wettability at solid–fluid interfaces, and viscoelasticity. We propose future studies of fluid compressibility and nonequilibrium physics using short-duration pulsed lasers. Lastly, we also propose that an optically trapped particle can serve as a new testing ground for nucleation in a supersaturated vapor or a supercooled liquid.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010518-040527
2019-01-05
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/fluid/51/1/annurev-fluid-010518-040527.html?itemId=/content/journals/10.1146/annurev-fluid-010518-040527&mimeType=html&fmt=ahah

Literature Cited

  1. Alam MS, Ishii K, Hasimoto H 1980. Slow motion of a small sphere outside of a circular cylinder. J. Phys. Soc. Jpn. 49:405–8
    [Google Scholar]
  2. Alder BJ, Wainwright TE 1967. Velocity autocorrelations for hard spheres. Phys. Rev. Lett. 18:988–90
    [Google Scholar]
  3. Alder BJ, Wainwright TE 1970. Decay of the velocity autocorrelation function. Phys. Rev. A 1:18–21
    [Google Scholar]
  4. Ashkin A 1970. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24:156–59
    [Google Scholar]
  5. Ashkin A 1992. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61:569–82
    [Google Scholar]
  6. Ashkin A 2000. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J. Selected Top. Quantum Electron. 6:841–56
    [Google Scholar]
  7. Ashkin A, Dziedzic JM 1975. Optical levitation of liquid drops by radiation pressure. Science 187:1073–75
    [Google Scholar]
  8. Ashkin A, Dziedzic JM 1976. Optical levitation in high vacuum. Appl. Phys. Lett. 28:333–35
    [Google Scholar]
  9. Ashkin A, Dziedzic JM 1987. Optical trapping and manipulation of viruses and bacteria. Science 235:1517–20
    [Google Scholar]
  10. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S 1986. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11:288–90
    [Google Scholar]
  11. Ashkin A, Dziedzic JM, Yamane T 1987. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330:769–71
    [Google Scholar]
  12. Basset AB 1888. On the motion of a sphere in a viscous liquid. Philos. Trans. R. Soc. A 179:43–63
    [Google Scholar]
  13. Batchelor GK 2000. An Introduction to Fluid Dynamics Cambridge, UK: Cambridge Univ. Press
  14. Blickle V, Speck T, Lutz C, Seifert U, Bechinger C 2007. Einstein relation generalized to nonequilibrium. Phys. Rev. Lett. 98:210601
    [Google Scholar]
  15. Boussinesq J 1885. Sur la résistance qu'oppose un liquide indéfini en repos, sans pesanteur, au mouvement varié d'une sphère solide qu'il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables. C.R. Acad. Sci. 100:935–37
    [Google Scholar]
  16. Brown R 1827. A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philos. Mag. Ser. 2 4:161–73
    [Google Scholar]
  17. Chavez I, Huang R, Henderson K, Florin EL, Raizen MG 2008. Development of a fast position-sensitive laser beam detector. Rev. Sci. Instrum. 79:105104
    [Google Scholar]
  18. Cheezum MK, Walker WF, Guilford WH 2001. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 81:2378–88
    [Google Scholar]
  19. Choi CH, Ulmanella U, Kim J, Ho CM, Kim CJ 2006. Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys. Fluids 18:087105
    [Google Scholar]
  20. Clayton DD 1974. Maxwellian relative energies and solar neutrinos. Nature 249:131
    [Google Scholar]
  21. Clercx H, Schram P 1992. Brownian particles in shear flow and harmonic potentials: a study of long-time tails. Phys. Rev. A 46:1942–50
    [Google Scholar]
  22. D'Anna G, Mayor P, Barrat A, Loreto V, Nori F 2003. Observing Brownian motion in vibration-fluidized granular matter. Nature 424:909–12
    [Google Scholar]
  23. Duplantier B 2006. Brownian motion, “diverse and undulating.”. Einstein, 1905–2005: Poincaré Seminar 2005 T Damour, O Darrigol, B Duplantier, V Rivasseau201–93 Basel, Switz.: Birkhäuser Verlag
    [Google Scholar]
  24. Duplat J, Kheifets S, Li T, Raizen M, Villermaux E 2013. Superdiffusive trajectories in Brownian motion. Phys. Rev. E 87:020105
    [Google Scholar]
  25. Einstein A 1905. Investigations on the theory of the Brownian movement. Ann. Phys. 322:549–60
    [Google Scholar]
  26. Einstein A 1907. Theoretische Bemerkungen über die Brownsche Bewegung. Z. Elektrochem. Angew. 13:41–42
    [Google Scholar]
  27. Exner FM 1900. Notiz zu Brown's Molecularbewegung. Ann. Phys. 307:843–47
    [Google Scholar]
  28. Falasco G, Gnann MV, Rings D, Kroy K 2014. Effective temperatures of hot Brownian motion. Phys. Rev. E 90:032131
    [Google Scholar]
  29. Felderhof BU 2005.a Backtracking of a sphere slowing down in a viscous compressible fluid. J. Chem. Phys. 123:044902
    [Google Scholar]
  30. Felderhof BU 2005.b Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion. J. Phys. Chem. B 109:21406–12
    [Google Scholar]
  31. Franosch T, Grimm M, Belushkin M, Mor FM, Foffi G et al. 2011. Resonances arising from hydrodynamic memory in Brownian motion. Nature 478:85–88
    [Google Scholar]
  32. Franosch T, Jeney S 2009. Persistent correlation of constrained colloidal motion. Phys. Rev. E 79:031402
    [Google Scholar]
  33. Gittes F, Schmidt CF 1998. Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett. 23:7–9
    [Google Scholar]
  34. Gotoh T, Kaneda Y 1981. Effect of an infinite plane wall on the motion of a spherical. J. Chem. Phys. 76:3193–97
    [Google Scholar]
  35. Gould RJ 1971. Deviation from a Maxwellian velocity distribution in low-density plasmas. Phys. Fluids 14:1701–6
    [Google Scholar]
  36. Gould RJ, Levy M 1976. Deviation from a Maxwellian velocity distribution in regions of interstellar molecular hydrogen. Astrophys. J. 206:435–39
    [Google Scholar]
  37. Grimm M, Jeney S, Franosch T 2011. Brownian motion in a Maxwell fluid. Soft Matter 7:2076–84
    [Google Scholar]
  38. Hajizadeh F, Reihani SNS 2010. Optimized optical trapping of gold nanoparticles. Opt. Express 18:551–59
    [Google Scholar]
  39. Hammond AP, Corwin EI 2017. Direct measurement of the ballistic motion of a freely floating colloid in Newtonian and viscoelastic fluids. Phys. Rev. E 96:042606
    [Google Scholar]
  40. Han Y, Alsayed AM, Nobili M, Zhang J, Lubensky TC, Yodh AG 2006. Brownian motion of an ellipsoid. Science 314:626–30
    [Google Scholar]
  41. Happel J, Brenner H 1983. Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media The Hague, Neth.: Martinus Nijhoff
  42. Harada Y, Asakura T 1996. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun. 124:529–41
    [Google Scholar]
  43. Hegg DA, Baker MB 2009. Nucleation in the atmosphere. Rep. Progress Phys. 72:056801
    [Google Scholar]
  44. Hinch EJ 1975. Application of the Langevin equation to fluid suspensions. J. Fluid Mech. 72:499–511
    [Google Scholar]
  45. Huang DM, Sendner C, Horinek D, Netz RR, Bocquet L 2008. Water slippage versus contact angle: a quasiuniversal relationship. Phys. Rev. Lett. 101:226101
    [Google Scholar]
  46. Huang K 1987. Statistical Mechanics Hoboken, NJ: Wiley. 2nd ed.
  47. Huang K, Szlufarska I 2015. Effect of interfaces on the nearby Brownian motion. Nat. Commun. 6:8558
    [Google Scholar]
  48. Imparato A, Peliti L, Pesce G, Rusciano G, Sasso A 2007. Work and heat probability distribution of an optically driven Brownian particle: theory and experiments. Phys. Rev. E 76:050101
    [Google Scholar]
  49. Jannasch A, Mahamdeh M, Schäffer E 2011. Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise. Phys. Rev. Lett. 107:228301
    [Google Scholar]
  50. Jeney S, Lukić B, Kraus JA, Franosch T, Forró L 2008. Anisotropic memory effects in confined colloidal diffusion. Phys. Rev. Lett. 100:240604
    [Google Scholar]
  51. Joly L, Merabia S, Barrat JL 2011. Effective temperatures of a heated Brownian particle. Europhys. Lett. 94:50007
    [Google Scholar]
  52. Joseph P, Cottin-Bizonne C, Benoît JM, Ybert C, Journet C et al. 2006. Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys. Rev. Lett. 97:156104
    [Google Scholar]
  53. Kalmykov YP, Coffey WT 2017. The Langevin Equation: With Applications in Physics, Chemistry and Electrical Engineering Singapore: World Sci. 4th ed.
  54. Katayama Y, Terauti R 1999. Brownian motion of a single particle under shear flow. Eur. J. Phys. 17:136–40
    [Google Scholar]
  55. Keen S, Leach J, Gibson G, Padgett MJ 2007. Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers. J. Opt. A 9:S264–66
    [Google Scholar]
  56. Kelvin L 1892. On a decisive test-case disproving the Maxwell-Boltzmann doctrine regarding distribution of kinetic energy. Proc. R. Soc. Lond. 51:397–99
    [Google Scholar]
  57. Kerker M 1974. Brownian movement and molecular reality prior to 1900. J. Chem. Educ. 51:764–68
    [Google Scholar]
  58. Kheifets S, Simha A, Melin K, Li T, Raizen MG 2014. Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss. Science 343:1493–96
    [Google Scholar]
  59. Klafter J, Shlesinger MF, Zumofen G 1996. Beyond Brownian motion. Phys. Today 49:33–39
    [Google Scholar]
  60. Kubo R 1966. Fluctuation-dissipation theorem. Rep. Prog. Phys. 29:255–84
    [Google Scholar]
  61. Kubo R 1986. Brownian motion and nonequilibrium statistical mechanics. Science 233:330–34
    [Google Scholar]
  62. Langevin P 1908. Sur la théorie cinétique du mouvement Brownien. C.R. Acad. Sci. 146:530–33
    [Google Scholar]
  63. Lemons DS, Gythiel A 1997. Paul Langevin's 1908 paper “On the theory of Brownian motion.”. Am. J. Phys. 65:1079–81
    [Google Scholar]
  64. Li T 2011. Fundamental tests of physics with optically trapped microspheres PhD Thesis, Univ. Texas at Austin
  65. Li T, Kheifets S, Medellin D, Raizen MG 2010. Measurement of the instantaneous velocity of a Brownian particle. Science 328:1673–75
    [Google Scholar]
  66. Liang Z, Keblinski P 2015. Slip length crossover on a graphene surface. J. Chem. Phys. 142:134701
    [Google Scholar]
  67. Lindballe TB, Kristensen MVG, Berg-Sørensen K, Keiding SR, Stapelfeldt H 2013. Pulsed laser manipulation of an optically trapped bead: averaging thermal noise and measuring the pulsed force amplitude. Opt. Express 21:1986–96
    [Google Scholar]
  68. Liu L, Woolf A, Rodriguez AW, Capasso F 2014. Absolute position total internal reflection microscopy with an optical tweezer. PNAS 111:E5609–15
    [Google Scholar]
  69. Lorentz H 1907. Abhandlungen über theoretische Physik Leipzig, Ger.: Teubner Verlag
  70. Lukic B, Jeney S, Tischer C, Kulik AJ, Forro L et al. 2005. Direct observation of nondiffusive motion of a Brownian particle. Phys. Rev. Lett. 95:160601
    [Google Scholar]
  71. Mo J 2015. Short timescale Brownian motion and applications PhD Thesis, Univ. Texas at Austin
  72. Mo J, Simha A, Kheifets S, Raizen MG 2015.a Testing the Maxwell-Boltzmann distribution using Brownian particles. Opt. Express 23:1888–93
    [Google Scholar]
  73. Mo J, Simha A, Raizen MG 2015.b Broadband boundary effects on Brownian motion. Phys. Rev. E 92:062106
    [Google Scholar]
  74. Mo J, Simha A, Raizen MG 2017. Brownian motion as a new probe of wettability. J. Chem. Phys. 146:134707
    [Google Scholar]
  75. Nieminen TA, Loke VLY, Stilgoe AB, Knöner G, Brańczyk AM et al. 2007. Optical tweezers computational toolbox. J. Opt. A 9:S196–203
    [Google Scholar]
  76. Orihara H, Takikawa Y 2011. Brownian motion in shear flow: direct observation of anomalous diffusion. Phys. Rev. E 84:061120
    [Google Scholar]
  77. Parthasarathy R 2012. Rapid, accurate particle tracking by calculation of radial symmetry centers. Nat. Methods 9:724–26
    [Google Scholar]
  78. Perrin J 1909. Brownian movement and molecular reality. Ann. Chim. Phys. 18:1–116
    [Google Scholar]
  79. Pomeau Y, Piasecki J 2017. L'équation de Langevin. C.R. Acad. Sci. 146:530–33
    [Google Scholar]
  80. Pralle A, Prummer M, Florin EL, Stelzer EH, Hörber JK 1999. Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc. Res. Tech. 44:378–86
    [Google Scholar]
  81. Rahman A 1964. Correlations in the motion of atoms in liquid argon. Phys. Rev. 136:405–11
    [Google Scholar]
  82. Rahman A 1966. Liquid structure and self-diffusion. J. Chem. Phys. 45:2585–92
    [Google Scholar]
  83. Rings D, Schachoff R, Selmke M, Cichos F, Kroy K 2010. Hot Brownian motion. Phys. Rev. Lett. 105:090604
    [Google Scholar]
  84. Simha A, Mo J, Morrison PJ 2018. On the point-particle approximation for the unsteady Stokes equations. J. Fluid Mech. In press
  85. Sosso GC, Chen J, Cox SJ, Fitzner M, Pedevilla P et al. 2016. Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations. Chem. Rev. 116:7078–116
    [Google Scholar]
  86. Speck T, Blickle V, Bechinger C, Seifert U 2007. Distribution of entropy production for a colloidal particle in a nonequilibrium steady state. Europhys. Lett. 79:30002
    [Google Scholar]
  87. Stokes GG 1850. On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambr. Philos. Soc. 9:8–106
    [Google Scholar]
  88. Tatsumi R, Yamamoto R 2013. Propagation of hydrodynamic interactions between particles in a compressible fluid. Phys. Fluids 25:046101
    [Google Scholar]
  89. Tolic-Norrelykke SF, Schaffer E, Howard J, Pavone FS, Julicher F, Flyvbjerg H 2006. Calibration of optical tweezers with positional detection in the back focal plane. Rev. Sci. Instrum. 77:103101
    [Google Scholar]
  90. Uhlenbeck GE, Ornstein LS 1930. On the theory of the Brownian motion. Phys. Rev. 36:823–41
    [Google Scholar]
  91. Vicsek T 1992. Fractal Growth Phenomena Singapore: World Sci.
  92. von Smoluchowski M 1906. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann. Phys. 326:756–80
    [Google Scholar]
  93. Wakiya S 1964. Effect of a plane wall on the impulse motion of a sphere in a viscous fluid. J. Phys. Soc. Jpn. 19:1401–8
    [Google Scholar]
  94. Waleed M, Madsen L, Casacio CA, Taylor MA, Mauranyapin NP, Bowen WP 2017. High bandwidth optical tracking of micro/nanoparticles Paper presented at Optical Trappings and Optical Micromanipulation XIV, San Diego, CA, 9 Aug.
  95. Wang GM, Prabhakar R, Sevick EM 2009. Hydrodynamic mobility of an optically trapped colloidal particle near fluid-fluid interfaces. Phys. Rev. Lett. 103:248303
    [Google Scholar]
  96. Wang GM, Sevick EM, Mittag E, Searles DJ, Evans DJ 2002. Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 89:50601
    [Google Scholar]
  97. Widom A 1971. Velocity fluctuations of a hard-core Brownian particle. Phys. Rev. A 3:1394–96
    [Google Scholar]
  98. Yang FL 2010. A formula for the wall-amplified added mass coefficient for a solid sphere in normal approach to a wall and its application for such motion at low Reynolds number. Phys. Fluids 22:123303
    [Google Scholar]
  99. Yu HY, Eckmann DM, Ayyaswamy PS, Radhakrishnan R 2015. Composite generalized Langevin equation for Brownian motion in different hydrodynamic and adhesion regimes. Phys. Rev. E 91:052303
    [Google Scholar]
  100. Zhu Y, Granick S 2001. Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys. Rev. Lett. 87:096105
    [Google Scholar]
  101. Zwanzig R, Bixon M 1970. Hydrodynamic theory of the velocity correlation function. Phys. Rev. A 2:2005–12
    [Google Scholar]
  102. Zwanzig R, Bixon M 1975. Compressibility effects in the hydrodynamic theory of Brownian motion. J. Fluid Mech. 69:21–25
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010518-040527
Loading
/content/journals/10.1146/annurev-fluid-010518-040527
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error