1932

Abstract

A viscous solvent laminar flow may be strongly modified by the addition of a tiny amount of long polymer molecules, resulting in a chaotic flow called elastic turbulence (ET). ET is attributed to polymer stretching, which generates elastic stress and its back reaction on the flow. Its properties are analogous to those observed in hydrodynamic turbulence, although the formal similarity does not imply a similarity in physical mechanisms underlining these two types of random motion. Here we review the statistical and spectral properties and the spatial structure of the velocity field, the statistical and spectral properties of pressure fluctuations, and scaling of the friction factor of ET in wall-bounded and unbounded flow geometries, as observed in experiments and numerical simulations and described by theory for a wide range of control parameters and polymer concentrations.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Elastic Turbulence: An Experimental View on Inertialess Random Flow
Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010719-060129
2021-01-05
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/fluid/53/1/annurev-fluid-010719-060129.html?itemId=/content/journals/10.1146/annurev-fluid-010719-060129&mimeType=html&fmt=ahah

Literature Cited

  1. Abed WM, Whalley RD, Dennis DJC, Poole RJ 2016. Experimental investigation of the impact of elastic turbulence on heat transfer in a serpentine channel. J. Non-Newton. Fluid Mech. 231:68–78
    [Google Scholar]
  2. Afik E, Steinberg V 2017. On the role of initial velocities in pair dispersion in a microfluidic chaotic flow. Nat. Commun. 8:468
    [Google Scholar]
  3. Afonso MM, Vincenzi D 2005. Nonlinear elastic polymers in random flow. J. Fluid Mech. 540:99–109
    [Google Scholar]
  4. Al-Mubaiyedh UA, Sureshkumar R, Khomami B 1999. Influence of energetics on the stability of viscoelastic Taylor–Couette flow. Phys. Fluids 11:3217–26
    [Google Scholar]
  5. Al-Mubaiyedh UA, Sureshkumar R, Khomami B 2000. Linear stability of viscoelastic Taylor–Couette flow: influence of fluid rheology and energetics. J. Rheol. 44:1121–38
    [Google Scholar]
  6. Al-Mubaiyedh UA, Sureshkumar R, Khomami B 2002. Nonlinear stability of viscoelastic Taylor–Couette flow in the presence of viscous heating. Phys. Fluids 14:1056–64
    [Google Scholar]
  7. Arratia PE, Thomas CC, Diorio J, Gollub JP 2006. Elastic instabilities of polymer solutions in cross-channel flow. Phys. Rev. Lett. 96:144502
    [Google Scholar]
  8. Avgousti M, Beris AN 1993. Viscoelastic Taylor–Couette flow: bifurcation analysis in the presence of symmetries. Proc. R. Soc. Lond. A 443:17–37
    [Google Scholar]
  9. Bagheri F, Mitra D, Perlekar P, Brandt L 2012. Statistics of polymer extension in turbulent channel flow. Phys. Rev. E 86:056314
    [Google Scholar]
  10. Balkovsky E, Fouxon A, Lebedev V 2000. Turbulent dynamics of polymer solutions. Phys. Rev. Lett. 84:4765–68
    [Google Scholar]
  11. Balkovsky E, Fouxon A, Lebedev V 2001. Turbulence of polymer solutions. Phys. Rev. E 64:056301
    [Google Scholar]
  12. Batchelor GK 1959. Small-scale variation of convected quantities like temperature in turbulent flow. J. Fluid Mech. 5:113–33
    [Google Scholar]
  13. Baumert BM, Muller SJ 1995. Flow visualization of the elastic Taylor–Couette instability in Boger fluids. Rheol. Acta 34:147–59
    [Google Scholar]
  14. Baumert BM, Muller SJ 1997. Flow regimes in model viscoelastic fluids in a circular Couette system with independently rotating cylinders. Phys. Fluids 9:566–86
    [Google Scholar]
  15. Baumert BM, Muller SJ 1999. Axisymmetric and non-axisymmetric elastic and inertio-elastic instabilities in Taylor–Couette flow. J. Non-Newton. Fluid Mech. 83:33–69
    [Google Scholar]
  16. Belan S, Chernykh A, Lebedev V 2018. Boundary layer of elastic turbulence. J. Fluid Mech. 855:910–21
    [Google Scholar]
  17. Berti S, Bistagnino A, Boffetta G, Celani A, Musacchio S 2008. Two-dimensional elastic turbulence. Phys. Rev. E 77:055306(R)
    [Google Scholar]
  18. Berti S, Boffetta G 2010. Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow. Phys. Rev. E 82:036314
    [Google Scholar]
  19. Bird RB, Curtiss CF, Armstrong RC, Hassager O 1987. Dynamics of Polymeric Liquids New York: Wiley
    [Google Scholar]
  20. Boffetta G, Celani A, Musacchio S 2003. Two-dimensional turbulence of dilute polymer solutions. Phys. Rev. Lett. 91:034501
    [Google Scholar]
  21. Brand H, Hohenberg PC, Steinberg V 1984. Codimension-2 bifurcations for convection in binary fluid mixtures. Phys. Rev. A 30:2548–61
    [Google Scholar]
  22. Burghelea T, Segre E, Bar-Joseph I, Groisman A, Steinberg V 2004a. Chaotic flow and efficient mixing in a microchannel with a polymer solution. Phys. Rev. E 69:066305
    [Google Scholar]
  23. Burghelea T, Segre E, Steinberg V 2004b. Mixing by polymers: experimental test of decay regime of mixing. Phys. Rev. Lett. 92:164501
    [Google Scholar]
  24. Burghelea T, Segre E, Steinberg V 2005. Validity of the Taylor hypothesis in a random spatially smooth flow. Phys. Fluids 17:103101
    [Google Scholar]
  25. Burghelea T, Segre E, Steinberg V 2006. Role of elastic stress in statistical and scaling properties of elastic turbulence. Phys. Rev. Lett. 96:214502
    [Google Scholar]
  26. Burghelea T, Segre E, Steinberg V 2007. Elastic turbulence in von Karman swirling flow between two disks. Phys. Fluids 19:053104
    [Google Scholar]
  27. Byars JA, Oeztekin A, Brown RA, McKinley GH 1994. Spiral instabilities in the flow of highly elastic fluids between rotating parallel disks. J. Fluid. Mech. 271:173–218
    [Google Scholar]
  28. Cadot O, Lebey M 1999. Shear instability inhibition in a cylinder wake by local injection of a viscoelastic fluid. Phys. Fluids 11:494–96
    [Google Scholar]
  29. Celani A, Musacchio S, Vincenzi D 2005. Polymer transport in random flow. J. Statist. Phys. 118:531–54
    [Google Scholar]
  30. Chernykh A, Lebedev V 2008. Passive scalar structures in peripheral regions of random flows. JETP Lett. 87:682–86
    [Google Scholar]
  31. Chertkov M 2000. Polymer stretching by turbulence. Phys. Rev. Lett. 84:4761–64
    [Google Scholar]
  32. Chertkov M, Kolokolov I, Lebedev V, Turitsyn K 2005. Polymer statistics in a random flow with mean shear. J. Fluid Mech. 531:251–60
    [Google Scholar]
  33. Chertkov M, Lebedev V 2003. Decay of scalar turbulence revisited. Phys. Rev. Lett. 90:034501
    [Google Scholar]
  34. Clarke A, Howe AM, Mitchell J, Staniland J, Hawkes L, Leepera K 2015. Mechanism of anomalously increased oil displacement with aqueous viscoelastic polymer solutions. Soft Matter 11:3536–41
    [Google Scholar]
  35. Cressman JR, Baley Q, Goldburg WI 2001. Modification of a vortex street by a polymer additive. Phys. Fluids 13:867
    [Google Scholar]
  36. Cross MC, Hohenberg PC 1993. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65:851–1112
    [Google Scholar]
  37. Crumeyrolle O, Mutabazi I, Grisel M 2002. Experimental study of inertioelastic Couette–Taylor instability modes in dilute and semidilute solutions. Phys. Fluids 14:1681–88
    [Google Scholar]
  38. Davoudi J, Schumacher J 2006. Stretching of polymers around the Kolmogorov scale in a turbulent shear flow. Phys. Fluids 18:025103
    [Google Scholar]
  39. De Angelis E, Casciola CM, Piva R 2012. Energy spectra in viscoelastic turbulence. Physica D 241:297–303
    [Google Scholar]
  40. de Gennes PG 1986. Towards a scaling theory of drag reduction. Physica A 140:9–25
    [Google Scholar]
  41. Denn MM 1990. Issues in viscoelastic fluid mechanics. Annu. Rev. Fluid Mech. 22:13–32
    [Google Scholar]
  42. Dhariwal R, Bragg AD 2018. Fluid particles only separate exponentially in the dissipation range of turbulence after extremely long times. Phys. Rev. Fluids 3:034604 [ Erratum]
    [Google Scholar]
  43. Drazin PG, Reid WH 1982. Hydrodynamic Stability Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  44. Dubief Y, Terrapon VE, Soria J 2013. On the mechanism of elasto-inertial turbulence. Phys. Fluids 25:110817
    [Google Scholar]
  45. Eckhardt B, Kronjäger J, Schumacher J 2002. Stretching of polymers in a turbulent environment. Comput. Phys. Commun. 147:538–43
    [Google Scholar]
  46. Fouxon A, Lebedev V 2003. Spectra of turbulence in dilute polymer solutions. Phys. Fluids 15:2060–72
    [Google Scholar]
  47. Gan HY, Lam YC, Nguyen N-T 2006. Polymer-based device for efficient mixing of viscoelastic fluids. Appl. Phys. Lett. 88:224103
    [Google Scholar]
  48. Gerashchenko S, Chevallard C, Steinberg V 2005. Single polymer dynamics: coil-stretch transition in a random flow. Europhys. Lett. 71:221–27
    [Google Scholar]
  49. Giesekus H 1968. Nicht-lineare Effekte beim Strömen viskoelastischer Flussigkeiten durch Schlitz- und Lochdüsen. Rheol. Acta 7:127–38
    [Google Scholar]
  50. Giesekus H 1972. On instabilities in Poiseuille and Couette flows of viscoelastic fluids. Prog. Heat Mass Transf. 5:187–93
    [Google Scholar]
  51. Grilli M, Vázquez-Quesada A, Ellero M 2013. Transition to turbulence and mixing in a viscoelastic fluid flowing inside a channel with a periodic array of cylindrical obstacles. Phys. Rev. Lett. 110:174501
    [Google Scholar]
  52. Groisman A 1993. Experiments on the Couette–Taylor flow with dilute polymer solutions M.Sc. Thesis, Weizmann Inst. Sci., Rehovot, Israel
    [Google Scholar]
  53. Groisman A, Steinberg V 1996. Couette–Taylor flow in dilute polymer solutions. Phys. Rev. Lett. 77:1480–83
    [Google Scholar]
  54. Groisman A, Steinberg V 1997. Solitary vortex pairs in viscoelastic Couette flow. Phys. Rev. Lett. 78:1460–63
    [Google Scholar]
  55. Groisman A, Steinberg V 1998a. Elastic versus inertial instability in a polymer solution flow. Europhys. Lett. 43:165–70
    [Google Scholar]
  56. Groisman A, Steinberg V 1998b. Mechanism of elastic instability in Couette flow of polymer solutions: experiment. Phys. Fluids 10:2451–63
    [Google Scholar]
  57. Groisman A, Steinberg V 2000. Elastic turbulence in a polymer solution flow. Nature 405:53–55
    [Google Scholar]
  58. Groisman A, Steinberg V 2001a. Efficient mixing at low Reynolds numbers using polymer additives. Nature 410:905–8
    [Google Scholar]
  59. Groisman A, Steinberg V 2001b. Stretching of polymers in a random three-dimensional flow. Phys. Rev. Lett. 86:934–37
    [Google Scholar]
  60. Groisman A, Steinberg V 2004. Elastic turbulence in curvilinear flows of polymer solutions. New J. Phys. 6:29–48
    [Google Scholar]
  61. Gupta A, Pandit R 2017. Melting of a nonequilibrium vortex crystal in a fluid film with polymers: elastic versus fluid turbulence. Phys. Rev. E 95:033119
    [Google Scholar]
  62. Haward SJ, McKinley GH 2013. Instabilities in stagnation point flows of polymer solutions. Phys. Fluids 25:083104
    [Google Scholar]
  63. Hinch EJ 1977. Mechanical models of dilute polymer solutions in strong flows. Phys. Fluids 20:S22–30
    [Google Scholar]
  64. Howe AM, Clarke A, Giernalczyk D 2015. Flow of concentrated viscoelastic polymer solutions in porous media: effect of M(W) and concentration on elastic turbulence onset in various geometries. Soft Matter 11:6419–31
    [Google Scholar]
  65. Joo YL, Shaqfeh ESG 1992. A purely elastic instability in Dean and Taylor–Dean flow. Phys. Fluids A 4:524–42
    [Google Scholar]
  66. Joo YL, Shaqfeh ESG 1994. Observations of purely elastic instabilities in the Taylor–Dean flow of a Boger fluid. J. Fluid Mech. 262:27–73
    [Google Scholar]
  67. Joseph DD 1990. Fluid Dynamics of Viscoelastic Liquids New York: Springer-Verlag
    [Google Scholar]
  68. Joseph DD, Narain A, Riccius O 1986a. Shear-wave speeds and elastic moduli for different liquids. Part 1. Theory. J. Fluid Mech. 171:309–38
    [Google Scholar]
  69. Joseph DD, Riccius O, Arney M 1986b. Shear-wave speeds and elastic moduli for different liquids. Part 2. Experiments. J. Fluid Mech. 171:289–308
    [Google Scholar]
  70. Jun Y, Steinberg V 2009. Power and pressure fluctuations in elastic turbulence over a wide range of polymer concentrations. Phys. Rev. Lett. 102:124503
    [Google Scholar]
  71. Jun Y, Steinberg V 2010. Mixing of passive tracers in the decay Batchelor regime of a channel flow. Phys. Fluids 22:123101
    [Google Scholar]
  72. Jun Y, Steinberg V 2011. Elastic turbulence in a curvilinear channel flow. Phys. Rev. E 84:056325
    [Google Scholar]
  73. Jun Y, Steinberg V 2017. Polymer concentration and properties of elastic turbulence in a von Karman swirling flow. Phys. Rev. Fluids 2:103301
    [Google Scholar]
  74. Kenney S, Poper K, Chapagain G, Christopher GF 2013. Large Deborah number flows around confined microfluidic cylinders. Rheol. Acta 52:485–97
    [Google Scholar]
  75. Khomami B, Moren LD 1997. Stability of viscoelastic flow around periodic array of cylinders. Rheol. Acta 36:367–83
    [Google Scholar]
  76. Kumar KA, Graham MD 2000. Solitary coherent structures in viscoelastic shear flow: computation and mechanism. Phys. Rev. Lett. 85:4056–59
    [Google Scholar]
  77. Landau LD, Lifschitz EM 1987. Fluid Mechanics Oxford, UK: Pergamon
    [Google Scholar]
  78. Landau LD, Lifschitz EM 1989. Electrodynamics of Continuous Media Oxford, UK: Pergamon
    [Google Scholar]
  79. Larson RG 1992. Instabilities in viscoelastic flows. Rheol. Acta 31:213–63
    [Google Scholar]
  80. Larson RG, Muller SJ, Shaqfeh ESG 1994. The effect of fluid rheology on the elastic Taylor–Couette instability. J. Non-Newton. Fluid Mech. 51:195–225
    [Google Scholar]
  81. Larson RG, Shaqfeh ESG, Muller SJ 1990. A purely elastic instability in Taylor–Couette flow. J. Fluid Mech. 218:573–600
    [Google Scholar]
  82. Latrache N, Abcha N, Crumeyrolle O, Mutabazi I 2016. Defect-mediated turbulence in ribbons of viscoelastic Taylor–Couette flow. Phys. Rev. E 93:043126
    [Google Scholar]
  83. Li D-Y, Li X-B, Zhang H-N, Li F-C, Qian S, Joo SW 2017. Efficient heat transfer enhancement by elastic turbulence with polymer solution in a curved microchannel. Microfluid. Nanofluid. 21:10
    [Google Scholar]
  84. Liu N, Khomami B 2013. Elastically induced turbulence in Taylor–Couette flow: direct numerical simulation and mechanistic insight. J. Fluid Mech. 737:R4
    [Google Scholar]
  85. Liu Y, Steinberg V 2010a. Molecular sensor of elastic stress in a random flow. EPL 90:44002
    [Google Scholar]
  86. Liu Y, Steinberg V 2010b. Stretching of polymer in a random flow: effect of a shear rate. EPL 90:44005
    [Google Scholar]
  87. Liu Y, Steinberg V 2014. Single polymer dynamics in a random flow. Macromol. Symp. 337:34–43
    [Google Scholar]
  88. Lumley J 1972. On the solution of equations describing small scale deformations. Symp. Math. 9:315–34
    [Google Scholar]
  89. McKinley GH, Armstrong RC, Brown RA 1993. The wake instability in viscoelastic flow past confined circular cylinders. Philos. Trans. R. Soc. A 344:265–304
    [Google Scholar]
  90. McKinley GH, Byars JA, Brown RA, Armstrong RC 1991. Observations on the elastic instability in cone-and-plate and parallel-plate flows of a polyisobutylene Boger fluid. J. Non-Newton. Fluid Mech. 40:201–29
    [Google Scholar]
  91. Mitchell J, Lyons K, Howe AM, Clarke A 2016. Viscoelastic polymer flows and elastic turbulence in three-dimensional porous structures. Soft Matter 12:460–68
    [Google Scholar]
  92. Morozov AN, van Saarloos W 2007. An introductory essay on subcritical instabilities and the transition to turbulence in visco-elastic parallel shear flows. Phys. Rep. 447:112–43
    [Google Scholar]
  93. Muller SJ, Shaqfeh ESG, Larson RG 1989. A purely elastic transition in Taylor–Couette flow. Rheol. Acta 28:499–503
    [Google Scholar]
  94. Muller SJ, Shaqfeh ESG, Larson RG 1993. Experimental studies of the onset of oscillatory instability in viscoelastic Taylor-Couette flow. J. Non-Newton. Fluid Mech. 46:315–30
    [Google Scholar]
  95. Musacchio S, Vincenzi D 2011. Deformation of a flexible polymer in a random flow with long correlation time. J. Fluid Mech. 670:326–36
    [Google Scholar]
  96. Nguyen MQ, Delache A, Simoens S, Bos WJT, El Hajem M 2016. Small scale dynamics of isotropic viscoelastic turbulence. Phys. Rev. Fluids 1:083301
    [Google Scholar]
  97. Oeztekin A, Brown RA 1993. Instability of a viscoelastic fluid between rotating parallel disks: analysis for the Oldroyd-B fluid. J. Fluid Mech. 255:473–502
    [Google Scholar]
  98. Oeztekin A, Brown RA, McKinley GH 1994. Quantitative prediction of the viscoelastic instability in cone-and plate flow of a Boger fluid using a multi-mode Giesekus model. J. Non-Newton. Fluid Mech. 54:351–77
    [Google Scholar]
  99. Pan L, Morozov A, Wagner C, Arratia PE 2013. Nonlinear elastic instability in channel flows at low Reynolds numbers. Phys. Rev. Lett. 110:174502
    [Google Scholar]
  100. Perlekar P, Mitra D, Pandit R 2010. Direct numerical simulations of statistically steady, homogeneous, isotropic fluid turbulence with polymer additives. Phys. Rev. E 82:066313
    [Google Scholar]
  101. Poole RJ, Alves MA, Oliveira PJ 2007. Purely elastic flow asymmetries. Phys. Rev. Lett. 99:164503
    [Google Scholar]
  102. Poole RJ, Budhiraja B, Cain AR, Scott PA 2012. Emulsification using elastic turbulence. J. Non-Newton. Fluid Mech. 177–78:15–18
    [Google Scholar]
  103. Ray SS, Vincenzi D 2016. Elastic turbulence in a shell model of polymer solution. EPL 114:44001
    [Google Scholar]
  104. Samanta D, Dubief Y, Holzner M, Schaefer CH, Morozov A et al. 2013. Elasto-inertial turbulence. PNAS 110:10557–62
    [Google Scholar]
  105. Scholz CH, Wirner F, Gomez-Solano JR, Bechinger C 2014. Enhanced dispersion by elastic turbulence in porous media. EPL 107:54003
    [Google Scholar]
  106. Shaqfeh ESG 1996. Purely elastic instabilities in viscometric flows. Annu. Rev. Fluid Mech. 28:129–85
    [Google Scholar]
  107. Slutsky M, Steinberg V 2005. Effective mixing and emulsification of very viscous substances by elastic turbulence. Report on the Horowitz Foundation Grant 3355 Rehovot, Israel: Weizmann Inst. Sci.
    [Google Scholar]
  108. Soulies A, Aubril J, Castelain C, Burghelea T 2017. Characterization of elastic turbulence in a serpentine micro-channel. Phys. Fluids 29:083102
    [Google Scholar]
  109. Steinberg V 2019. Scaling relations in elastic turbulence. Phys. Rev. Lett 123:234501
    [Google Scholar]
  110. Steinberg V, Groisman A 1998. Elastic versus inertial instability in Couette–Taylor flow of a polymer solution: review. Philos. Mag. B 78:253–63
    [Google Scholar]
  111. Sureshkumar R, Beris AN, Avgousti M 1994. Non-axisymmetric subcritical bifurcations in viscoelastic Taylor–Couette flow. Proc. R. Soc. Lond. A 447:135–53
    [Google Scholar]
  112. Thiffeault J-L 2003. Finite extension of polymers in turbulent flow. Phys. Lett. A 308:445–50
    [Google Scholar]
  113. Thomas DG, Sureshkumar R, Khomami B 2006. Pattern formation in Taylor–Couette flow of dilute polymer solutions: dynamical simulations and mechanism. Phys. Rev. Lett. 97:054501
    [Google Scholar]
  114. Thomas DG, Sureshkumar R, Khomami B 2009. Nonlinear dynamics of viscoelastic Taylor–Couette flow: effect of elasticity on pattern selection, molecular conformation and drag. J. Fluid Mech. 620:353–82
    [Google Scholar]
  115. Toms BA 1949. Some observation on the flow of linear polymer solutions through straight tubes at large Reynolds number. Proceedings of the 1st International Congress on Rheology 2135–41 Amsterdam: North Holland
    [Google Scholar]
  116. Traore B, Castelain C, Burghelea T 2015. Efficient heat transfer in a regime of elastic turbulence. J. Non-Newton. Fluid Mech. 223:62–76
    [Google Scholar]
  117. Tritton DJ 1988. Physical Fluid Dynamics Oxford, UK: Clarendon
    [Google Scholar]
  118. Turitsyn K 2007. Polymer dynamics in chaotic flows with strong shear component. J. Exp. Theor. Phys. 105:655–64
    [Google Scholar]
  119. van Buel R, Schaaf C, Stark H 2018. Elastic turbulence in two-dimensional Taylor–Couette flows. EPL 124:14001
    [Google Scholar]
  120. Varshney A, Afik E, Kaplan Y, Steinberg V 2016. Oscillatory elastic instabilities in an extensional viscoelastic flow. Soft Matter 12:2186–91
    [Google Scholar]
  121. Varshney A, Steinberg V 2017. Elastic wake instabilities in a creeping flow between two obstacles. Phys. Rev. Fluids 2:051301(R)
    [Google Scholar]
  122. Varshney A, Steinberg V 2018a. Drag enhancement and drag reduction in viscoelastic flow. Phys. Rev. Fluids 3:103302
    [Google Scholar]
  123. Varshney A, Steinberg V 2018b. Mixing layer instability and vorticity amplification in a creeping viscoelastic flow. Phys. Rev. Fluids 3:103303
    [Google Scholar]
  124. Varshney A, Steinberg V 2019. Elastic Alfven waves in elastic turbulence. Nat. Commun. 10:652
    [Google Scholar]
  125. Vázquez-Quesada A, Ellero M 2012. SPH simulations of a viscoelastic flow around a periodic array of cylinders confined in a channel. J. Non-Newton. Fluid Mech. 167–68:1–8
    [Google Scholar]
  126. Vinogradov GV, Ivanova LI 1967. Viscous properties of polymer melts and elastomers exemplified by ethylene-propylene copolymer. Rheol. Acta 6:209–22
    [Google Scholar]
  127. Watanabe T, Gotoh T 2010. Coil–stretch transition in an ensemble of polymers in isotropic turbulence. Phys. Rev. E 81:066301
    [Google Scholar]
  128. Watanabe T, Gotoh T 2013. Hybrid Eulerian–Lagrangian simulations for polymer–turbulence interactions. J. Fluid Mech. 717:535–71
    [Google Scholar]
  129. Watanabe T, Gotoh T 2014. Power-law spectra formed by stretching polymers in decaying isotropic turbulence. Phys. Fluids 26:035110
    [Google Scholar]
  130. Whalley R, Abed WM, Dennis DJC, Poole RJ 2015. Enhancing heat transfer at the micro-scale using elastic turbulence. Theor. Appl. Mech. Lett. 5:103–6
    [Google Scholar]
  131. White JM, Muller SJ 2000. Viscous heating and the stability of Newtonian and viscoelastic Taylor–Couette flows. Phys. Rev. Lett. 84:5130–33
    [Google Scholar]
  132. White JM, Muller SJ 2003. Experimental studies on the effect of viscous heating on the hydrodynamic stability of viscoelastic Taylor–Couette flow. J. Rheol. 47:1467–92
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010719-060129
Loading
/content/journals/10.1146/annurev-fluid-010719-060129
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error