1932

Abstract

The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from experiments, field measurements, and large-scale simulations at multiple spatiotemporal scales. Machine learning (ML) offers a wealth of techniques to extract information from data that can be translated into knowledge about the underlying fluid mechanics. Moreover, ML algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of ML for fluid mechanics. We outline fundamental ML methodologies and discuss their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experiments, and simulations. ML provides a powerful information-processing framework that can augment, and possibly even transform, current lines of fluid mechanics research and industrial applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010719-060214
2020-01-05
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/fluid/52/1/annurev-fluid-010719-060214.html?itemId=/content/journals/10.1146/annurev-fluid-010719-060214&mimeType=html&fmt=ahah

Literature Cited

  1. Adrian RJ 1991. Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23:261–304
    [Google Scholar]
  2. Alsalman M, Colvert B, Kanso E 2018. Training bioinspired sensors to classify flows. Bioinspiration Biomim. 14:016009
    [Google Scholar]
  3. Amsallem D, Zahr MJ, Farhat C 2012. Nonlinear model order reduction based on local reduced-order bases. Int. J. Numer. Meth. Eng. 92:891–916
    [Google Scholar]
  4. Bai Z, Wimalajeewa T, Berger Z, Wang G, Glauser M, Varshney PK 2014. Low-dimensional approach for reconstruction of airfoil data via compressive sensing. AIAA J. 53:920–33
    [Google Scholar]
  5. Baldi P, Hornik K 1989. Neural networks and principal component analysis: learning from examples without local minima. Neural Netw. 2:53–58
    [Google Scholar]
  6. Barber D 2012. Bayesian Reasoning and Machine Learning Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  7. Barber RF, Candes EJ 2015. Controlling the false discovery rate via knock-offs. Ann. Stat. 43:2055–85Reproducible science: a framework.
    [Google Scholar]
  8. Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V et al. 2018. Relational inductive biases, deep learning, and graph networks. arXiv:1806.01261 [cs.LG]
    [Google Scholar]
  9. Bellman R 1952. On the theory of dynamic programming. PNAS 38:716–19
    [Google Scholar]
  10. Benard N, Pons-Prats J, Periaux J, Bugeda G, Braud P et al. 2016. Turbulent separated shear flow control by surface plasma actuator: experimental optimization by genetic algorithm approach. Exp. Fluids 57:22
    [Google Scholar]
  11. Bewley TR, Moin P, Temam R 2001. DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447:179–225
    [Google Scholar]
  12. Bishop CM, James GD 1993. Analysis of multiphase flows using dual-energy gamma densitometry and neural networks. Nucl. Instrum. Methods Phys. Res. 327:580–93
    [Google Scholar]
  13. Bölcskei H, Grohs P, Kutyniok G, Petersen P 2019. Optimal approximation with sparsely connected deep neural networks. SIAM J. Math. Data Sci. 1:8–45Theoretical analysis of the approximation properties of deep neural networks.
    [Google Scholar]
  14. Bourguignon JL, Tropp JA, Sharma AS, McKeon BJ 2014. Compact representation of wall-bounded turbulence using compressive sampling. Phys. Fluids 26:015109
    [Google Scholar]
  15. Bousmalis K, Irpan A, Wohlhart P, Bai Y, Kelcey M et al. 2017. Using simulation and domain adaptation to improve efficiency of deep robotic grasping. arXiv:1709.07857 [cs.LG]
    [Google Scholar]
  16. Breiman L 2001. Random forests. Mach. Learn. 45:5–32
    [Google Scholar]
  17. Bright I, Lin G, Kutz JN 2013. Compressive sensing based machine learning strategies for characterizing the flow around a cylinder with limited pressure measurements. Phys. Fluids 25:127102
    [Google Scholar]
  18. Brunton SL, Kutz JN 2019. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control New York: Cambridge Univ. Press
    [Google Scholar]
  19. Brunton SL, Noack BR 2015. Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67:050801
    [Google Scholar]
  20. Brunton SL, Proctor JL, Kutz JN 2016. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. PNAS 113:3932–37
    [Google Scholar]
  21. Bueche D, Stoll P, Dornberger R, Koumoutsakos P 2002. Multi-objective evolutionary algorithm for the optimization of noisy combustion problems. IEEE Trans. Syst. Man Cybern. C 32:460–73
    [Google Scholar]
  22. Chen TQ, Rubanova Y, Bettencourt J, Duvenaud DK 2018. Neural ordinary differential equations. Advances in Neural Information Processing Systems 31 ed. S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, R Garnett 6571–83 Red Hook, NY: Curran Assoc.
    [Google Scholar]
  23. Cherkassky V, Mulier FM 2007. Learning from Data: Concepts, Theory, and Methods Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  24. Colabrese S, Gustavsson K, Celani A, Biferale L 2017. Flow navigation by smart microswimmers via reinforcement learning. Phys. Rev. Lett. 118:158004
    [Google Scholar]
  25. Colabrese S, Gustavsson K, Celani A, Biferale L 2018. Smart inertial particles. Phys. Rev. Fluids 3:084301
    [Google Scholar]
  26. Colvert B, Alsalman M, Kanso E 2018. Classifying vortex wakes using neural networks. Bioinspiration Biomim. 13:025003
    [Google Scholar]
  27. Dissanayake M, Phan-Thien N 1994. Neural-network-based approximations for solving partial differential equations. Comm. Numer. Meth. Eng. 10:195–201
    [Google Scholar]
  28. Dong C, Loy CC, He K, Tang X 2014. Learning a deep convolutional network for image super-resolution. Computer Vision—ECCV 2014 ed. D Fleet, T Pajdla, B Schiele, T Tuytelaars 184–99 Cham, Switz.: Springer
    [Google Scholar]
  29. Donoho DL 2006. Compressed sensing. IEEE Trans. Inf. Theory 52:1289–306
    [Google Scholar]
  30. Dracopoulos DC 1997. Evolutionary Learning Algorithms for Neural Adaptive Control London: Springer-Verlag
    [Google Scholar]
  31. Duraisamy K, Iaccarino G, Xiao H 2019. Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51:357–77
    [Google Scholar]
  32. Duriez T, Brunton SL, Noack BR 2016. Machine Learning Control: Taming Nonlinear Dynamics and Turbulence Cham, Switz.: Springer
    [Google Scholar]
  33. Faller WE, Schreck SJ 1996. Neural networks: applications and opportunities in aeronautics. Prog. Aerosp. Sci. 32:433–56
    [Google Scholar]
  34. Fleming PJ, Purshouse RC 2002. Evolutionary algorithms in control systems engineering: a survey. Control Eng. Pract. 10:1223–41
    [Google Scholar]
  35. Freeman WT, Jones TR, Pasztor EC 2002. Example-based super-resolution. IEEE Comput. Graph. 22:56–65
    [Google Scholar]
  36. Fukami K, Fukagata K, Taira K 2018. Super-resolution reconstruction of turbulent flows with machine learning. arXiv:1811.11328 [physics.flu-dyn]
    [Google Scholar]
  37. Gardner E 1988. The space of interactions in neural network models. J. Phys. A 21:257
    [Google Scholar]
  38. Gazzola M, Hejazialhosseini B, Koumoutsakos P 2014. Reinforcement learning and wavelet adapted vortex methods for simulations of self-propelled swimmers. SIAM J. Sci. Comput. 36:B622–39
    [Google Scholar]
  39. Gazzola M, Tchieu A, Alexeev D, De Brauer A, Koumoutsakos P 2016. Learning to school in the presence of hydrodynamic interactions. J. Fluid Mech. 789:726–49
    [Google Scholar]
  40. Gazzola M, Van Rees WM, Koumoutsakos P 2012. C-start: optimal start of larval fish. J. Fluid Mech. 698:5–18
    [Google Scholar]
  41. Germano M, Piomelli U, Moin P, Cabot WH 1991. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3:1760–65
    [Google Scholar]
  42. Giannakoglou K, Papadimitriou D, Kampolis I 2006. Aerodynamic shape design using evolutionary algorithms and new gradient-assisted metamodels. Comput. Methods Appl. Mech. Eng. 195:6312–29
    [Google Scholar]
  43. Glaz B, Liu L, Friedmann PP 2010. Reduced-order nonlinear unsteady aerodynamic modeling using a surrogate-based recurrence framework. AIAA J. 48:2418–29
    [Google Scholar]
  44. Gonzalez-Garcia R, Rico-Martinez R, Kevrekidis I 1998. Identification of distributed parameter systems: a neural net based approach. Comput. Chem. Eng. 22:S965–68
    [Google Scholar]
  45. Goodfellow I, Bengio Y, Courville A 2016. Deep Learning Cambridge, MA: MIT Press
    [Google Scholar]
  46. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D et al. 2014. Generative adversarial nets. Advances in Neural Information Processing Systems 27 ed. Z Ghahramani, M Welling, C Cortes, ND Lawrence, KQ Weinberger 2672–80 Red Hook, NY: Curran Assoc.Powerful deep learning architecture that learns through a game between a network that can generate new data and a network that is an expert classifier.
    [Google Scholar]
  47. Grant I, Pan X 1995. An investigation of the performance of multi layer, neural networks applied to the analysis of PIV images. Exp. Fluids 19:159–66
    [Google Scholar]
  48. Graves A, Fernández S, Schmidhuber J 2007. Multi-dimensional recurrent neural networks. Artificial Neural Networks—ICANN 2007 ed. JM de Sa, LA Alexandre, W Duch, D Mandic 549–58 Berlin: Springer
    [Google Scholar]
  49. Grossberg S 1976. Adaptive pattern classification and universal recoding, I: parallel development and coding of neural feature detectors.. Biol. Cybernet. 23121–34
    [Google Scholar]
  50. Grossberg S 1988. Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Netw. 117–61
    [Google Scholar]
  51. Guéniat F, Mathelin L, Hussaini MY 2016. A statistical learning strategy for closed-loop control of fluid flows. Theor. Comput. Fluid Dyn. 30:497–510
    [Google Scholar]
  52. Halko N, Martinsson PG, Tropp JA 2011. Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53:217–88
    [Google Scholar]
  53. Hamdaoui M, Chaskalovic J, Doncieux S, Sagaut P 2010. Using multiobjective evolutionary algorithms and data-mining methods to optimize ornithopters’ kinematics. J. Aircraft 47:1504–16
    [Google Scholar]
  54. Hansen N, Müller SD, Koumoutsakos P 2003. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11:1–18
    [Google Scholar]
  55. Hansen N, Niederberger AS, Guzzella L, Koumoutsakos P 2009. A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Trans. Evol. Comput. 13:180–97
    [Google Scholar]
  56. Hastie T, Tibshirani R, Friedman J, Hastie T, Friedman J, Tibshirani R 2009. The Elements of Statistical Learning 2 New York: Springer
    [Google Scholar]
  57. Hinton GE, Sejnowski TJ 1986. Learning and relearning in Boltzmann machines. Parallel Distributed Processing: Explorations in the Microstructure of Cognition 1 ed. DE Rumelhart, J McClelland 282–317 Cambridge, MA: MIT Press
    [Google Scholar]
  58. Hochreiter S, Schmidhuber J 1997. Long short-term memory. Neural Comput. 9:1735–80Regularization of recurrent neural networks and major contributor to the success of Google Translate.
    [Google Scholar]
  59. Holland JH 1975. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence Ann Arbor: Univ. Mich. Press
    [Google Scholar]
  60. Hopfield JJ 1982. Neural networks and physical systems with emergent collective computational abilities. PNAS 79:2554–58
    [Google Scholar]
  61. Hornik K, Stinchcombe M, White H 1989. Multilayer feedforward networks are universal approximators. Neural Netw. 2:359–66
    [Google Scholar]
  62. Hou W, Darakananda D, Eldredge J 2019. Machine learning based detection of flow disturbances using surface pressure measurements Paper presented at AIAA Atmospheric Flight Mechanics Conference 2019 San Diego, Calif.: AIAA Pap. 2019-1148
    [Google Scholar]
  63. Jambunathan K, Hartle S, Ashforth-Frost S, Fontama V 1996. Evaluating convective heat transfer coefficients using neural networks. Int. J. Heat Mass Transf. 39:2329–32
    [Google Scholar]
  64. Kaiser E, Noack BR, Cordier L, Spohn A, Segond M et al. 2014. Cluster-based reduced-order modelling of a mixing layer. J. Fluid Mech. 754:365–414
    [Google Scholar]
  65. Kern S, Müller SD, Hansen N, Büche D, Ocenasek J, Koumoutsakos P 2004. Learning probability distributions in continuous evolutionary algorithms—a comparative review. Nat. Comput. 3:77–112
    [Google Scholar]
  66. Kim B, Azevedo VC, Thuerey N, Kim T, Gross M, Solenthaler B 2018. Deep fluids: a generative network for parameterized fluid simulations. arXiv:1806.02071 [cs.LG]
    [Google Scholar]
  67. Kim HJ, Jordan MI, Sastry S, Ng AY 2004. Autonomous helicopter flight via reinforcement learning. Advances in Neural Information Processing Systems 17 ed. B Scholkopf, Y Vis, JC Platt 799–806 Cambridge, MA: MIT Press
    [Google Scholar]
  68. Knaak M, Rothlubbers C, Orglmeister R 1997. A Hopfield neural network for flow field computation based on particle image velocimetry/particle tracking velocimetry image sequences. IEEE Int. Conf. Neural Netw. 1:48–52
    [Google Scholar]
  69. Kohonen T 1995. Self-Organizing Maps Berlin: Springer-Verlag
    [Google Scholar]
  70. Kolmogorov A 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Cr. Acad. Sci. USSR 30:301–5
    [Google Scholar]
  71. Koza JR 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection Boston: MIT Press
    [Google Scholar]
  72. Krizhevsky A, Sutskever I, Hinton GE 2012. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25 ed. F Pereira, CJC Burges, L Bottou, KQ Weinberger 1097–105 Red Hook, NY: Curran Assoc.
    [Google Scholar]
  73. Kutz JN, Brunton SL, Brunton BW, Proctor JL 2016. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems Philadelphia: SIAM
    [Google Scholar]
  74. Labonté G 1999. A new neural network for particle-tracking velocimetry. Exp. Fluids 26:340–46
    [Google Scholar]
  75. Lagaris IE, Likas A, Fotiadis DI 1998. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9:987–1000
    [Google Scholar]
  76. LeCun Y, Bengio Y, Hinton G 2015. Deep learning. Nature 521:436–44
    [Google Scholar]
  77. Lee C, Kim J, Babcock D, Goodman R 1997. Application of neural networks to turbulence control for drag reduction. Phys. Fluids 9:1740–47
    [Google Scholar]
  78. Lee Y, Yang H, Yin Z 2017. PIV-DCNN: cascaded deep convolutional neural networks for particle image velocimetry. Exp. Fluids 58:171
    [Google Scholar]
  79. Li Q, Dietrich F, Bollt EM, Kevrekidis IG 2017. Extended dynamic mode decomposition with dictionary learning: a data-driven adaptive spectral decomposition of the Koopman operator. Chaos 27:103111
    [Google Scholar]
  80. Liang D, Jiang C, Li Y 2003. Cellular neural network to detect spurious vectors in PIV data. Exp. Fluids 34:52–62
    [Google Scholar]
  81. Ling J, Jones R, Templeton J 2016a. Machine learning strategies for systems with invariance properties. J. Comput. Phys. 318:22–35
    [Google Scholar]
  82. Ling J, Kurzawski A, Templeton J 2016b. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807:155–66
    [Google Scholar]
  83. Ling J, Templeton J 2015. Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty. Phys. Fluids 27:085103
    [Google Scholar]
  84. Loiseau JC, Brunton SL 2018. Constrained sparse Galerkin regression. J. Fluid Mech. 838:42–67
    [Google Scholar]
  85. Loucks D, van Beek E, Stedinger J, Dijkman J, Villars M 2005. Water Resources Systems Planning and Management: An Introduction to Methods 2 Cham, Switz.: Springer
    [Google Scholar]
  86. Lumley J 1970. Stochastic Tools in Turbulence New York: Academic
    [Google Scholar]
  87. Lusch B, Kutz JN, Brunton SL 2018. Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9:4950
    [Google Scholar]
  88. Mahoney MW 2011. Randomized algorithms for matrices and data. Found. Trends Mach. Learn. 3:123–224
    [Google Scholar]
  89. Manohar K, Brunton BW, Kutz JN, Brunton SL 2018. Data-driven sparse sensor placement for reconstruction: demonstrating the benefits of exploiting known patterns. IEEE Control Syst. Mag. 38:63–86
    [Google Scholar]
  90. Mardt A, Pasquali L, Wu H, Noé F 2018. VAMPnets for deep learning of molecular kinetics. Nat. Commun. 9:5
    [Google Scholar]
  91. Martin N, Gharib M 2018. Experimental trajectory optimization of a flapping fin propulsor using an evolutionary strategy. Bioinspiration Biomim. 14:016010
    [Google Scholar]
  92. Maulik R, San O, Rasheed A, Vedula P 2019. Subgrid modelling for two-dimensional turbulence using neural networks. J. Fluid Mech. 858:122–44
    [Google Scholar]
  93. Meena MG, Nair AG, Taira K 2018. Network community-based model reduction for vortical flows. Phys. Rev. E 97:063103
    [Google Scholar]
  94. Mehta UB, Kutler P 1984. Computational aerodynamics and artificial intelligence NASA Tech. Rep. NASA-TM-85994 Ames Res. Cent. Moffett Field, CA:
    [Google Scholar]
  95. Meijering E 2002. A chronology of interpolation: from ancient astronomy to modern signal and image processing. Proc. IEEE 90:319–42
    [Google Scholar]
  96. Meneveau C, Katz J 2000. Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32:1–32
    [Google Scholar]
  97. Mezic I 2013. Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45:357–78
    [Google Scholar]
  98. Milano M, Koumoutsakos P 2002. Neural network modeling for near wall turbulent flow. J. Comput. Phys. 182:1–26
    [Google Scholar]
  99. Minsky M, Papert SA 1969. Perceptrons: An Introduction to Computational Geometry Cambridge, MA: MIT Press
    [Google Scholar]
  100. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J et al. 2015. Human-level control through deep reinforcement learning. Nature 518:529–33
    [Google Scholar]
  101. Nair AG, Taira K 2015. Network-theoretic approach to sparsified discrete vortex dynamics. J. Fluid Mech. 768:549–71
    [Google Scholar]
  102. Noack BR 2018. Closed-loop turbulence control—from human to machine learning (and retour). Fluid-Structure-Sound Interactions and Control: Proceedings of the 4th Symposium on Fluid-Structure-Sound Interactions and Control ed. Y Zhou, M Kimura, G Peng, AD Lucey, L Hung 23–32 Singapore: Springer
    [Google Scholar]
  103. Noé F, Nüske F 2013. A variational approach to modeling slow processes in stochastic dynamical systems. SIAM Multiscale Model Simul. 11:635–55
    [Google Scholar]
  104. Novati G, Mahadevan L, Koumoutsakos P 2019. Controlled gliding and perching through deep-reinforcement-learning. Phys. Rev. Fluids 4:093902
    [Google Scholar]
  105. Novati G, Verma S, Alexeev D, Rossinelli D, Van Rees WM, Koumoutsakos P 2017. Synchronisation through learning for two self-propelled swimmers. Bioinspiration Biomim. 12:aa6311
    [Google Scholar]
  106. Nüske F, Schneider R, Vitalini F, Noé F 2016. Variational tensor approach for approximating the rare-event kinetics of macromolecular systems. J. Chem. Phys. 144:054105
    [Google Scholar]
  107. Ollivier Y, Arnold L, Auger A, Hansen N 2017. Information-geometric optimization algorithms: a unifying picture via invariance principles. J. Mach. Learn. Res. 18:564–628
    [Google Scholar]
  108. Ostermeier A, Gawelczyk A, Hansen N 1994. Step-size adaptation based on non-local use of selection information. International Conference on Parallel Problem Solving from Nature 1994 Oct 9189–98 Berlin: Springer
    [Google Scholar]
  109. Ouellette NT, Xu H, Bodenschatz E 2006. A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Exp. Fluids 40:301–13
    [Google Scholar]
  110. Papadimitriou DI, Papadimitriou C 2015. Optimal sensor placement for the estimation of turbulent model parameters in CFD. Int. J. Uncert. Quant. 5:545–68
    [Google Scholar]
  111. Parish EJ, Duraisamy K 2016. A paradigm for data-driven predictive modeling using field inversion and machine learning. J. Comput. Phys. 305:758–74
    [Google Scholar]
  112. Pathak J, Hunt B, Girvan M, Lu Z, Ott E 2018. Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys. Rev. Lett. 120:024102
    [Google Scholar]
  113. Pelikan M, Ocenasek J, Trebst S, Troyer M, Alet F 2004. Computational complexity and simulation of rare events of Ising spin glasses. Genetic and Evolutionary Computation—GECCO 200436–47 Berlin: Springer
    [Google Scholar]
  114. Perdikaris P, Venturi D, Karniadakis G 2016. Multifidelity information fusion algorithms for high-dimensional systems and massive data sets. SIAM J. Sci. Comput. 38:B521–38
    [Google Scholar]
  115. Perlman E, Burns R, Li Y, Meneveau C 2007. Data exploration of turbulence simulations using a database cluster. Proceedings of the 2007 ACM/IEEE Conference on Supercomputingp23 New York: ACM
    [Google Scholar]
  116. Phan MQ, Juang JN, Hyland DC 1995. On neural networks in identification and control of dynamic systems. Wave Motion, Intelligent Structures and Nonlinear Mechanics ed. A Guran, DJ Inman 194–225 Singapore: World Sci.
    [Google Scholar]
  117. Pierret S, Van den Braembussche R 1999. Turbomachinery blade design using a Navier-Stokes solver and artificial neural network. J. Turbomach. 121:326–32
    [Google Scholar]
  118. Pollard A, Castillo L, Danaila L, Glauser M 2016. Whither Turbulence and Big Data in the 21st Century? Cham., Switz.: Springer
    [Google Scholar]
  119. Rabault J, Kuchta M, Jensen A, Réglade U, Cerardi N 2019. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control. J. Fluid Mech. 865:281–302
    [Google Scholar]
  120. Raissi M, Karniadakis GE 2018. Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357:125–41
    [Google Scholar]
  121. Raissi M, Perdikaris P, Karniadakis G 2019. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378:686–707
    [Google Scholar]
  122. Rechenberg I 1964. Kybernetische lösungsansteuerung einer experimentellen forschungsaufgabe. Annual Conference of the WGLR at Berlin in September 3533
    [Google Scholar]
  123. Rechenberg I 1973. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der Biologischen Evolution Stuttgart, Ger.: Frommann-Holzboog
    [Google Scholar]
  124. Reddy G, Celani A, Sejnowski TJ, Vergassola M 2016. Learning to soar in turbulent environments. PNAS 113:E4877–84
    [Google Scholar]
  125. Reddy G, Wong-Ng J, Celani A, Sejnowski TJ, Vergassola M 2018. Glider soaring via reinforcement learning in the field. Nature 562:236–39
    [Google Scholar]
  126. Richter SR, Vineet V, Roth S, Koltun V 2016. Playing for data: ground truth from computer games. European Conference on Computer Vision 2016 ed. B Leibe, J Matas, N Sebe, M Welling 102–18 Cham, Switz.: Springer
    [Google Scholar]
  127. Rico-Martinez R, Krischer K, Kevrekidis IG, Kube MC, Hudson JL 1992. Discrete- vs. continuous-time nonlinear signal processing of Cu electrodissolution data. Chem. Eng. Commun. 118:25–48
    [Google Scholar]
  128. Rokhlin V, Szlam A, Tygert M 2009. A randomized algorithm for principal component analysis. SIAM J. Matrix Anal. Appl. 31:1100–24
    [Google Scholar]
  129. Rosenblatt F 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65:386–408First example of a simple binary network with learning capabilities.
    [Google Scholar]
  130. Rowley CW, Dawson S 2016. Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49:387–417
    [Google Scholar]
  131. Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson D 2009. Spectral analysis of nonlinear flows. J. Fluid Mech. 645:115–27
    [Google Scholar]
  132. Rudy SH, Brunton SL, Proctor JL, Kutz JN 2017. Data-driven discovery of partial differential equations. Sci. Adv. 3:e1602614
    [Google Scholar]
  133. Rumelhart DE, Hinton GE, Williams RJ 1986. Learning representations by back-propagating errors. Nature 323:533–36
    [Google Scholar]
  134. Salimans T, Ho J, Chen X, Sutskever I 2017. Evolution strategies as a scalable alternative to reinforcement learning. arXiv:1703.03864 [stat.ML]
    [Google Scholar]
  135. Schaeffer H 2017. Learning partial differential equations via data discovery and sparse optimization. Proc. R. Soc. A 473:20160446
    [Google Scholar]
  136. Schaul T, Horgan D, Gregor K, Silver D 2015. Universal value function approximators. Proceedings of the 32nd International Conference on Machine Learning ed. F Bach, DM Blei 1312–20 Red Hook, NY: Curran Assoc.
    [Google Scholar]
  137. Schmid PJ 2010. Dynamic mode decomposition for numerical and experimental data. J. Fluid Mech. 656:5–28
    [Google Scholar]
  138. Schmidt M, Lipson H 2009. Distilling free-form natural laws from experimental data. Science 324:81–85
    [Google Scholar]
  139. Schölkopf B, Smola AJ 2002. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond Cambridge, MA: MIT Press
    [Google Scholar]
  140. Schwefel HP 1977. Numerische Optimierung von Computer-Modellen Mittels der Evolutionsstrategie Basel, Switz.: Birkhäuser
    [Google Scholar]
  141. Semeraro O, Lusseyran F, Pastur L, Jordan P 2016. Qualitative dynamics of wavepackets in turbulent jets. arXiv:1608.06750 [physics.flu-dyn]
    [Google Scholar]
  142. Silver D, Huang A, Maddison CJ, Guez A, Sifre L et al. 2016. Mastering the game of Go with deep neural networks and tree search. Nature 529:484–89
    [Google Scholar]
  143. Singh AP, Medida S, Duraisamy K 2017. Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils. AIAA J. 55:2215–27
    [Google Scholar]
  144. Sirovich L 1987. Turbulence and the dynamics of coherent structures, parts I–III. Q. Appl. Math. 45:561–90
    [Google Scholar]
  145. Sirovich L, Kirby M 1987. A low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A 4:519–24
    [Google Scholar]
  146. Skinner SN, Zare-Behtash H 2018. State-of-the-art in aerodynamic shape optimisation methods. Appl. Soft. Comput. 62:933–62
    [Google Scholar]
  147. Strom B, Brunton SL, Polagye B 2017. Intracycle angular velocity control of cross-flow turbines. Nat. Energy 2:17103
    [Google Scholar]
  148. Sutton RS, Barto AG 2018. Reinforcement Learning: An Introduction Cambridge, MA: MIT Press. 2nd ed.The classic book on reinforcement learning.
    [Google Scholar]
  149. Taira K, Brunton SL, Dawson S, Rowley CW, Colonius T et al. 2017. Modal analysis of fluid flows: an overview. AIAA J. 55:4013–41
    [Google Scholar]
  150. Takeishi N, Kawahara Y, Yairi T 2017. Learning Koopman invariant subspaces for dynamic mode decomposition. Advances in Neural Information Processing Systems 30 ed. I Guyon, UV Luxburg, S Bengio, H Wallach, R Fergus, et al. 1130–40 Red Hook, NY: Curran Assoc.
    [Google Scholar]
  151. Tedrake R, Jackowski Z, Cory R, Roberts JW, Hoburg W 2009. Learning to fly like a bird Paper presented at the 14th International Symposium on Robotics Research Lucerne, Switz.:
    [Google Scholar]
  152. Teo C, Lim K, Hong G, Yeo M 1991. A neural net approach in analysing photographs in PIV. IEEE Trans. Syst. Man Cybern. 3:1535–38
    [Google Scholar]
  153. Tesauro G 1992. Practical issues in temporal difference learning. Mach. Learn. 8:257–77
    [Google Scholar]
  154. Theodoridis S 2015. Machine Learning: A Bayesian and Optimization Perspective San Diego, CA: AcademicA monograph linking machine learning and Bayesian inference algorithms.
    [Google Scholar]
  155. Tsiotras P, Mesbahi M 2017. Toward an algorithmic control theory. J. Guid. Control Dyn. 40:194–96
    [Google Scholar]
  156. Van Rees WM, Gazzola M, Koumoutsakos P 2015. Optimal morphokinematics for undulatory swimmers at intermediate reynolds numbers. J. Fluid Mech. 775:178–88
    [Google Scholar]
  157. Verma S, Novati G, Koumoutsakos P 2018. Efficient collective swimming by harnessing vortices through deep reinforcement learning. PNAS 115:5849–54
    [Google Scholar]
  158. Vlachas PR, Byeon W, Wan ZY, Sapsis TP, Koumoutsakos P 2018. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks. Proc. R. Soc. A 474:20170844
    [Google Scholar]
  159. Wan ZY, Vlachas P, Koumoutsakos P, Sapsis T 2018. Data-assisted reduced-order modeling of extreme events in complex dynamical systems. PLOS ONE 13:e0197704
    [Google Scholar]
  160. Wang JX, Wu JL, Xiao H 2017. Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Phys. Rev. Fluids 2:034603
    [Google Scholar]
  161. Wang M, Hemati MS 2017. Detecting exotic wakes with hydrodynamic sensors. arXiv:1711.10576
    [Google Scholar]
  162. Wehmeyer C, Noé F 2018. Time-lagged autoencoders: deep learning of slow collective variables for molecular kinetics. J. Chem. Phys. 148:241703
    [Google Scholar]
  163. Wiener N 1965. Cybernetics or Control and Communication in the Animal and the Machine 25 Cambridge, MA: MIT Press
    [Google Scholar]
  164. Willert CE, Gharib M 1991. Digital particle image velocimetry. Exp. Fluids 10:181–93
    [Google Scholar]
  165. Williams MO, Rowley CW, Kevrekidis IG 2015. A kernel approach to data-driven Koopman spectral analysis. J. Comput. Dyn. 2:247–65
    [Google Scholar]
  166. Wright J, Yang A, Ganesh A, Sastry S, Ma Y 2009. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31:210–27
    [Google Scholar]
  167. Wu H, Mardt A, Pasquali L, Noe F 2018. Deep generative Markov State Models. Adv. Neural Inf. Process. Syst. 31:3975–84
    [Google Scholar]
  168. Wu X, Moin P 2008. A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608:81–112
    [Google Scholar]
  169. Xiao H, Wu JL, Wang JX, Sun R, Roy C 2016. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: a data-driven, physics-informed Bayesian approach. J. Comp. Phys. 324:115–36
    [Google Scholar]
  170. Xie Y, Franz E, Chu M, Thuerey N 2018. tempoGAN: a temporally coherent, volumetric GAN for super-resolution fluid flow. ACM Trans. Graph. 37:95
    [Google Scholar]
  171. Yang J, Wright J, Huang TS, Ma Y 2010. Image super-resolution via sparse representation. IEEE Trans. Image Process. 19:2861–73
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010719-060214
Loading
/content/journals/10.1146/annurev-fluid-010719-060214
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error