1932

Abstract

Dynamic stall is an incredibly rich fluid dynamics problem that manifests itself on an airfoil during rapid, transient motion in which the angle of incidence surpasses the static stall limit. It is an important element of many manmade and natural flyers, including helicopters and supermaneuverable aircraft, and low–Reynolds number flapping-wing birds and insects. The fluid dynamic attributes that accompany dynamic stall include an eruption of vorticity that organizes into a well-defined dynamic stall vortex and massive excursions in aerodynamic loads that can couple with the airfoil structural dynamics. The dynamic stall process is highly sensitive to surface roughness that can influence turbulent transition and to local compressibility effects that occur at free-stream Mach numbers that are otherwise incompressible. Under some conditions, dynamic stall can result in negative aerodynamic damping that leads to limit-cycle growth of structural vibrations and rapid mechanical failure. The mechanisms leading to negative damping have been a principal interest of recent experiments and analysis. Computational fluid dynamic simulations and low-order models have not been good predictors so far. Large-eddy simulation could be a viable approach although it remains computationally intensive. The topic is technologically important owing to the desire to develop next-generation rotorcraft that employ adaptive rotor dynamic stall control.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010814-013632
2015-01-03
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/fluid/47/1/annurev-fluid-010814-013632.html?itemId=/content/journals/10.1146/annurev-fluid-010814-013632&mimeType=html&fmt=ahah

Literature Cited

  1. Bailey FJ, Gustafson FB. 1939. Observations in flight of the region of stalled flow over the blades of an autogiro rotor Tech. Rep. 741, Natl. Advis. Comm. Aeronaut., Washington, DC [Google Scholar]
  2. Bisplinghoff RL, Ashley H, Halfman RL. 1955. Aeroelasticity Reading, MA: Addison-Wesley [Google Scholar]
  3. Bousman WG. 1998. A qualitative examination of dynamic stall from flight test data. J. Am. Helicopter Soc. 43:279–95 [Google Scholar]
  4. Bowles P. 2012. Wind tunnel experiments on the effect of compressibility on the attributes of dynamic stall PhD Thesis, Univ. Notre Dame [Google Scholar]
  5. Bowles P, Coleman DG, Corke TC, Thomas FO, Wasikowski M. 2012. Compressibility effects on aerodynamic damping during dynamic stall events Presented at Annu. Meet. Am. Helicopter Soc., 68th, Fort Worth, TX [Google Scholar]
  6. Bowles P, Corke T, Coleman D, Thomas F. 2014. Improved understanding of aerodynamic damping through Hilbert transform. AIAA J. 522384–94 [Google Scholar]
  7. Brooks GW, Baker JE. 1958. An experimental investigation of the effect of various parameters including tip Mach number on the flutter of some model helicopter rotor blades Tech. Rep. TN 4005, Natl. Advis. Comm. Aeronaut., Washington, DC [Google Scholar]
  8. Carr LW, Chandrasekhara MS. 1991. A study of compressibility effects on dynamic stall of rapidly pitching airfoils. Comput. Phys. Commun. 65:62–68 [Google Scholar]
  9. Carr LW, Chandrasekhara MS. 1992. Design and development of a compressible dynamic stall facility. J. Aircr. 29:314–18 [Google Scholar]
  10. Carr LW, Chandrasekhara MS. 1996. Compressibility effects on dynamic stall. Prog. Aerosp. Sci. 32:523–73 [Google Scholar]
  11. Carr LW, Chandrasekhara MS, Brock NJ. 1994. Quantitative study of unsteady compressible flow on an oscillating airfoil. J. Aircr. 31:892–98 [Google Scholar]
  12. Carr LW, Chandrasekhara MS, Wilder MC, Noonan KW. 2001. Effect of compressibility on suppression of dynamic stall using a slotted airfoil. J. Aircr. 38:296–309 [Google Scholar]
  13. Carr LW, McCroskey WJ, McAlister KE, Pucci SL, Lambert O. 1982. An experimental study of dynamic stall on advanced airfoil sections. Volume 3: Hot-wire and hot-film measurements. Tech. Rep. USAAVRADCOM TR-82-A-8, Natl. Aeronaut. Space Admin., Washington, DC [Google Scholar]
  14. Carta FO. 1971. Effect of unsteady pressure gradient reduction on dynamic stall delay. J. Aircr. 8:839–41 [Google Scholar]
  15. Carta FO, Niebanck CF. 1969. Prediction of rotor instability at high forward speeds Tech. Rep. 44-177-AMC-332(T), US Army Aviation Mater. Lab., Fort Eustis, VA [Google Scholar]
  16. Chandrasekhara MS, Ahmed S, Carr LW. 1993. Schlieren studies of compressibility effects on dynamic stall of transiently pitching airfoils. J. Aircr. 30:213–20 [Google Scholar]
  17. Chandrasekhara MS, Carr LW, Wilder MC. 1994. Interferometric investigations of compressible dynamic stall over a transiently pitching airfoil. AIAA J. 32:586–93 [Google Scholar]
  18. Chandrasekhara MS, Tung C, Martin PB. 2004. Aerodynamic flow control using a variable droop leading edge airfoil Presented at AVT Specialists' Meet. Enhanc. NATO Mil. Flight Perform., Pap. RTO-MP-AVT-111 [Google Scholar]
  19. Chandrasekhara MS, Wilder MC, Carr LW. 1996. Boundary-layer-tripping studies of compressible dynamic stall flow. AIAA J. 34:96–103 [Google Scholar]
  20. Chandrasekhara MS, Wilder MC, Carr LW. 1998a. Competing mechanisms of compressible dynamic stall. AIAA J. 36:383–93 [Google Scholar]
  21. Chandrasekhara MS, Wilder MC, Carr LW. 1998b. Unsteady stall control using dynamically deforming airfoils. AIAA J. 36:1792–800 [Google Scholar]
  22. Conlisk A. 2001. Modern helicopter rotor aerodynamics. Prog. Aerosp. Sci. 37:419–76 [Google Scholar]
  23. Corke TC, Bowles PO, He C, Matlis EH. 2011. Sensing and control of flow separation using plasma actuators. Philos. Trans. R. Soc. A 369:1459–75 [Google Scholar]
  24. Corke TC, Enloe CL, Wilkinson SP. 2010. Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech. 42:505–29 [Google Scholar]
  25. Doligalski T, Smith C, Walker J. 1994. Vortex interactions with walls. Annu. Rev. Fluid Mech. 26:573–616 [Google Scholar]
  26. Dyken RV, Ekaterinaris JA, Chandrasekhara MS, Platzer MF. 1996. Analysis of compressible light dynamic stall flow at transitional Reynolds numbers. AIAA J. 34:1420–27 [Google Scholar]
  27. Ekaterinaris JA. 2002. Numerical investigations of dynamic stall active control for incompressible and compressible flows. J. Aircr. 39:71–78 [Google Scholar]
  28. Ericsson LE, Reding JP. 1984. Shock-induced dynamic stall. J. Aircr. 21:316–21 [Google Scholar]
  29. Ericsson LE, Reding JP. 1988. Moving wall effects in unsteady flow. J. Aircr. 25:977–90 [Google Scholar]
  30. Feszty D, Gillies EA, Vezza M. 2004. Alleviation of airfoil dynamic stall moments via trailing-edge-flap flow control. AIAA J. 42:17–25 [Google Scholar]
  31. Florea R, Wake BE. 2003. Parametric analysis of directed-synthetic jets for improved dynamic-stall performance Presented at AIAA Aerosp. Sci. Meet., 41st, Reno, NV, AIAA Pap. 2003-0216 [Google Scholar]
  32. Fung YC. 2008. An Introduction to the Theory of Aeroelasticity Toronto: Dover [Google Scholar]
  33. Gerontakos P, Lee T. 2006. Dynamic stall flow control via a trailing-edge flap. AIAA J. 44:469–80 [Google Scholar]
  34. Gerontakos P, Lee T. 2007. Trailing-edge flap control of dynamic pitching moment. AIAA J. 45:1688–94 [Google Scholar]
  35. Gerontakos P, Lee T. 2008. PIV study of flow around unsteady airfoil with trailing edge flap deflection. Exp. Fluids 45:955–72 [Google Scholar]
  36. Glauert H, Holl H. 1929. Die Grundlagen der Tragflügel- und Luftschraubentheorie Berlin: Springer [Google Scholar]
  37. Green RB, Galbraith RAM. 1995. Dynamic recovery to fully attached aerofoil flow from deep stall. AIAA J. 33:1433–40 [Google Scholar]
  38. Greenblatt D, Wygnanski I. 2001. Dynamic stall control by periodic excitation, part 1: NACA 0015 parametric study. J. Aircr. 38:430–38 [Google Scholar]
  39. Gustafson FB, Myers Jr GC. 1946. Stalling of helicopter blades Tech. Rep. TN 1083, Natl. Advis. Comm. Aeronaut., Washington, DC [Google Scholar]
  40. Haddad O, Erturk E, Corke T. 2005. Acoustic receptivity of boundary layer over parabolic bodies at angles of attack. J. Fluid Mech. 536:377–400 [Google Scholar]
  41. Haller G. 2004. Exact theory of unsteady separation for two-dimensional flows. J. Fluid Mech. 512:257–311 [Google Scholar]
  42. Ham ND. 1966. Torsional oscillation of helicopter blades due to stall. J. Aircr. 3:218–24 [Google Scholar]
  43. Ham ND. 1967. Stall flutter of helicopter rotor blades: a special case of the dynamic stall phenomenon. J. Am. Helicopter Soc. 12:19–21 [Google Scholar]
  44. Ham ND. 1968. Aerodynamic loading on a two-dimensional airfoil during dynamic stall. AIAA J. 6:1927–34 [Google Scholar]
  45. Ham ND, Garelick MS. 1968. Dynamic stall considerations in helicopter rotors. J. Am. Helicopter Soc. 13:49–55 [Google Scholar]
  46. Ham ND, Young MI. 1966. Limit cycle torsional motion of helicopter blades due to stall. J. Sound Vib. 4:431–44 [Google Scholar]
  47. Harris FD Jr, Tarzanin FJ Jr, Fisher RK. 1970. Rotor high speed performance, theory versus test. J. Am. Helicopter Soc. 15:35–42 [Google Scholar]
  48. Heine B, Mulleneres K, Joubert G, Raffel M. 2011. Dynamic stall control by passive disturbance generators Presented at AIAA Appl. Aerodyn. Conf., 29th, Honolulu, AIAA Pap. 2011-3371 [Google Scholar]
  49. Johnson W, Ham ND. 1972. On the mechanism of dynamic stall. J. Am. Helicopter Soc. 17:36–45 [Google Scholar]
  50. Joo W, Lee B-S, Yee K, Lee D-H. 2006. Combining passive control method for dynamic stall control. J. Aircr. 43:1120–28 [Google Scholar]
  51. Kramer M. 1932. Die Zunahme des maximalauftriebes von tragflugeln bei plotzlicher anstellwinkelvergrosserung (Boeneffekt). Z. Flugtech. Motorluftschiff. 23:185–89 [Google Scholar]
  52. Küssner H. 1936. Zusammenfassender Bericht über den instationären auftrieb von flügeln. Luftfahrt-Forschung 13:410–24 [Google Scholar]
  53. Lee T, Gerontakos P. 2004. Investigation of flow over an oscillating airfoil. J. Fluid Mech. 512:313–41 [Google Scholar]
  54. Leishman JG. 2000. Principles of Helicopter Aerodynamics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  55. Liiva J. 1969. Unsteady aerodynamic and stall effects on helicopter rotor blade airfoil sections. J. Aircr. 6:46–51 [Google Scholar]
  56. Liiva J, Davenport F. 1969. Dynamic stall of airfoil sections for high speed rotors. J. Am. Helicopter Soc. 14:26–33 [Google Scholar]
  57. Lomax H. 1953. Lift development on unrestrained rectangular wings entering gusts and subsonic and supersonic speeds Tech. Rep. 2925, Natl. Advis. Comm. Aeronaut., Washington, DC [Google Scholar]
  58. Lombardi AJ. 2011. Closed-loop dynamic stall control using a plasma actuator MS Thesis, Univ. Notre Dame [Google Scholar]
  59. Lombardi AJ, Bowles PO, Corke TC. 2013. Closed-loop dynamic stall control using a plasma actuator. AIAA J. 51:1130–41 [Google Scholar]
  60. Lorber PF, Carta FO. 1988. Airfoil dynamic stall at constant pitch rate and high Reynolds number. J. Aircr. 25:548–56 [Google Scholar]
  61. Lorber PF, Carta FO, Covino AF. 1992. An oscillating three-dimensional wing experiment: compressibility, sweep, rate, waveform, and geometry effects on unsteady separation and dynamic stall Tech. Rep. R92-958325-6, United Technol. Res. Cent., East Hartford, CT [Google Scholar]
  62. Lorber PF, McCormick DC, Anderson TJ, Wake BE, MacMartin GG. et al. 2000. Rotorcraft retreating blade stall control Presented at FLUIDS 2000 Conf. Exhib., Denver, AIAA Pap. 2000-2475 [Google Scholar]
  63. Martin PB, Wilson JS, Berry JD, Wong T-C, Moultron M, McVeigh MA. 2008. Passive control of compressible dynamic stall Presented at AIAA Appl. Aerodyn. Conf., 26th, Honolulu, AIAA Pap. 2008-7506 [Google Scholar]
  64. McAlister KW, Carr LW. 1979. Water tunnel visualizations of dynamic stall. J. Fluids Eng. 101:376–80 [Google Scholar]
  65. McAlister KW, Pucci SL, McCroskey WJ, Carr LW. 1982. An experimental study of dynamic stall on advanced airfoil sections. Volume 2: Pressure and force data. Tech. Rep. USAAVRADCOM TR-82-A-8, Natl. Aeronaut. Space Admin., Washington, DC [Google Scholar]
  66. McCroskey WJ. 1981. The phenomenon of dynamic stall Tech. Rep., Natl. Aeronaut. Space Admin., Washington, DC [Google Scholar]
  67. McCroskey WJ. 1982. Unsteady airfoils. Annu. Rev. Fluid Mech. 14:285–311 [Google Scholar]
  68. McCroskey WJ, Carr LW, McAlister KW. 1976. Dynamic stall experiments on oscillating airfoils. AIAA J. 14:57–63 [Google Scholar]
  69. McCroskey WJ, McAlister KW, Carr LW, Pucci SL. 1982. An experimental study of dynamic stall on advanced airfoil section. Volume 1: Summary of the experiment. Tech. Rep. USAAVRADCOM R-82-A-8, Natl. Aeronaut. Space Admin., Washington, DC [Google Scholar]
  70. McCroskey WJ, McAlister KW, Carr LW, Pucci SL, Lambert O, Indergrand RF. 1981. Dynamic stall on advanced airfoil sections. J. Am. Helicopter Soc. 26:40–50 [Google Scholar]
  71. Oates GC. 1989. Aircraft Propulsion Systems Technology and Design Reston, VA: Am. Inst. Aeronaut. Astronaut. [Google Scholar]
  72. Post ML. 2004. Plasma actuators for separation control on stationary and oscillating airfoils PhD Thesis, Univ. Notre Dame [Google Scholar]
  73. Post ML, Corke TC. 2006. Separation control using plasma actuators: dynamic stall vortex control on oscillating airfoil. AIAA J. 44:3125–35 [Google Scholar]
  74. Rainey AG. 1957. Measurement of aerodynamic forces for various mean angles of attack on an airfoil oscillating in pitch and on two finite-span wings oscillating in bending with emphasis on damping in the stall Tech. Rep. 1305, Natl. Advis. Comm. Aeronaut., Washington, DC [Google Scholar]
  75. Reynolds WC, Carr LW. 1985. Review of unsteady, driven, separated flows Presented at AIAA Shear Flow Conf., Boulder, CO, AIAA Pap. 85-0527 [Google Scholar]
  76. Schatzman DM, Thomas FO. 2010. Turbulent boundary-layer separation control with a single dielectric barrier discharge plasma actuators. AIAA J. 48:1621–34 [Google Scholar]
  77. Sears WR. 1941. Some aspects of non-stationary airfoil theory and its practical application. J. Aeronaut. Sci. 8:104–8 [Google Scholar]
  78. Sears WR, Telionis DP. 1975. Boundary-layer separation in unsteady flow. SIAM J. Appl. Math. 28:215–35 [Google Scholar]
  79. Shih C, Lourenco LM, van Dommelen LL, Krothapalli A. 1992. Unsteady flow past an airfoil pitching at constant rate. AIAA J. 30:1153–61 [Google Scholar]
  80. Sun M, Sheikh S. 1999. Dynamic stall suppression on an oscillating airfoil by steady and unsteady blowing. Aerosp. Sci. Technol. 6:355–66 [Google Scholar]
  81. Tarzanin FJ Jr. 1972. Prediction of control loads due to blade stall. J. Am. Helicopter Soc. 17:33–46 [Google Scholar]
  82. Telionis DP. 1970. Boundary-layer separation PhD Thesis, Cornell Univ., Ithaca, NY [Google Scholar]
  83. Theodorsen T. 1935. General theory of aerodynamic instability and the mechanism of flutter Tech. Rep. 496, Natl. Advis. Comm. Aeronaut., Washington, DC [Google Scholar]
  84. Traub LW, Miller A, Rediniotis O. 2004. Effects of active and passive flow control on dynamic-stall vortex formation. J. Aircr. 41:405–8 [Google Scholar]
  85. van Dommelen LL, Shen SF. 1980. The spontaneous generation of the singularity in a separating laminar boundary layer. J. Comput. Phys. 38:125–40 [Google Scholar]
  86. von Kármán T, Sears WR. 1938. Airfoil theory for non-uniform motion. J. Aeronaut. Sci. 5:379–90 [Google Scholar]
  87. Wagner H. 1925. Über die Entstehung des dynamischen Äuftriebes von Tragflügeln. Z. Angew. Math. Mech. 5:17–35 [Google Scholar]
  88. Walker JM, Helin HE, Strickland JH. 1985. An experimental investigation of an airfoil undergoing large-amplitude pitching motions. AIAA J. 23:1141–42 [Google Scholar]
  89. Weaver D, McAlister KW, Tso J. 2004. Control of VR7 dynamic stall by strong steady blowing. J. Aircr. 41:1404–13 [Google Scholar]
  90. Wernert P, Geissler W, Raffel M, Kompenhans J. 1996. Experimental and numerical investigations of dynamic stall on a pitching airfoil. AIAA J. 34:982–89 [Google Scholar]
  91. Wernert P, Koerber G, Wietrich F, Raffel M, Kompenhans J. 1997. Demonstration by PIV of the non-reproducibility of the flow field around an airfoil pitching under deep dynamic stall conditions and consequences thereof. Aerosp. Sci. Technol. 2:125–35 [Google Scholar]
  92. Young WH Jr. 1981. Fluid mechanics mechanisms in the stall process for helicopters Tech. Rep. NASA-TM-81956, Natl. Aeronaut. Space Admin., Washington, DC [Google Scholar]
  93. Zvara J, Ham ND. 1960. Helicopter rotor model research at Massachusetts Institute of Technology. J. Am. Helicopter Soc. 5:24–30 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010814-013632
Loading
/content/journals/10.1146/annurev-fluid-010814-013632
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error