1932

Abstract

Because of gravitational interactions with their companions, the rotational dynamics of planets and stars involve periodic perturbations of their shape, the direction of their rotational vector, and their rotation rate. These perturbations correspond in planetary terms to tides, precession, and longitudinal libration. We review here the flows driven by those mechanical forcings on rotating spheres and ellipsoids. Special focus is placed on the associated instabilities and on the various routes toward turbulence recently studied. The key point is that mechanical forcings do not provide the energy to the excited flows: They convey part of the available rotational energy and generate intense fluid motions through the excitation of localized jets, shear layers, and resonant inertial modes. Hence, even very small forcings may have large-scale consequences. Mechanically driven flows thus play a fundamental role in planets and stars, significantly influencing their shape, their rotational dynamics, and their magnetic field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010814-014556
2015-01-03
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/fluid/47/1/annurev-fluid-010814-014556.html?itemId=/content/journals/10.1146/annurev-fluid-010814-014556&mimeType=html&fmt=ahah

Literature Cited

  1. Aldridge K, Lumb L. 1987. Inertial waves identified in the Earth's fluid outer core. Nature 325:421–23 [Google Scholar]
  2. Aldridge K, Seyed-Mahmoud B, Henderson G, van Wijngaarden W. 2003. Elliptical instability of the Earth's fluid core. Phys. Earth Planet. Inter. 103:365–74 [Google Scholar]
  3. Aldridge K, Toomre A. 1969. Axisymmetric inertial oscillations of a fluid in a rotating spherical container. J. Fluid Mech. 37:307–23 [Google Scholar]
  4. Arkani-Hamed J, Seyed-Mahmoud B, Aldridge K, Baker R. 2008. Tidal excitation of elliptical instability in the Martian core: possible mechanism for generating the core dynamo. J. Geophys. Res. 113:E06003 [Google Scholar]
  5. Bao G, Pascal M. 1997. Stability of a spinning liquid-filled spacecraft. Arch. Appl. Mech. 67:407–21 [Google Scholar]
  6. Barker AJ, Lithwick Y. 2013. Non-linear evolution of the tidal elliptical instability in gaseous planets and stars. Mon. Not. R. Astron. Soc. 435:3614–26 [Google Scholar]
  7. Bayly B. 1986. Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57:2160–63 [Google Scholar]
  8. Boisson J, Cébron D, Moisy F, Cortet PP. 2012. Earth rotation prevents exact solid body rotation of fluids in the laboratory. Eur. Phys. Lett. 98:59002 [Google Scholar]
  9. Bondi H, Lyttleton R. 1953. On the dynamic theory of the rotation of the Earth. II. The effect of precession on the motion of the liquid core. Math. Proc. Camb. Philos. Soc. 49:498–515 [Google Scholar]
  10. Bryan G. 1889. The waves on a rotating liquid spheroid of finite ellipticity. Philos. Trans. R. Soc. Lond. A 180:187–219 [Google Scholar]
  11. Busse FH. 1968a. Shear flow instabilities in rotating systems. J. Fluid Mech. 33:577–89 [Google Scholar]
  12. Busse FH. 1968b. Steady fluid flow in a precessing spheroidal shell. J. Fluid Mech. 33:739–51 [Google Scholar]
  13. Busse FH. 1970. Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44:441–60 [Google Scholar]
  14. Busse FH. 2010. Mean zonal flows generated by librations of a rotating spherical cavity. J. Fluid Mech. 650:505–12 [Google Scholar]
  15. Calkins MA, Noir J, Eldredge JD, Aurnou JM. 2010. Axisymmetric simulations of libration-driven fluid dynamics in a spherical shell geometry. Phys. Fluids 22:086602 [Google Scholar]
  16. Cébron D, Le Bars M, Le Gal P, Moutou C, Leconte J, Sauret A. 2013. Elliptical instability in hot-Jupiter systems. Icarus 226:1642–53 [Google Scholar]
  17. Cébron D, Le Bars M, Leontini J, Maubert P. Gal P. , Le 2010a. A systematic numerical study of the tidal instability in a rotating triaxial ellipsoid. Phys. Earth Planet. Inter. 182:119–28 [Google Scholar]
  18. Cébron D, Le Bars M, Maubert P, Le Gal P. 2012a. Magnetohydrodynamic simulations of the elliptical instability in triaxial ellipsoids. Geophys. Astrophys. Fluid Dyn. 106:524–46 [Google Scholar]
  19. Cébron D, Le Bars M, Meunier P. 2010b. Tilt-over mode in a precessing triaxial ellipsoid. Phys. Fluids 22:116601 [Google Scholar]
  20. Cébron D, Le Bars M, Moutou C, Le Gal P. 2012b. Elliptical instability in terrestrial planets and moons. Astron. Astrophys. 539:A78 [Google Scholar]
  21. Cébron D, Le Bars M, Noir J, Aurnou J. 2012c. Libration driven elliptical instability. Phys. Fluids 24:061703 [Google Scholar]
  22. Cébron D, Maubert P, Le Bars M. 2010c. Tidal instability in a rotating and differentially heated ellipsoidal shell. Geophys. J. Int. 182:1311–18 [Google Scholar]
  23. Chandrasekhar S. 1965. The equilibrium and the stability of the Riemann ellipsoids. I. Astrophys. J. 142:890–921 [Google Scholar]
  24. Chandrasekhar S. 1966. The equilibrium and the stability of the Riemann ellipsoids. II. Astrophys. J. 145:842–77 [Google Scholar]
  25. Craik A. 1989. The stability of unbounded two- and three-dimensional flows subject to body forces: some exact solutions. J. Fluid Mech. 198:275–92 [Google Scholar]
  26. Desjardins B, Dormy E, Grenier E. 2001. Instability of Ekman-Hartmann boundary layers, with application to the fluid flow near the core-mantle boundary. Phys. Earth Planet. Inter. 123:15–26 [Google Scholar]
  27. Donati JF, Moutou C, Farès R, Bohlender D, Catala C. et al. 2008. Magnetic cycles of the planet-hosting star τ Bootis. Mon. Not. R. Astron. Soc 385:1179–85 [Google Scholar]
  28. Dwyer C, Stevenson D, Nimmo F. 2011. A long-lived lunar dynamo driven by continuous mechanical stirring. Nature 479:212–14 [Google Scholar]
  29. Ernst-Hullermann J, Harder H, Hansen U. 2013. Finite volume simulations of dynamos in ellipsoidal planets. Geophys. J. Int. 195:1395–405 [Google Scholar]
  30. Fabijonas B, Holm D. 2003. Mean effects of turbulence on elliptic instability in fluids. Phys. Rev. Lett. 90:124501 [Google Scholar]
  31. Faller A. 1963. An experimental study of the instability of the laminar Ekman boundary layer. J. Fluid Mech. 15:560–76 [Google Scholar]
  32. Favier B, Barker AJ, Baruteau C, Ogilvie GI. 2014. Non-linear evolution of tidally forced inertial waves in rotating fluid bodies. Mon. Not. R. Astron. Soc. 439:845–60 [Google Scholar]
  33. Friedlander S, Vishik M. 1991. Instability criteria for the flow of an inviscid incompressible fluid. Phys. Rev. Lett. 66:2204–6 [Google Scholar]
  34. Fu RR, Weiss BP, Shuster DL, Gattacceca J, Grove TL. et al. 2012. An ancient core dynamo in asteroid Vesta. Science 338:238–41 [Google Scholar]
  35. Gans R. 1984. Dynamics of a near-resonant fluid-filled gyroscope. AIAA J. 22:1465–71 [Google Scholar]
  36. Garrick-Bethell I, Weiss B, Shuster D, Buz J. 2009. Early lunar magnetism. Science 323:356–59 [Google Scholar]
  37. Glampedakis K, Andersson N, Jones D. 2009. Do superfluid instabilities prevent neutron star precession?. Mon. Not. R. Astron. Soc. 394:1908–24 [Google Scholar]
  38. Glatzmaier GA, Roberts PH. 1995. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377:203–9 [Google Scholar]
  39. Gledzer E, Novikov Y, Obukhov A, Chusov M. 1974. An investigation of the stability of liquid flows in a three-axis ellipsoid. Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 10:69–71 [Google Scholar]
  40. Gledzer E, Obukhov A, Ponomarev V. 1977. Stability of liquid motion in vessels of elliptical section. Fluid Dyn. 12:11–18 [Google Scholar]
  41. Gledzer E, Ponomarev V. 1992. Instability of bounded flows with elliptical streamlines. J. Fluid Mech. 240:1–30 [Google Scholar]
  42. Goto S, Ishii N, Kida S, Nishioka M. 2007. Turbulence generator using a precessing sphere. Phys. Fluids 19:061705 [Google Scholar]
  43. Grannan A, Le Bars M, Cébron D, Aurnou JM. 2014. Intense flows in librationally-driven non-axisymmetric systems. Phys. Fluids Submitted manuscript
  44. Greenhill A. 1880. On the general motion of a liquid ellipsoid under the gravitation of its own parts. Math. Proc. Camb. Philos. Soc. 4:4–14 [Google Scholar]
  45. Greenspan HP. 1968. The Theory of Rotating Fluids Cambridge, UK: Cambridge Univ. Press
  46. Greenspan HP. 1969. On the non-linear interaction of inertial modes. J. Fluid Mech. 36:257–64 [Google Scholar]
  47. Greff-Lefftz M, Legros H. 1999. Core rotational dynamics and geological events. Science 286:1707–9 [Google Scholar]
  48. Herreman W. 2009. Instabilité elliptique sous champ magnétique et dynamo d'ondes inertielles PhD Thesis, Aix-Marseille Univ.
  49. Herreman W, Le Bars M, Le Gal P. 2009. On the effects of an imposed magnetic field on the elliptical instability in rotating spheroids. Phys. Fluids 21:046602 [Google Scholar]
  50. Hollerbach R, Kerswell RR. 1995. Oscillatory internal shear layers in rotating and precessing flows. J. Fluid Mech. 298:327–39 [Google Scholar]
  51. Hough S. 1895. The oscillations of a rotating ellipsoidal shell containing fluid. Philos. Trans. R. Soc. Lond. A 186:469–506 [Google Scholar]
  52. Kelvin L. 1880. On the oscillations of a columnar vortex. Philos. Mag. 10:155–68 [Google Scholar]
  53. Kerswell RR. 1993a. Elliptical instabilities of stratified, hydromagnetic waves. Geophys. Astrophys. Fluid Dyn. 71:105–43 [Google Scholar]
  54. Kerswell RR. 1993b. The instability of precessing flow. Geophys. Astrophys. Fluid Dyn. 72:107–44 [Google Scholar]
  55. Kerswell RR. 1995. On the internal shear layers spawned by the critical regions in oscillatory Ekman boundary layers. J. Fluid Mech. 298:311–25 [Google Scholar]
  56. Kerswell RR. 1996. Upper bounds on the energy dissipation in turbulent precession. J. Fluid Mech. 321:335–70 [Google Scholar]
  57. Kerswell RR. 2002. Elliptical instability. Annu. Rev. Fluid Mech. 34:83–113 [Google Scholar]
  58. Kerswell RR, Malkus WVR. 1998. Tidal instability as the source for Io's magnetic signature. Geophys. Res. Lett. 25:603–6 [Google Scholar]
  59. Kida S. 2011. Steady flow in a rapidly rotating sphere with weak precession. J. Fluid Mech. 680:150–93 [Google Scholar]
  60. Kida S, Nakazawa N. 2010. Super-rotation flow in a precessing sphere. Theor. Comput. Fluid Dyn. 24:259–63 [Google Scholar]
  61. Koch S, Harlander U, Egbers C, Hollerbach R. 2013. Inertial waves in a spherical shell induced by librations of the inner sphere: experimental and numerical results. Fluid Dyn. Res. 45:035504 [Google Scholar]
  62. Lacaze L, Herreman W, Le Bars M, Le Dizès S, Le Gal P. 2006. Magnetic field induced by elliptical instability in a rotating spheroid. Geophys. Astrophys. Fluid Dyn. 100:299–317 [Google Scholar]
  63. Lacaze L, Le Gal P, Le Dizès S. 2004. Elliptical instability in a rotating spheroid. J. Fluid Mech. 505:1–22 [Google Scholar]
  64. Lacaze L, Le Gal P, Le Dizès S. 2005. Elliptical instability of the flow in a rotating shell. Phys. Earth Planet. Inter. 151:194–205 [Google Scholar]
  65. Le Bars M, Lacaze L, Le Dizès S, Le Gal P, Rieutord M. 2010. Tidal instability in stellar and planetary binary systems. Phys. Earth Planet. Inter. 178:48–55 [Google Scholar]
  66. Le Bars M, Le Dizès S, Le Gal P. 2007. Coriolis effects on the elliptical instability in cylindrical and spherical rotating containers. J. Fluid Mech. 585:323–42 [Google Scholar]
  67. Le Bars M, Wieczorek MA, Karatekin O, Cébron D, Laneuville M. 2011. An impact-driven dynamo for the early moon. Nature 479:215–18 [Google Scholar]
  68. Le Dizès S. 2000. Three-dimensional instability of a multipolar vortex in a rotating flow. Phys. Fluids 12:2762–74 [Google Scholar]
  69. Lebovitz N, Lifschitz A. 1996a. New global instabilities of the Riemann ellipsoids. Astrophys. J. 458:699–713 [Google Scholar]
  70. Lebovitz N, Lifschitz A. 1996b. Short-wavelength instabilities of Riemann ellipsoids. Philos. Trans. R. Soc. Lond. A 354:927–50 [Google Scholar]
  71. Leconte J, Chabrier G, Baraffe I, Levrard B. 2010. Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity. Astron. Astrophys. 516:A64 [Google Scholar]
  72. Lifschitz A, Hameiri E. 1991. Local stability conditions in fluid dynamics. Phys. Fluids A 3:2644–51 [Google Scholar]
  73. Loper DE. 1975. Torque balance and energy budget for the precessionally driven dynamo. Phys. Earth Planet. Inter. 11:43–60 [Google Scholar]
  74. Lorenzani S, Tilgner A. 2001. Fluid instabilities in precessing spheroidal cavities. J. Fluid Mech. 447:111–28 [Google Scholar]
  75. Lorenzani S, Tilgner A. 2003. Inertial instabilities of fluid flow in precessing spheroidal shells. J. Fluid Mech. 492:363–79 [Google Scholar]
  76. Lyttleton R. 1953. The Stability of Rotating Liquid Masses Cambridge, UK: Cambridge Univ. Press
  77. Malkus WVR. 1963. Precessional torques as the cause of geomagnetism. J. Geophys. Res. 68:2871–86 [Google Scholar]
  78. Malkus WVR. 1968. Precession of the Earth as the cause of geomagnetism. Science 160:259–64 [Google Scholar]
  79. Malkus WVR. 1989. An experimental study of global instabilities due to the tidal (elliptical) distortion of a rotating elastic cylinder. Geophys. Astrophys. Fluid Dyn. 48:123–34 [Google Scholar]
  80. Melchior P, Ducarme B. 1986. Detection of inertial gravity oscillations in the Earth's core with a superconducting gravimeter at Brussels. Phys. Earth Planet. Inter. 42:129–34 [Google Scholar]
  81. Meyer J, Wisdom J. 2011. Precession of the lunar core. Icarus 211:921–24 [Google Scholar]
  82. Miyazaki T, Fukumoto Y. 1992. Three-dimensional instability of strained vortices in a stably stratified fluid. Phys. Fluids A 4:2515–22 [Google Scholar]
  83. Moore D, Saffman P. 1975. The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. A 346:413–25 [Google Scholar]
  84. Morize C, Le Bars M, Le Gal P, Tilgner A. 2010. Experimental determination of zonal winds driven by tides. Phys. Rev. Lett. 104:214501 [Google Scholar]
  85. Neuberg J, Hinderer J, Zürn W. 1987. Stacking gravity tide observations in central Europe for the retrieval of the complex eigenfrequency of the nearly diurnal free-wobble. Geophys. J. R. Astron. Soc. 91:853–68 [Google Scholar]
  86. Newton I. 1999 (1687). The Principia: Mathematical Principles of Natural Philosophy transl IB Cohen, A Whitman, J Budenz. Berkeley: Univ. Calif. Press
  87. Noir J. 2000. Ecoulements d'un fluide dans une cavité en précession: approches numérique et expérimentale PhD Thesis, Univ. Joseph Fourier, Grenoble
  88. Noir J, Brito D, Aldridge K, Cardin P. 2001a. Experimental evidence of inertial waves in a precessing spheroidal cavity. Geophys. Res. Lett. 28:3785–88 [Google Scholar]
  89. Noir J, Cardin P, Jault D, Masson JP. 2003. Experimental evidence of non-linear resonance effects between retrograde precession and the tilt-over mode within a spheroid. Geophys. J. Int. 154:407–16 [Google Scholar]
  90. Noir J, Cébron D. 2013. Precession-driven flows in non-axisymmetric ellipsoids. J. Fluid Mech. 737:412–39 [Google Scholar]
  91. Noir J, Cébron D, Le Bars M, Sauret A, Aurnou JM. 2012. Experimental study of libration-driven zonal flows in non-axisymmetric containers. Phys. Earth Planet. Inter. 204:1–10 [Google Scholar]
  92. Noir J, Hemmerlin F, Wicht J, Baca S, Aurnou J. 2009. An experimental and numerical study of librationally driven flow in planetary cores and subsurface oceans. Phys. Earth Planet. Inter. 173:141–52 [Google Scholar]
  93. Noir J, Jault D, Cardin P. 2001b. Numerical study of the motions within a slowly precessing sphere at low Ekman number. J. Fluid Mech. 437:283–99 [Google Scholar]
  94. Ogilvie GI. 2005. Wave attractors and the asymptotic dissipation rate of tidal disturbances. J. Fluid Mech. 543:19–44 [Google Scholar]
  95. Ogilvie GI, Lesur G. 2012. On the interaction between tides and convection. Mon. Not. R. Astron. Soc. 422:1975–87 [Google Scholar]
  96. Ogilvie GI, Lin D. 2004. Tidal dissipation in rotating giant planets. Astrophys. J. 610:477–509 [Google Scholar]
  97. Ou S, Tohline J, Lindblom L. 2004. Nonlinear development of the secular bar-mode instability in rotating neutron stars. Astrophys. J. 617:490–99 [Google Scholar]
  98. Ou S, Tohline J, Motl P. 2007. Further evidence for an elliptical instability in rotating fluid bars and ellipsoidal stars. Astrophys. J. 665:1074–83 [Google Scholar]
  99. Pais M, Le Mouël J. 2001. Precession-induced flows in liquid-filled containers and in the Earth's core. Geophys. J. Int. 144:539–54 [Google Scholar]
  100. Pierrehumbert R. 1986. Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys. Rev. Lett. 57:2157–59 [Google Scholar]
  101. Poincaré H. 1910. Sur la précession des corps déformables. Bull. Astron. 27:321–56 [Google Scholar]
  102. Pozzo M, Davies C, Gubbins D, Alfè D. 2012. Thermal and electrical conductivity of iron at Earth's core conditions. Nature 485:355–58 [Google Scholar]
  103. Remus F, Mathis S, Zahn JP, Lainey V. 2012. Anelastic tidal dissipation in multi-layer planets. Astron. Astrophys. 541:A165 [Google Scholar]
  104. Riemann B. 1860. Untersuchungen über die Bewegung eines flüssigen gleich-artigen Ellipsoides. Abh. Königl. Gesell. Wiss. Göttingen 9:3–36 [Google Scholar]
  105. Rieutord M. 1991. Linear theory of rotating fluids using spherical harmonics part II, time-periodic flows. Geophys. Astrophys. Fluid Dyn. 59:185–208 [Google Scholar]
  106. Rieutord M. 2003. Evolution of rotation in binaries: physical processes. Proc. IAU Symp. 215: Stellar Rotation A Maeder, PRJ Eenens 394–403 Dordrecht: Kluwer Acad. [Google Scholar]
  107. Rieutord M, Georgeot B, Valdettaro L. 2001. Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum. J. Fluid Mech. 435:103–44 [Google Scholar]
  108. Rieutord M, Valdettaro L. 1997. Inertial waves in a rotating spherical shell. J. Fluid Mech. 341:77–99 [Google Scholar]
  109. Rieutord M, Valdettaro L. 2010. Viscous dissipation by tidally forced inertial modes in a rotating spherical shell. J. Fluid Mech. 643:363–94 [Google Scholar]
  110. Roberts PH. 1968. On the thermal instability of a rotating-fluid sphere containing heat sources. Philos. Trans. R. Soc. Lond. A 263:93–117 [Google Scholar]
  111. Roberts PH, Aurnou JM. 2012. On the theory of core-mantle coupling. Geophys. Astrophys. Fluid Dyn. 106:157–230 [Google Scholar]
  112. Roberts PH, Stewartson K. 1963. On the stability of a Maclaurin spheroid of small viscosity. Astrophys. J. 137:777–90 [Google Scholar]
  113. Roberts PH, Stewartson K. 1965. On the motion of a liquid in a spheroidal cavity of a precessing rigid body. II. Math. Proc. Camb. Philos. Soc. 61:279–88 [Google Scholar]
  114. Rochester M, Jacobs J, Smylie D, Chong K. 1975. Can precession power the geomagnetic dynamo?. Geophys. J. Int. 43:661–78 [Google Scholar]
  115. Sarson G, Jones C, Zhang K, Schubert G. 1997. Magnetoconvection dynamos and the magnetic fields of Io and Ganymede. Science 276:1106–8 [Google Scholar]
  116. Sauret A. 2013. Forcage harmonique d'écoulements en rotation: vents zonaux, ondes inertielles et instabilités PhD Thesis, Aix-Marseille Univ.
  117. Sauret A, Cébron D, Le Bars M. 2013. Spontaneous generation of inertial waves from boundary turbulence in a librating sphere. J. Fluid Mech. 728:R5 [Google Scholar]
  118. Sauret A, Cébron D, Morize C, Le Bars M. 2010. Experimental and numerical study of mean zonal flows generated by librations of a rotating spherical cavity. J. Fluid Mech. 662:260–68 [Google Scholar]
  119. Sauret A, Le Bars M, Le Gal P. 2014. Tide driven shear instability in planetary liquid cores. Geophys. Res. Lett. 416078–83
  120. Sauret A, Le Dizès S. 2013. Libration-induced mean flow in a spherical shell. J. Fluid Mech. 718:181–209 [Google Scholar]
  121. Schaeffer N, Cardin P. 2005. Quasigeostrophic model of the instabilities of the Stewartson layer in flat and depth-varying containers. Phys. Fluids 17:104111 [Google Scholar]
  122. Seyed-Mahmoud B, Aldridge K, Henderson G. 2004. Elliptical instability in rotating spherical fluid shells: application to Earth's fluid core. Phys. Earth Planet. Inter. 142:257–82 [Google Scholar]
  123. Sloudsky T. 1895. De la rotation de la terre supposée fluide à son intérieur. Bull. Soc. Imp. Nat. Mosc. 9:285–318 [Google Scholar]
  124. Stanley S, Bloxham J, Hutchison WE, Zuber MT. 2005. Thin shell dynamo models consistent with Mercury's weak observed magnetic field. Earth Planet. Sci. Lett. 234:27–38 [Google Scholar]
  125. Stewartson K. 1959. On the stability of a spinning top containing liquid. J. Fluid Mech. 5:577–92 [Google Scholar]
  126. Stewartson K. 1972. On trapped oscillations of a rotating fluid in a thin spherical shell II. Tellus 24:283–87 [Google Scholar]
  127. Stewartson K, Roberts PH. 1963. On the motion of a liquid in a spheroidal cavity of a precessing rigid body. J. Fluid Mech. 17:1–20 [Google Scholar]
  128. Suess ST. 1971. Viscous flow in a deformable rotating container. J. Fluid Mech. 45:189–201 [Google Scholar]
  129. Tilgner A. 1999a. Driven inertial oscillations in spherical shells. Phys. Rev. E 59:1789–94 [Google Scholar]
  130. Tilgner A. 1999b. Magnetohydrodynamic flow in precessing spherical shells. J. Fluid Mech. 379:303–18 [Google Scholar]
  131. Tilgner A. 2005. Precession driven dynamos. Phys. Fluids 17:034104 [Google Scholar]
  132. Tilgner A. 2007a. Rotational dynamics of the core. Treatise Geophys. 8:207–43 [Google Scholar]
  133. Tilgner A. 2007b. Zonal wind driven by inertial modes. Phys. Rev. Lett. 99:194501 [Google Scholar]
  134. Tilgner A, Busse F. 2001. Fluid flows in precessing spherical shells. J. Fluid Mech. 426:387–96 [Google Scholar]
  135. Triana S, Zimmerman D, Lathrop D. 2012. Precessional states in a laboratory model of the Earth's core. J. Geophys. Res. 117:B04103 [Google Scholar]
  136. Tsai C, Widnall S. 1976. The stability of short waves on a straight vortex filament in a weak externally imposed strain field. J. Fluid Mech. 73:721–33 [Google Scholar]
  137. Vantieghem S. 2014. Inertial modes in a rotating triaxial ellipsoid. Proc. R. Soc. A. 470:20140093
  138. Vanyo J. 1984. Earth core motions: experiments with spheroids. Geophys. J. R. Astron. Soc. 77:173–83 [Google Scholar]
  139. Vanyo J. 2004. Core-mantle relative motion and coupling. Geophys. J. Int. 158:470–78 [Google Scholar]
  140. Vanyo J, Likins PW. 1971. Measurements of energy dissipation in a liquid-filled, precessing, spherical cavity. ASME J. Appl. Mech. 38:674–82 [Google Scholar]
  141. Vanyo J, Wilde P, Cardin P, Olson P. 1995. Experiments on precessing flows in the Earth's liquid core. Geophys. J. Int. 121:136–42 [Google Scholar]
  142. Williams J, Boggs D, Yoder C, Ratcliff J, Dickey J. 2001. Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106:27933–68 [Google Scholar]
  143. Wu C, Roberts P. 2009. On a dynamo driven by topographic precession. Geophys. Astrophys. Fluid Dyn. 103:467–501 [Google Scholar]
  144. Wu C, Roberts P. 2011. High order instabilities of the Poincaré solution for precessionally driven flow. Geophys. Astrophys. Fluid Dyn. 105:287–303 [Google Scholar]
  145. Wu C, Roberts P. 2013. On a dynamo driven topographically by longitudinal libration. Geophys. Astrophys. Fluid Dyn. 107:20–44 [Google Scholar]
  146. Zatman S, Bloxham J. 1997. Torsional oscillations and the magnetic field within the Earth's core. Nature 388:760–63 [Google Scholar]
  147. Zhang K, Chan KH, Liao X. 2011. On fluid motion in librating ellipsoids with moderate equatorial eccentricity. J. Fluid Mech. 673:468–79 [Google Scholar]
  148. Zhang K, Chan KH, Liao X, Aurnou JM. 2013. The non-resonant response of fluid in a rapidly rotating sphere undergoing longitudinal libration. J. Fluid Mech. 720:212–35 [Google Scholar]
  149. Zhang K, Liao X, Earnshaw P. 2004. On inertial waves and oscillations in a rapidly rotating spheroid. J. Fluid Mech. 504:1–40 [Google Scholar]
  150. Zürn W, Richter B, Rydelek P, Neuberg J. 1987. Detection of inertial gravity oscillations in the Earth's core with a superconducting gravimeter at Brussels. Phys. Earth Planet. Inter. 49:176–78 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010814-014556
Loading
/content/journals/10.1146/annurev-fluid-010814-014556
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error