1932

Abstract

High-speed printing processes are a leading technology for the large-scale manufacture of a new generation of nanoscale and microscale devices. Central to all printing processes is the transfer of liquid from one surface to another, a seemingly simple operation that is still not well understood. A useful idealization of liquid transfer is a liquid bridge with moving contact lines being deformed between two separating surfaces. The fluid mechanics of such bridges are relevant not only to printing, but also to other important applications, such as adhesion, tribology, biology, oil recovery, and microfluidics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010814-014620
2015-01-03
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/fluid/47/1/annurev-fluid-010814-014620.html?itemId=/content/journals/10.1146/annurev-fluid-010814-014620&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmed DH, Sung HJ, Kim D-S. 2011. Simulation of non-Newtonian ink transfer between two separating plates for gravure-offset printing. Int. J. Heat Fluid Flow 32:298–307 [Google Scholar]
  2. Baer TA, Cairncross RA, Schunk PR, Rao RR, Sackinger PA. 2000. A finite element method for free surface flows of incompressible fluids in three dimensions. Part II. Dynamic wetting lines. Int. J. Numer. Methods Fluids 33:405–27 [Google Scholar]
  3. Balu B, Berry AD, Hess DW, Breedveld V. 2009. Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications. Lab Chip 9:3066–75 [Google Scholar]
  4. Basaran OA, Gao H, Bhat PP. 2013. Nonstandard inkjets. Annu. Rev. Fluid Mech. 45:85–113 [Google Scholar]
  5. Benkreira H, Cohu O. 1998. Direct forward gravure coating on unsupported web. Chem. Eng. Sci. 53:1223–31 [Google Scholar]
  6. Bery Y. 1976. Gravure printing on non-absorbing materials. Proc. Tech. Assoc. Graphic Arts207–20 [Google Scholar]
  7. Blake TD. 2006. The physics of moving wetting lines. J. Colloid Interface Sci. 299:1–13 [Google Scholar]
  8. Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E. 2009. Wetting and spreading. Rev. Mod. Phys. 81:739–805 [Google Scholar]
  9. Bould DC, Hamblyn SM, Gethin DT, Claypole TC. 2011. Effect of impression pressure and anilox specification on solid and halftone density. Proc. IMechE B J. Eng. Manuf. 225:699–709 [Google Scholar]
  10. Bower CL, Simister EA, Bonnist E, Paul K, Pightling N, Blake TD. 2007. Continuous coating of discrete areas of a flexible web. AIChE J. 53:1644–57 [Google Scholar]
  11. Byrne CJ, Kueck AM, Baker SP, Steen PH. 2007. In situ manipulation of cooling rates during planar-flow melt spinning processing. Mater. Sci. Eng. A 459:172–81 [Google Scholar]
  12. Cai S, Bhushan B. 2008. Meniscus and viscous forces during separation of hydrophilic and hydrophobic surfaces with liquid-mediated contacts. Mater. Sci. Eng. R 61:78–106 [Google Scholar]
  13. Campana DM, Carvalho MS. 2014. Liquid transfer from single cavities to rotating rolls. J. Fluid Mech. 747545–71 [Google Scholar]
  14. Carter TF. 1955. The Invention of Printing in China and Its Spread Westward rev. LC Goodrich New York: Roland, 2nd ed.. [Google Scholar]
  15. Chadov AV, Yakhnin ED. 1979. Investigation of the transfer of a liquid from one solid surface to another. I. Slow transfer. Method of approximate calculation. Kolloidn. Zh. 41:700–3 [Google Scholar]
  16. Chauhan S, Palmieri F, Bonnecaze RT, Wilson CG. 2009. Pinning at template feature edges for step and flash imprint lithography. J. Appl. Phys. 106:034902 [Google Scholar]
  17. Chen H, Amirfazli A, Tang T. 2013. Modeling liquid bridge between surfaces with contact angle hysteresis. Langmuir 29:3310–19 [Google Scholar]
  18. Chen H, Tang T, Amirfazli A. 2014. Liquid transfer mechanism between two surfaces and the role of contact angles. Soft Matter 10:2503–7 [Google Scholar]
  19. Chiu-Webster S, Lister JR. 2006. The fall of a viscous thread onto a moving surface: a ‘fluid-mechanical sewing machine.’. J. Fluid Mech. 569:89–111 [Google Scholar]
  20. Chuang H-K, Lee C-C, Liu T-J. 2008. An experimental study on the pickout of scaled-up gravure cells. Int. Polymer Proc. 23:216–22 [Google Scholar]
  21. Cohen C, Restagno F, Poulard C, Léger L. 2010. Wetting and dewetting transition: an efficient toolbox for characterizing low-energy surfaces. Langmuir 26:15345–49 [Google Scholar]
  22. Darhuber AA, Troian SM. 2005. Principles of microfluidic actuation by modulation of surface stresses. Annu. Rev. Fluid Mech. 37:425–55 [Google Scholar]
  23. Darhuber AA, Troian SM, Wagner S. 2001. Physical mechanisms governing pattern fidelity in microscale offset printing. J. Appl. Phys. 90:3602–9 [Google Scholar]
  24. De Souza EJ, Brinkmann M, Mohrdieck C, Crosby A, Arzt E. 2008. Capillary forces between chemically different substrates. Langmuir 24:10161–68 [Google Scholar]
  25. Deganello D, Williams AJ, Croft TN, Lubansky AS, Gethin DT, Claypole TC. 2011. Level-set method for the modeling of liquid bridge formation and break-up. Comput. Fluids 40:42–51 [Google Scholar]
  26. Dejam M, Hassanzadeh H. 2011. Formation of liquid bridges between porous matrix blocks. AIChE J. 57:286–98 [Google Scholar]
  27. Derby B. 2010. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40:395–414 [Google Scholar]
  28. Diao Y, Tee BC-K, Giri G, Xu J, Kim DH. et al. 2013. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat. Mater. 12:665–71 [Google Scholar]
  29. Dimitrakopoulos P, Higdon. 2003. On the displacement of fluid bridges from solid surfaces in viscous pressure-driven flows. Phys. Fluids 15:3255–58 [Google Scholar]
  30. Dodds S. 2011. Stretching and slipping liquid bridges: liquid transfer in industrial printing PhD Thesis, Univ. Minn., Minneapolis [Google Scholar]
  31. Dodds S, Carvalho MS, Kumar S. 2009. Stretching and slipping of liquid bridges near plates and cavities. Phys. Fluids 21:092103 [Google Scholar]
  32. Dodds S, Carvalho MS, Kumar S. 2011a. Stretching liquid bridges with bubbles: the effect of air bubbles on liquid transfer. Langmuir 27:1556–59 [Google Scholar]
  33. Dodds S, Carvalho MS, Kumar S. 2011b. Stretching liquid bridges with moving contact lines: the role of inertia. Phys. Fluids 23:092101 [Google Scholar]
  34. Dodds S, Carvalho MS, Kumar S. 2012. The dynamics of three-dimensional liquid bridges with pinned and moving contact lines. J. Fluid Mech. 707:521–40 [Google Scholar]
  35. Donigian DW. 1978. The mechanism of whiskering in gravure printing. Proc. Tech. Assoc. Graphic Arts192–221 [Google Scholar]
  36. Dubé M, Drolet F, Daneault C, Mangin PJ. 2008. Hydrodynamics of fluid transfer. J. Pulp Pap. Sci. 34:174–81 [Google Scholar]
  37. Eggers J. 1997. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69:865–929 [Google Scholar]
  38. Eggers J, Villermaux E. 2008. Physics of liquid jets. Rep. Prog. Phys. 71:036601 [Google Scholar]
  39. Fabié L, Durou H, Ondarçuhu T. 2010. Capillary forces during liquid nanodispensing. Langmuir 26:1870–78 [Google Scholar]
  40. Gat A, Navaz H, Gharib M. 2011. Dynamics of freely moving plates connected by a shallow liquid bridge. Phys. Fluids 23:097101 [Google Scholar]
  41. George HF. 1982. Electrostatically assisted ink transfer in gravure printing. Colloids and Surfaces in Reprographic Technology M Hair, MD Croucher 359–70 Washington, DC: Am. Chem. Soc. [Google Scholar]
  42. Ghadiri F, Ahmed DH, Sung HJ, Shirani E. 2011. Non-Newtonian ink transfer in gravure offset printing. Int. J. Heat Fluid Flow 32:308–17 [Google Scholar]
  43. Gramlich CM, Mazouchi A, Homsy GM. 2004. Time-dependent free surface Stokes flow with a moving contact line. II. Flow over wedges and trenches. Phys. Fluids 16:1660–67 [Google Scholar]
  44. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. 2014. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86:3240–53 [Google Scholar]
  45. Gupta C, Mensing GA, Shannon MA, Kenis PJA. 2007. Double transfer printing of small volumes of liquids. Langmuir 23:2906–14 [Google Scholar]
  46. Hambsch M, Reuter K, Stanel M, Schmidt G, Kempa H. et al. 2010. Uniformity of fully gravure printed organic field-effect transistors. Mater. Sci. Eng. B 170:93–98 [Google Scholar]
  47. Hewson RW, Kapur N, Gaskell PH. 2009. Modeling the discrete-cell gravure roll coating process: a new perspective. Eur. Phys. J. Spec. Top. 166:99–102 [Google Scholar]
  48. Hewson RW, Kapur N, Gaskell PH. 2011. A two-scale model for discrete cell gravure roll coating. Chem. Eng. Sci. 66:3666–74 [Google Scholar]
  49. Hoda N, Kumar S. 2008. Boundary integral simulations of liquid emptying from a model gravure cell. Phys. Fluids 20:092106 [Google Scholar]
  50. Hohne DN, Chen H-Y, Lahann J, Solomon MJ. 2008. Near-surface structure of lithographic ink-fountain solution emulsions on model substrates. Colloids Surf. A 326:138–46 [Google Scholar]
  51. Huang W-X, Lee S-H, Sung HJ, Lee T-M, Kim D-S. 2008. Simulation of liquid transfer between separating walls for modeling micro-gravure-offset printing. Int. J. Heat Fluid Flow 29:1436–46 [Google Scholar]
  52. Kalpathy SK, Francis LF, Kumar S. 2010. Shear-induced suppression of rupture in two-layer thin liquid films. J. Colloid Interface Sci. 348:271–79 [Google Scholar]
  53. Kalpathy SK, Francis LF, Kumar S. 2012. Thin-film models of liquid displacement on chemically patterned surfaces for lithographic printing processes. J. Colloid Interface Sci. 383:155–66 [Google Scholar]
  54. Kalpathy SK, Francis LF, Kumar S. 2013. Thermally induced delay and reversal of liquid film dewetting on chemically patterned surfaces. J. Colloid Interface Sci. 408:212–19 [Google Scholar]
  55. Kang B, Lee WH, Cho K. 2013. Recent advances in organic transistor printing processes. ACS Appl. Mater. Interfaces 5:2302–15 [Google Scholar]
  56. Kang HW, Sung HJ, Lee T-M, Kim D-S, Kim C-J. 2009. Liquid transfer between two separating plates for micro-gravure-offset printing. J. Micromech. Microeng. 19:015025 [Google Scholar]
  57. Kapur N, Abbott SJ, Dolden ED, Gaskell PH. 2013. Predicting the behavior of screen printing. IEEE Trans. Compon. Packag. Manuf. Technol. 3:508–15 [Google Scholar]
  58. Kasunich CL. 1998. Gravure Primer Pittsburgh, PA: GATF [Google Scholar]
  59. Kim J, Moon M-W, Lee K-R, Mahadevan L, Kim H-Y. 2011. Hydrodynamics of writing with ink. Phys. Rev. Lett. 107:264501 [Google Scholar]
  60. Kim S, Na Y. 2010. Study on the web deformation in ink transfer process for R2R printing application. Int. J. Precis. Eng. Manuf. 11:945–54 [Google Scholar]
  61. Kipphan H. 2001. Handbook of Print Media Berlin: Springer [Google Scholar]
  62. Kitsomboonloha R, Morris SJS, Rong X, Subramanian V. 2012. Femtoliter-scale patterning by high-speed, highly scaled inverse gravure printing. Langmuir 28:16711–23 [Google Scholar]
  63. Krebs FC. 2009. Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Solar Cells 93:394–412 [Google Scholar]
  64. Kusumaatmaja H, Lipowsky R. 2010. Equilibrium morphologies and effective spring constants of capillary bridges. Langmuir 26:18734–41 [Google Scholar]
  65. Lauga E, Brenner MP, Stone HA. 2007. Microfluidics: the no-slip boundary condition. Springer Handbook of Experimental Fluid Dynamics C Tropea, AL Yarin, JF Foss 1219–40 Berlin: Springer [Google Scholar]
  66. Lee A. 2013. The third decade of microfluidics. Lab Chip 13:1660–61 [Google Scholar]
  67. Lee C-C, Hu S-H, Liu T-J, Tiu C. 2012. Three-dimensional observation on the liquid emptying process from a scaled-up gravure cell. Int. Polymer Proc. 27:128–37 [Google Scholar]
  68. Lee JA, Rothstein JP, Pasquali M. 2013. Computational study of viscoelastic effects on liquid transfer during gravure printing. J. Non-Newton. Fluid Mech. 199:1–11 [Google Scholar]
  69. Lee M, Kim H-Y. 2014. Toward nanoscale three-dimensional printing: nanowalls built of electrospun nanofibers. Langmuir 30:1210–14 [Google Scholar]
  70. Lee S, Na Y. 2009. Effect of roll patterns on the ink transfer in R2R printing process. Int. J. Precis. Eng. Manuf. 10:123–30 [Google Scholar]
  71. Lee S, Na Y. 2010. Analysis of the ink transfer mechanism in R2R application. J. Mech. Sci. Technol. 24:293–96 [Google Scholar]
  72. Lenz RD, Kumar S. 2007a. Competitive displacement of thin liquid films on chemically patterned substrates. J. Fluid Mech. 571:33–57 [Google Scholar]
  73. Lenz RD, Kumar S. 2007b. Instability of confined thin liquid film trilayers. J. Colloid Interface Sci. 316:660–70 [Google Scholar]
  74. Liu F, Shen W. 2008. Forced wetting and dewetting of liquids on solid surfaces and their roles in offset printing. Colloids Surf. A 316:62–69 [Google Scholar]
  75. Lockwood AJ, Anantheshwara K, Bobji MS, Inkson BJ. 2011. Friction-formed liquid droplets. Nanotechnology 22:105703 [Google Scholar]
  76. Lutfurakhmanov A, Loken GK, Schulz DL, Akhatov IS. 2010. Capillary-based liquid microdroplet deposition. Appl. Phys. Lett. 97:124107 [Google Scholar]
  77. MacPhee J. 1998. Fundamentals of Lithographic Printing I Mechanics of Printing Pittsburgh, PA: GATF [Google Scholar]
  78. Marín JMR, Rasmussen HK, Hassager O. 2010. 3D simulation of nano-imprint lithography. Nanoscale Res. Lett. 5:274–78 [Google Scholar]
  79. Matthews JNA. 2011. 3D printing breaks out of its mold. Phys. Today 64:25–28 [Google Scholar]
  80. Megat Ahmed MMH, Gethin DT, Claypole TC, Roylance BJ. 1997. A model for ink impression into a porous substrate. J. Phys. D 30:2276–84 [Google Scholar]
  81. Michel B. 2002. Printing meets lithography. Ind. Phys. 8:16–19 [Google Scholar]
  82. Michel B, Bernard A, Bietsch A, Delamarche E, Geissler M. et al. 2001. Printing meets lithography: soft approaches to high-resolution printing. IBM J. Res. Dev. 45:697–719 [Google Scholar]
  83. Moonen PF, Yakimets I, Huskens J. 2012. Fabrication of transistors on flexible substrates: from mass-printing to high-resolution alternative lithography strategies. Adv. Mater. 24:5526–41 [Google Scholar]
  84. Morris KB. 1968. Electrostatically assisted gravure. Print. Technol. 12:180–93 [Google Scholar]
  85. Nase J, Lindner A, Creton C. 2008. Pattern formation during deformation of a confined viscoelastic layer: from a viscous liquid to a soft elastic solid. Phys. Rev. Lett. 101:074503 [Google Scholar]
  86. Noh J, Yeom D, Lim C, Cha H, Han J. et al. 2010. Scalability of roll-to-roll gravure-printed electrodes on plastic foils. IEEE Trans. Elect. Packag. Manuf. 33:275–83 [Google Scholar]
  87. Panditaratne JC. 2003. Deflection of microjets induced by asymmetric heating and related free surface flows with moving contact lines PhD Thesis, Purdue Univ., West Lafayette, IN [Google Scholar]
  88. Powell CA, Savage MD, Gaskell PH. 2000. Modelling the meniscus evacuation problem in direct gravure coating. Trans. IChemE A 78:61–67 [Google Scholar]
  89. Powell CA, Savage MD, Guthrie JT. 2002. Computational simulation of the printing of Newtonian liquid from a trapezoidal cavity. Int. J. Numer. Methods Heat Fluid Flow 12:338–55 [Google Scholar]
  90. Powell CA, Savage MD, Guthrie JT. 2005. Modelling printing processes: a computational approach. Surf. Coat. Int. B 88:171–76 [Google Scholar]
  91. Prakash M, Quéré Bush D. 2008. Surface tension transport of prey by feeding shorebirds: the capillary ratchet. Science 320:931–34 [Google Scholar]
  92. Pranckh FR, Coyle DJ. 1997. Elastohydrodynamic coating systems. Liquid Film Coating SF Kistler, PM Schweizer 599–635 London: Chapman & Hall [Google Scholar]
  93. Puah LS, Sedev R, Fornasiero D, Ralston J, Blake T. 2010. Influence of surface charge on wetting kinetics. Langmuir 26:17218–24 [Google Scholar]
  94. Pulkrabek WW, Munter JD. 1983. Knurl roll design for stable rotogravure coating. Chem. Eng. Sci. 38:1309–14 [Google Scholar]
  95. Qian B, Breuer KS. 2011. The motion, stability and breakup of a stretching liquid bridge with a receding contact line. J. Fluid Mech. 666:554–72 [Google Scholar]
  96. Qian B, Loureiro M, Gagnon DA, Tripathi A, Breuer KS. 2009. Micron-scale droplet deposition on a hydrophobic surface using a retreating syringe. Phys. Rev. Lett. 102:164502 [Google Scholar]
  97. Ramkrishnan A, Kumar S. 2013. Electrohydrodynamic effects in the leveling of coatings. Chem Eng. Sci. 101:785–99 [Google Scholar]
  98. Reddy S, Schunk PR, Bonnecaze RT. 2005. Dynamics of low capillary number interfaces moving through sharp features. Phys. Fluids 17:122104 [Google Scholar]
  99. Reis PM, Jung S, Aristoff JM, Stocker R. 2010. How cats lap: water uptake by Felis catus. Science 330:1231–34 [Google Scholar]
  100. Ribe NM, Habibi M, Bonn D. 2012. Liquid rope coiling. Annu. Rev. Fluid Mech. 44:249–66 [Google Scholar]
  101. Rogers JA, Bao Z, Baldwin K, Dodabalapur A, Crone B. et al. 2001. Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl. Acad. Sci. USA 98:4835–40 [Google Scholar]
  102. Ruschak KJ. 1985. Coating flows. Annu. Rev. Fluid Mech. 17:65–89 [Google Scholar]
  103. Salaita K, Wang Y, Mirkin CA. 2007. Applications of dip-pen nanolithography. Nat. Nanotechnol. 2:145–55 [Google Scholar]
  104. Sankaran AK, Rothstein JP. 2012. Effect of viscoelasticity on liquid transfer during gravure printing. J. Non-Newton. Fluid Mech. 175–176:64–75 [Google Scholar]
  105. Schwartz LW. 2002. Numerical modeling of liquid withdrawal from gravure cavities in coating operations: the effect of cell pattern. J. Eng. Math. 42:243–53 [Google Scholar]
  106. Schwartz LW, Moussalli P, Campbell P, Eley RR. 1998. Numerical modelling of liquid withdrawal from gravure cavities in coating operations. Trans. IChemE A 76:22–28 [Google Scholar]
  107. Shen W, Hutton B, Liu F. 2004. A new understanding on the mechanism of fountain solution in the prevention of ink transfer to the non-image area in conventional offset lithography. J. Adhes. Sci. Technol. 18:1861–87 [Google Scholar]
  108. Shen W, Mao Y, Murray G, Tian J. 2008. Adhesion and anti-adhesion of viscous fluids on solid surfaces: a study of ink transfer mechanism in waterless offset printing. J. Colloid Interface Sci. 318:348–57 [Google Scholar]
  109. Sibley DN, Savva N, Kalliadasis S. 2012. Slip or not slip? A methodical examination of the interface formation model using two-dimensional droplet spreading on a horizontal planar substrate as a prototype system. Phys. Fluids 24:082105 [Google Scholar]
  110. Snoeijer JH, Andreotti B. 2013. Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45:269–92 [Google Scholar]
  111. Sprittles JE, Shikhmurzaev YD. 2013. Finite element simulation of dynamic wetting flows as an interface formation process. J. Comput. Phys. 233:34–65 [Google Scholar]
  112. Sprycha R. 2002. Interfacial aspects of printing. Encyclopedia of Surface and Colloid Science AT Hubbard 2660–76 New York: Marcel Dekker [Google Scholar]
  113. Squires TM, Quake SR. 2005. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77:977–1026 [Google Scholar]
  114. Sui Y, Ding H, Spelt PDM. 2014. Numerical simulations of flows with moving contact lines. Annu. Rev. Fluid Mech. 46:97–119 [Google Scholar]
  115. Sung D, de la Fuente Vornbrock A, Subramanian V. 2010. Scaling and optimization of gravure-printed silver nanoparticle lines for printed electronics. IEEE Trans. Compon. Packag. Technol. 33:105–14 [Google Scholar]
  116. Tåg C-M, Pykönen M, Rosenholm JB, Backfolk K. 2009. Wettability of model fountain solutions: the influence on topo-chemical and -physical properties of offset paper. J. Colloid Interface Sci. 330:428–36 [Google Scholar]
  117. Tobjörk D, Österbacka R. 2011. Paper electronics. Adv. Mater. 23:1935–61 [Google Scholar]
  118. Twyman M. 1998. The British Library Guide to Printing: History and Techniques London: Br. Libr. [Google Scholar]
  119. Ubal S, Xu B, Grassia P, Derby B. 2012. Continuous deposition of a liquid thread onto a moving substrate: numerical analysis and comparison with experiments. J. Fluids Eng. 134:021301 [Google Scholar]
  120. Villanueva W, Sjödahl J, Stjernström M, Roeraade J, Amberg G. 2007. Microdroplet deposition under a liquid medium. Langmuir 23:1171–77 [Google Scholar]
  121. Vogel MJ, Steen PH. 2010. Capillarity-based switchable adhesion. Proc. Natl. Acad. Sci. USA 107:3377–81 [Google Scholar]
  122. Wang L, McCarthy TJ. 2013. Shear distortion and failure of capillary bridges: wetting information beyond contact angle analysis. Langmuir 29:7776–81 [Google Scholar]
  123. Ward T. 2011. Capillary-pressure driven adhesion of rigid-planar substrates. J. Colloid Interface Sci. 354:816–24 [Google Scholar]
  124. Weinstein SJ, Ruschak KJ. 2004. Coating flows. Annu. Rev. Fluid Mech. 36:29–53 [Google Scholar]
  125. White GS, Breward CJW, Howell PD, Young RJS. 2006. A model for the screen-printing of Newtonian fluids. J. Eng. Math. 54:49–70 [Google Scholar]
  126. Wiklund HS, Uesaka T. 2012. Simulations of shearing capillary bridges. J. Chem. Phys. 136:094703 [Google Scholar]
  127. Yakhnin ED, Chadov AV. 1983. Investigation of the transfer of a liquid from one solid surface to another. II. Dynamic transfer. Kolloidn. Zh. 41:1034–39 [Google Scholar]
  128. Yin X, Kumar S. 2005. Lubrication flow between a cavity and a flexible wall. Phys. Fluids 17:063101 [Google Scholar]
  129. Yin X, Kumar S. 2006a. Flow visualization of the liquid-emptying process in scaled-up gravure grooves and cells. Chem. Eng. Sci. 61:1146–56 [Google Scholar]
  130. Yin X, Kumar S. 2006b. Two-dimensional simulations of flow near a cavity and a flexible solid boundary. Phys. Fluids 18:063103 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010814-014620
Loading
/content/journals/10.1146/annurev-fluid-010814-014620
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error