Small objects that are more dense than water may still float at the air-water interface because of surface tension. Whether this is possible depends not only on the density and size of the object, but also on its shape and surface properties, whether other objects are nearby, and how gently the object is placed at the interface. This review surveys recent work to quantify when objects can float and when they must sink. Much interest in this area has been driven by studies of the adaptations of water-walking insects to life at interfaces. I therefore discuss these results in the context of this and other applications.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abkarian M, Protière S, Aristoff JM, Stone HA. 2013. Gravity-induced encapsulation of liquids by destabilization of granular rafts. Nat. Commun. 4:1895 [Google Scholar]
  2. Aristoff JM, Truscott TT, Techet AH, Bush JWM. 2010. The water entry of decelerating spheres. Phys. Fluids 22:032102 [Google Scholar]
  3. Ata S, Jameson GJ. 2005. The formation of bubble clusters in flotation cells. Int. J. Miner. Process. 76:123–39 [Google Scholar]
  4. Berdan C II, Leal LG. 1982. Motion of a sphere in the presence of a deformable interface: I. Perturbation of the interface from flat: the effects on drag and torque. J. Colloid Interface Sci. 87:62–80 [Google Scholar]
  5. Bhatnager R, Finn R. 2006. Equilibrium configurations of an infinite cylinder in an unbounded fluid. Phys. Fluids 18:047103 [Google Scholar]
  6. Binks BP, Horozov TS. 2006. Colloidal particles at liquid interfaces: an introduction. Colloidal Particles at Liquid Interfaces BP Binks, TS Horozov 1–74 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  7. Bonhomme R, Magnaudet J, Duval F, Piar B. 2012. Inertial dynamics of air bubbles crossing a horizontal fluid-fluid interface. J. Fluid Mech. 707:405–43 [Google Scholar]
  8. Burton L, Bush JWM. 2012. Can flexibility help you float?. Phys. Fluids 24:101701 [Google Scholar]
  9. Bush JWM, Hu DL. 2006. Walking on water: biolocomotion at the interface. Annu. Rev. Fluid Mech. 38:339–69 [Google Scholar]
  10. Bush JWM, Hu DL, Prakash M. 2008. The integument of water-walking arthropods: form and function. Adv. Insect Physiol. 34:117–92 [Google Scholar]
  11. Cooray PLHM. 2013. The capillary interaction between objects at liquid interfaces PhD Thesis, Univ. Cambridge [Google Scholar]
  12. de Gennes PG, Brochard-Wyart F, Quéré D. 2003. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves New York: Springer [Google Scholar]
  13. Extrand CW, Moon SI. 2009a. Critical meniscus height of liquids at the circular edge of cylindrical rods and disks. Langmuir 25:992–96 [Google Scholar]
  14. Extrand CW, Moon SI. 2009b. Will it float? Using cylindrical disks and rods to measure and model capillary forces. Langmuir 25:2865–68 [Google Scholar]
  15. Feng XQ, Gao X, Wu Z, Jiang L, Zheng QS. 2007. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Langmuir 23:4892–96 [Google Scholar]
  16. Finn R. 1986. Equilibrium Capillary Surfaces New York: Springer [Google Scholar]
  17. Flynn MR, Bush JWM. 2008. Underwater breathing: the mechanics of plastron respiration. J. Fluid Mech. 608:275–96 [Google Scholar]
  18. Galilei G. 1663. Discourse Concerning the Natation of Bodies upon, and Submersion in, the Water London: William Leybourn [Google Scholar]
  19. Gao X, Jiang L. 2004. Water-repellent legs of water striders. Nature 432:36 [Google Scholar]
  20. Hartland S. 1968. The approach of a rigid sphere to a deformable liquid/liquid interface. J. Colloid Interface Sci. 26:383–94 [Google Scholar]
  21. Hartland S. 1969. The profile of the draining film between a rigid sphere and a deformable fluid-liquid interface. Chem. Eng. Sci. 24:987–95 [Google Scholar]
  22. Hesla TI, Joseph DD. 2004. The maximum contact angle at the rim of a heavy floating disk. J. Colloid Interface Sci. 279:186–91 [Google Scholar]
  23. Holdgate MW. 1955. The wetting of insect cuticles by water. J. Exp. Biol. 32:591–617 [Google Scholar]
  24. Hu DL, Chan B, Bush JWM. 2003. The hydrodynamics of water strider locomotion. Nature 424:663–66 [Google Scholar]
  25. Hu DL, Prakash M, Chan B, Bush JWM. 2007. Water-walking devices. Exp. Fluids 43:769–78 [Google Scholar]
  26. Hu HMS, Watson GS, Cribb BW, Watson JA. 2011. Non-wetting wings and legs of the cranefly aided by fine structures of the cuticle. J. Exp. Biol. 214:915–20 [Google Scholar]
  27. Jackson JD. 1998. Classical Electrodynamics New York: Wiley [Google Scholar]
  28. Ji XY, Feng XQ. 2014. Towards understanding elastocapillarity: comparing wetting of soft and rigid plates. J. Phys. Condens. Matter 26:155105 [Google Scholar]
  29. Ji XY, Wang JW, Feng XQ. 2012. Role of flexibility in the water repellency of water strider legs: theory and experiment. Phys. Rev. E 85:021607 [Google Scholar]
  30. Jiang ZX, Geng L, Huang YD. 2010a. Design and fabrication of hydrophobic copper mesh with striking loading capacity and pressure resistance. J. Phys. Chem. C 114:9370–78 [Google Scholar]
  31. Jiang ZX, Geng L, Huang YD. 2010b. Fabrication of superhydrophobic 3-D braided carbon fiber fabric boat. Mater. Lett. 64:2441–43 [Google Scholar]
  32. Jin H, Kettunen M, Laiho A, Pynnönen H, Paltakari J. et al. 2011. Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 27:1930–34 [Google Scholar]
  33. Keller JB. 1998. Surface tension force on a partly submerged body. Phys. Fluids 10:3009–10 [Google Scholar]
  34. Larmour IA, Saunders GC, Bell SEJ. 2008. Sheets of large superhydrophobic metal particles self assembled on water by the Cheerios effect. Angew. Chem. Int. Ed. Engl. 120:5121–23 [Google Scholar]
  35. Lee DG, Kim HY. 2008. Impact of a superhydrophobic sphere onto water. Langmuir 24:142–45 [Google Scholar]
  36. Lee DG, Kim HY. 2009. The role of superhydrophobicity in the adhesion of a floating cylinder. J. Fluid Mech. 624:23–32 [Google Scholar]
  37. Lee DG, Kim HY. 2011. Sinking of small sphere at low Reynolds number through interface. Phys. Fluids 23:072104 [Google Scholar]
  38. Lee SH, Leal LG. 1982. The motion of a sphere in the presence of a deformable interface. II: A numerical study of the translation of a sphere normal to an interface. J. Colloid Interface Sci. 87:81–106 [Google Scholar]
  39. Liu JL, Feng XQ, Wang GF. 2007. Buoyant force and sinking conditions of a hydrophobic thin rod floating on water. Phys. Rev. E 76:066103 [Google Scholar]
  40. Lo LL. 1983. The meniscus on a needle: a lesson in matching. J. Fluid Mech. 132:65–78 [Google Scholar]
  41. Lumay G, Obara N, Weyer F, Vandewalle N. 2013. Self-assembled magnetocapillary swimmers. Soft Matter 9:2420–25 [Google Scholar]
  42. Manga M, Stone HA. 1995. Low Reynolds number motion of bubbles, drops and rigid spheres through fluid-fluid interfaces. J. Fluid Mech. 287:279–98 [Google Scholar]
  43. Mansfield EH, Sepangi HR, Eastwood EA. 1997. Equilibrium and mutual attraction or repulsion of objects supported by surface tension. Philos. Trans. R. Soc. Lond. A 355:869–919 [Google Scholar]
  44. Marmur A, Ras RHA. 2011. The porous nano-fibers raft: analysis of load-carrying mechanism and capacity. Soft Matter 7:7382–85 [Google Scholar]
  45. McCuan J, Treinen R. 2013. Capillarity and Archimedes' principle. Pac. J. Math. 265:123–50 [Google Scholar]
  46. Melle S, Lask M, Fuller GG. 2005. Pickering emulsions with controllable stability. Langmuir 21:2158–62 [Google Scholar]
  47. Ozcan O, Wang H, Taylor JD, Sitti M. 2010. Surface tension driven water strider robot using circular footpads. Proc. IEEE Int. Conf. Robot. Autom.3799–804 New York: IEEE [Google Scholar]
  48. Pan Q, Wang M. 2009. Miniature boats with striking loading capacity fabricated from superhydrophobic copper meshes. ACS Appl. Mater. Interfaces 1:420–23 [Google Scholar]
  49. Park KJ, Kim HY. 2008. Bending of floating flexible legs. J. Fluid Mech. 610:381–90 [Google Scholar]
  50. Rapacchietta AV, Neumann AW. 1977. Force and free-energy analyses of small particles at fluid interfaces. II: Spheres. J. Colloid Interface Sci. 59:555–67 [Google Scholar]
  51. Rapacchietta AV, Neumann AW, Omenyi SN. 1977. Force and free-energy analyses of small particles at fluid interfaces. I: Cylinders. J. Colloid Interface Sci. 59:541–54 [Google Scholar]
  52. Roman B, Bico J. 2010. Elasto-capillarity: deforming an elastic structure with a liquid droplet. J. Phys. Condens. Matter 22:493101 [Google Scholar]
  53. Scheludko A, Toshev BV, Bojadjiev T. 1976. Attachment of particles to a liquid surface (capillary theory of flotation). J. Chem. Soc. Faraday Trans. I 72:2815–28 [Google Scholar]
  54. Song YS, Sitti M. 2007. Surface-tension-driven biologically inspired water strider robots: theory and experiments. IEEE Trans. Robot. 23:578–89 [Google Scholar]
  55. Straulino S, Gambi CMC, Righini A. 2011. Experiments on buoyancy and surface tension following Galileo Galilei. Am. J. Phys. 79:32–36 [Google Scholar]
  56. Tavacoli JW, Katgert G, Kim EG, Cates ME, Clegg PS. 2012. Size limit for particle-stabilized emulsion droplets under gravity. Phys. Rev. Lett. 108:268306 [Google Scholar]
  57. Tavacoli JW, Thijssen JHJ, Clegg PS. 2011. Particle-stabilized oscillating diver: a self-assembled responsive capsule. Soft Matter 7:7969–72 [Google Scholar]
  58. Tsai SSH, Wexler JS, Wan J, Stone HA. 2011. Conformal coating of particles in microchannels by magnetic forcing. Appl. Phys. Lett. 99:153509 [Google Scholar]
  59. Tsai SSH, Wexler JS, Wan J, Stone HA. 2013. Microfluidic ultralow interfacial tensiometry with magnetic particles. Lab Chip 13:119–25 [Google Scholar]
  60. Vandewalle N, Clermont L, Terwagne D, Dorbolo S, Mersch E, Lumay G. 2012. Symmetry breaking in a few-body system with magnetocapillary interactions. Phys. Rev. E 85:041402 [Google Scholar]
  61. Vandewalle N, Obara N, Lumay G. 2013. Mesoscale structures from magnetocapillary self-assembly. Eur. Phys. J. E 36:127 [Google Scholar]
  62. Vella D. 2007. The fluid mechanics of floating and sinking PhD Thesis, Univ. Cambridge [Google Scholar]
  63. Vella D. 2008. Floating objects with finite resistance to bending. Langmuir 24:8701–6 [Google Scholar]
  64. Vella D, Lee DG, Kim HY. 2006a. The load supported by small floating objects. Langmuir 22:5979–81 [Google Scholar]
  65. Vella D, Li J. 2010. The impulsive motion of a small cylinder at an interface. Phys. Fluids 22:052104 [Google Scholar]
  66. Vella D, Mahadevan L. 2005. The “Cheerios effect.”. Am. J. Phys. 73:814–25 [Google Scholar]
  67. Vella D, Metcalfe PD. 2007. Surface tension dominated impact. Phys. Fluids 19:072108 [Google Scholar]
  68. Vella D, Metcalfe PD, Whittaker RJ. 2006b. Equilibrium conditions for the floating of multiple interfacial objects. J. Fluid Mech. 549:215–24 [Google Scholar]
  69. Wei PJ, Shen YX, Lin JF. 2009. Characteristics of water strider legs in hydrodynamic situations. Langmuir 25:7006–9 [Google Scholar]
  70. Whitesides GM, Boncheva M. 2002. Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. USA 99:4769–74 [Google Scholar]
  71. Whitesides GM, Grzybowski B. 2002. Self-assembly at all scales. Science 295:2418–21 [Google Scholar]
  72. Xue Y, Yuan H, Su W, Shi Y, Duan H. 2014. Enhanced load-carrying capacity of hairy surfaces floating on water. Proc. R. Soc. A 470:20130832 [Google Scholar]
  73. Zheng QS, Yu Y, Feng XQ. 2009. The role of adaptive-deformation of water strider leg in its walking on water. J. Adhes. Sci. Technol. 23:493–501 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error