This article reviews evidence concerning the cornerstone dissipation scaling of turbulence theory: , with =const., ϵ the dissipation rate of turbulent kinetic energy , and an integral length scale characterizing the energy-containing turbulent eddies. This scaling is intimately linked to the Richardson-Kolmogorov equilibrium cascade. Accumulating evidence shows that a significant nonequilibrium region exists in various turbulent flows in which the energy spectrum has Kolmogorov's −5/3 wave-number scaling over a wide wave-number range, yet /, with ≈1≈, a global/inlet Reynolds number, and a local turbulence Reynolds number.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Antonia RA, Pearson BR. 2000. Effect of initial conditions on the mean energy dissipation rate and the scaling exponent. Phys. Rev. E 62:8086–90 [Google Scholar]
  2. Antonia RA, Satyaprakash BR, Hussain AKMF. 1980. Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets. Phys. Fluids 23:695–700 [Google Scholar]
  3. Bai K, Meneveau C, Katz J. 2013. Experimental study of spectral energy fluxes in turbulence generated by a fractal, tree-like object. Phys. Fluids 25:110810 [Google Scholar]
  4. Barenghi CF, L'vov VS, Roche PE. 2014. Experimental, numerical, and analytical velocity spectra in turbulent quantum fluid. Proc. Natl. Acad. Sci. USA 111:4683–90 [Google Scholar]
  5. Batchelor GK. 1953. The Theory of Homogeneous Turbulence Cambridge, UK: Cambridge Univ. Press
  6. Boffetta G, Romano GP. 2002. Structure functions and energy dissipation dependence on Reynolds number. Phys. Fluids 14:3453–58 [Google Scholar]
  7. Bos WJT, Shao L, Bertoglio JP. 2007. Spectral imbalance and the normalized dissipation rate of turbulence. Phys. Fluids 19:045101 [Google Scholar]
  8. Braza M, Perrin R, Hoarau Y. 2006. Turbulence properties in the cylinder wake at high Reynolds numbers. J. Fluids Struct. 22:757–71 [Google Scholar]
  9. Burattini P, Lavoie P, Antonia RA. 2005. On the normalized turbulent energy dissipation rate. Phys. Fluids 17:098103 [Google Scholar]
  10. Cadot O, Couder Y, Daerr A, Douady S, Tsinober A. 1997. Energy injection in closed turbulent flows: stirring through boundary layers versus inertial stirring. Phys. Rev. E 56:427–33 [Google Scholar]
  11. Dallas V, Vassilicos JC, Hewitt GF. 2009. Stagnation point von Kármán coefficient. Phys. Rev. E 80:046306 [Google Scholar]
  12. Danaila L, Krawczynski JF, Thiesset F, Renou B. 2012. Yaglom-like equation in axisymmetric anisotropic turbulence. Physica D 241:216–23 [Google Scholar]
  13. Discetti S, Ziskin IB, Astarita T, Adrian RJ, Prestridge KP. 2013. PIV measurements of anisotropy and inhomogeneity in decaying fractal generated turbulence. Fluid Dyn. Res. 45:061401 [Google Scholar]
  14. Doering CR. 2009. The 3D Navier-Stokes problem. Annu. Rev. Fluid Mech. 41:109–28 [Google Scholar]
  15. Doering CR, Foias C. 2002. Energy dissipation in body-forced turbulence. J. Fluid Mech. 467:289–306 [Google Scholar]
  16. Douady S, Couder Y, Brachet ME. 1991. Direct observation of the intermittency of intense vorticity filaments in turbulence. Phys. Rev. Lett. 67:983–86 [Google Scholar]
  17. Duchon J, Robert R. 2000. Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 13:249–55 [Google Scholar]
  18. Eyink GL. 2003. Local 4/5-law and energy dissipation anomaly in turbulence. Nonlinearity 17:137–45 [Google Scholar]
  19. Frisch U. 1995. Turbulence: The Legacy of A.N. Kolmogorov Cambridge, UK: Cambridge Univ. Press
  20. Gad-el-Hak M, Corrsin S. 1974. Measurements of the nearly isotropic turbulence behind a uniform jet grid. J. Fluid Mech. 62:115–43 [Google Scholar]
  21. George WK. 1989. The self-preservation of turbulent flows and its relation to initial conditions and coherent structures. Advances in Turbulence WK George, R Arndt 39–73 New York: Hemisphere [Google Scholar]
  22. George WK. 1992. The decay of homogeneous isotropic turbulence. Phys. Fluids A 4:1492–509 [Google Scholar]
  23. George WK. 2014. Reconsidering the ‘local equilibrium’ hypothesis for small scale turbulence. Turbulence Colloquium Marseille 2011: Fundamental Problems of Turbulence, 50 Years After the Marseille 1961 Conference M Farge, HK Moffatt, K Schneider Les Ulis, Fr.: EDP Sci. In press [Google Scholar]
  24. George WK, Wang H. 2009. The exponential decay of homogeneous turbulence. Phys. Fluids 21:025108 [Google Scholar]
  25. Gomes-Fernandes R, Ganapathisubramani B, Vassilicos JC. 2012. Particle image velocimetry study of fractal-generated turbulence. J. Fluid Mech. 711:306–36 [Google Scholar]
  26. Gomes-Fernandes R, Ganapathisubramani B, Vassilicos JC. 2014a. Evolution of the velocity-gradient tensor invariants in a spatially developing flow. J. Fluid Mech. 756252–92
  27. Gomes-Fernandes R, Ganapathisubramani B, Vassilicos JC. 2014b. The energy cascade in a non-homogeneous non-isotropic turbulence. J. Fluid Mech. Submitted manuscript
  28. Goto S, Vassilicos JC. 2009. The dissipation rate is not universal and depends on the internal stagnation point structure. Phys. Fluids 21:035104 [Google Scholar]
  29. Hearst RJ, Lavoie P. 2014. Decay of turbulence generated by a square fractal-element grid. J. Fluid Mech. 741:567–84 [Google Scholar]
  30. Hill RJ. 2002. Exact second-order structure-function relationships. J. Fluid Mech. 468:317–26 [Google Scholar]
  31. Hurst D, Vassilicos JC. 2007. Scalings and decay of fractal-generated turbulence. Phys. Fluids 19:035103 [Google Scholar]
  32. Isaza JC, Salazar R, Warhaft Z. 2014. On grid-generated turbulence in the near and far field regions. J. Fluid Mech. 753402–26
  33. Kaneda Y, Ishihara T, Yokohama M, Itakura K, Uno A. 2003. Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15:L21–24 [Google Scholar]
  34. Kistler AL, Vrebalovich T. 1966. Grid turbulence at high Reynolds numbers. J. Fluid Mech. 26:37–47 [Google Scholar]
  35. Kolmogorov AN. 1941a. Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk. SSSR 32:16–18 [Google Scholar]
  36. Kolmogorov AN. 1941b. On degeneration (decay) of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk. SSSR 31:538–40 [Google Scholar]
  37. Kolmogorov AN. 1941c. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30:301–5 [Google Scholar]
  38. Laizet S, Vassilicos JC, Cambon C. 2013. Interscale energy transfer in decaying turbulence and vorticity-strain rate dynamics in grid-generated turbulence. Fluid Dyn. Res. 45:061408 [Google Scholar]
  39. Launder BE, Spalding DB. 1972. Mathematical Models of Turbulence London: Academic
  40. Lesieur M, Metais O. 1996. New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28:45–82 [Google Scholar]
  41. Liepmann HW. 1949. Die anwendung eines satzes uber die nullstellen stochstischer functionen auf turbulenzmessungen. Helv. Phys. Acta 22:119–24 [Google Scholar]
  42. Liepmann HW, Robinson MS. 1952. Counting methods and equipment for mean-value measurements in turbulence research NACA Tech. Note 3037, Natl. Advis. Comm. Aeronaut.
  43. Lumley JL. 1992. Some comments on turbulence. Phys. Fluids A 4:201–11 [Google Scholar]
  44. Makita H. 1991. Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dyn. Res. 8:53–64 [Google Scholar]
  45. Marati N, Casciola CM, Piva R. 2004. Energy cascade and spatial fluxes in wall turbulence. J. Fluid Mech. 521:191–215 [Google Scholar]
  46. Mazellier N, Vassilicos JC. 2008. The turbulence dissipation constant is not universal because of its universal dependence on large-scale flow topology. Phys. Fluids 20:015101 [Google Scholar]
  47. Mazellier N, Vassilicos JC. 2010. Turbulence without Richardson-Kolmogorov cascade. Phys. Fluids 22:075101 [Google Scholar]
  48. McComb WD, Berera A, Salewski M, Yoffe S. 2010. Taylor's (1935) dissipation surrogate reinterpreted. Phys. Fluids 22:061704 [Google Scholar]
  49. Meneveau C, Katz J. 2000. Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 232:1–32 [Google Scholar]
  50. Mouri H, Hori A, Kawashima Y, Hashimoto K. 2012. Large-scale length that determines the mean rate of energy dissipation in turbulence. Phys. Rev. E 86:026309 [Google Scholar]
  51. Nagata K, Sakai Y, Inaba T, Suzuki H, Terashima O, Suzuki H. 2013. Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence. Phys. Fluids 25:065102 [Google Scholar]
  52. Nedic J, Vassilicos JC, Ganapathisubramani B. 2013. Axisymmetric turbulent wakes with new non-equilibrium similarity scalings. Phys. Rev. Lett. 111:144503 [Google Scholar]
  53. Nie Q, Tanveer S. 1999. A note on third-order structure functions in turbulence. Proc. R. Soc. Lond. A 455:1615–35 [Google Scholar]
  54. Pope SB. 2000. Turbulent Flows Cambridge, UK: Cambridge Univ. Press
  55. Richardson LF. 1922. Weather Prediction by Numerical Process Cambridge, UK: Cambridge Univ. Press
  56. Rollin B, Dubief Y, Doering CR. 2011. Variations on Kolmogorov flow: turbulent energy dissipation and mean flow profiles. J. Fluid Mech. 670:204–13 [Google Scholar]
  57. Saffman PG. 1968. Lectures on homogeneous turbulence. Topics in Nonlinear Physics N Zabuski 485–614 Berlin: Springer-Verlag [Google Scholar]
  58. Seoud RE, Vassilicos JC. 2007. Dissipation and decay of fractal-generated turbulence. Phys. Fluids 19:105108 [Google Scholar]
  59. Sreenivasan KR. 1984. On the scaling of the turbulence energy dissipation rate. Phys. Fluids 27:1048–59 [Google Scholar]
  60. Sreenivasan KR. 1995. The energy dissipation in turbulent shear flows. Symposium on Developments in Fluid Dynamics and Aerospace Engineering SM Deshpande, A Prabhu, KR Sreenivasan, PR Viswanath 159–90 Bangalore: Interline
  61. Sreenivasan KR. 1998. An update on the energy dissipation rate in isotropic turbulence. Phys. Fluids 10:528–29 [Google Scholar]
  62. Taylor GI. 1935. Statistical theory of turbulence. Proc. R. Soc. Lond. A 151:421–44 [Google Scholar]
  63. Tchoufag J, Sagaut P, Cambon C. 2012. Spectral approach to finite Reynolds number effects on Kolmogorov's 4/5 law in isotropic turbulence. Phys. Fluids 24:015107 [Google Scholar]
  64. Tennekes H, Lumley JL. 1972. A First Course in Turbulence Cambridge, MA: MIT Press
  65. Thiesset F, Antonia RA, Danaila L. 2013. Scale-by-scale turbulent energy budget in the intermediate wake of two-dimensional generators. Phys. Fluids 25:115105 [Google Scholar]
  66. Thormann A, Meneveau C. 2014. Decay of homogeneous nearly isotropic turbulence behind active fractal grids. Phys. Fluids 26:025112 [Google Scholar]
  67. Townsend AA. 1976. The Structure of Turbulent Shear Flow Cambridge, UK: Cambridge Univ. Press
  68. Valente P, Vassilicos JC. 2011. The decay of turbulence generated by a class of multi-scale grids. J. Fluid Mech. 687:300–40 [Google Scholar]
  69. Valente P, Vassilicos JC. 2012. Universal dissipation scaling for nonequilibrium turbulence. Phys. Rev. Lett. 108:214503 [Google Scholar]
  70. Valente P, Vassilicos JC. 2014. The non-equilibrium region of grid-generated decaying turbulence. J. Fluid Mech. 744:5–37 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error