1932

Abstract

This review article focuses on the modeling of complex granular flows employing the discrete element method (DEM) approach. The specific topic discussed is the application of DEM models for the study of the flow behavior of nonspherical, flexible, or cohesive particles, including particle breakage. The major sources of particle cohesion—liquid induced, electrostatics, van der Waals forces—and their implementation into DEM simulations are covered. These aspects of particle flow are of great importance in practical applications and hence are the significant foci of research at the forefront of current DEM modeling efforts. For example, DEM simulations of nonspherical grains can provide particle stress information needed to develop constitutive models for continuum-based simulations of large-scale industrial processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010814-014644
2015-01-03
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/fluid/47/1/annurev-fluid-010814-014644.html?itemId=/content/journals/10.1146/annurev-fluid-010814-014644&mimeType=html&fmt=ahah

Literature Cited

  1. Alexander AW, Chaudhuri B, Faqih A, Muzzio FJ, Davies C, Tomassone MS. 2006. Avalanching flow of cohesive powders. Powder Technol. 164:13–21 [Google Scholar]
  2. Anand A, Curtis J, Wassgren C, Hancock B, Ketterhagen W. 2010. Segregation of cohesive granular materials during discharge from a rectangular hopper. Granul. Matter 12:193–200 [Google Scholar]
  3. Azéma E, Radjaï F. 2010. Stress-strain behavior and geometrical properties of packings of elongated particles. Phys. Rev. E 81:051304 [Google Scholar]
  4. Azéma E, Radjaï F. 2012. Force chains and contact network topology in sheared packings of elongated particles. Phys. Rev. E 85:031303 [Google Scholar]
  5. Azéma E, Radjaï F, Dubois F. 2013. Packings of irregular polyhedral particles: strength, structure, and effects of angularity. Phys. Rev. E 87:062203 [Google Scholar]
  6. Barker GC. 1994. Computer simulations of granular materials. Granular Matter: An Interdisciplinary Approach A Mehta 35–83 New York: Springer-Verlag [Google Scholar]
  7. Börzsönyi T, Szabo B, Toros G, Wegner S, Torok J. et al. 2012. Orientational order and alignment of elongated particles induced by shear. Phys. Rev. Lett. 108:228302 [Google Scholar]
  8. Boton M, Azéma E, Estrada N, Radjaï F, Lizcano A. 2013. Quasistatic rheology and microstructural description of sheared granular materials composed of platy particles. Phys. Rev. E 87:032206 [Google Scholar]
  9. Brewster R, Grest GS, Levine AJ. 2009. Effects of cohesion on the surface angle and velocity profiles of granular material in a rotating drum. Phys. Rev. E 79:011305 [Google Scholar]
  10. Brosh T, Kalman H, Levy AJ. 2011. Fragments spawning and interaction models for DEM breakage simulation. Granul. Matter 13:765–76 [Google Scholar]
  11. Bruchmüller J, van Wachem BGM, Gu S, Luo KH. 2011. Modelling discrete fragmentation of brittle particles. Powder Technol. 208:731–39 [Google Scholar]
  12. Butt HJ, Kappl M. 2009. Normal capillary forces. Adv. Colloid Interface Sci. 146:48–60 [Google Scholar]
  13. Calvert G, Hassanpour A, Ghadiri M. 2013. Analysis of aerodynamic dispersion of cohesive clusters. Chem. Eng. Sci. 86:146–50 [Google Scholar]
  14. Campbell C. 1990. Rapid granular flows. Annu. Rev. Fluid Mech. 22:57–92 [Google Scholar]
  15. Campbell C. 2006. Granular material flows: an overview. Powder Technol. 162:208–29 [Google Scholar]
  16. Campbell C. 2011. Elastic granular flows of ellipsoidal particles. Phys. Fluids 23:013306 [Google Scholar]
  17. Cleary P. 2008. The effect of particle shape on simple shear flows. Powder Technol. 179:144–63 [Google Scholar]
  18. Cundall PA, Strack ODL. 1979. A discrete numerical model for granular assemblies. Géotechnique 29:47–65 [Google Scholar]
  19. Derjaguin BV, Muller VM, Toporov YP. 1975. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53:314–26 [Google Scholar]
  20. Donahue CM, Davis RH, Kantak AA, Hrenya CM. 2012. Mechanisms for agglomeration and deagglomeration following oblique collisions of wet particles. Phys. Rev. E 86:021303 [Google Scholar]
  21. Feng CL, Yu AB. 1998. Effect of liquid addition on the packing of mono-sized coarse spheres. Powder Technol. 99:22–28 [Google Scholar]
  22. Figueroa I, Li H, McCarthy J. 2009. Predicting the impact of adhesive force on particle mixing and segregation. Powder Technol. 195:203–12 [Google Scholar]
  23. Fischer-Cripps AC. 2007. Introduction to Contact Mechanics New York: Springer, 2nd ed.. [Google Scholar]
  24. Forterre Y, Pouliquen O. 2008. Flows of dense granular media. Annu. Rev. Fluid Mech. 40:1–24 [Google Scholar]
  25. Goldhirsch I. 2003. Rapid granular flows. Annu. Rev. Fluid Mech. 35:267–93 [Google Scholar]
  26. Grima A, Wypych PW. 2011. Development and validation of calibration methods for discrete element modelling. Granul. Matter 13:127–32 [Google Scholar]
  27. Grof Z, Kohout M, Štěpánek F. 2007. Multi-scale simulation of needle-shaped particle breakage under uniaxial compaction. Chem. Eng. Sci. 62:1418–29 [Google Scholar]
  28. Guises R, Xiang J, Latham JP, Munjiza A. 2009. Granular packing: numerical simulation and the characterization of the effect of particle shape. Granul. Matter 11:281–92 [Google Scholar]
  29. Guo Y, Wassgren C, Ketterhagen W, Hancock B, James B, Curtis J. 2012. A numerical study of granular shear flows of rod-like particles using the discrete element method. J. Fluid Mech. 713:1–26 [Google Scholar]
  30. Guo Y, Curtis J, Wassgren C, Hancock C, Ketterhagan W. 2013a. Discrete element modeling of granular shear flows and breakage of flexible fibers. Proc. 6th Int. Conf. Discrete Element Methods Relat. Tech. (DEM6) G Mustoe 349–54 Golden, CO: Colo. Sch. Mines [Google Scholar]
  31. Guo Y, Curtis J, Wassgren C, Ketterhagan W, Hancock C. 2013b. Granular shear flows of flexible rod-like particles. Powders Grains: Proc. 7th Int. Conf. Micromech. Granul. Media491–94 College Park, MD: Am Inst. Phys. [Google Scholar]
  32. Guo Y, Wassgren C, Hancock B, Ketterhagen W, Curtis J. 2013c. Granular shear flows of flat disks and elongated rods without and with friction. Phys. Fluids 25:063304 [Google Scholar]
  33. Guo Y, Wassgren C, Hancock B, Ketterhagen W, Curtis J. 2013d. Validation and time step determination of discrete element modeling of flexible fibers. Powder Technol. 249:386–95 [Google Scholar]
  34. Hare C, Ghadiri M, Dennehy R. 2011. Prediction of attrition in agitated particle beds. Chem. Eng. Sci. 66:4757–70 [Google Scholar]
  35. Henthorn KH, Hrenya CM. 2009. Particle cohesion. Encyclopedia of Chemical Processing, ed. S Lee. London: Taylor & Francis doi: 10.1081/E-ECHP-120044868 [Google Scholar]
  36. Herminghaus S. 2005. Dynamics of wet granular matter. Adv. Phys. 54:221–61 [Google Scholar]
  37. Hogue MD, Calle CI, Curry DR, Weitzman PS. 2009. Discrete element method (DEM) of triboelectrically charged particles: revised experiments. J. Electrostat. 67:691–94 [Google Scholar]
  38. Hogue MD, Calle CI, Weitzman PS, Curry DR. 2008. Calculating the trajectories of triboelectrically charged particles using Discrete Element Modeling (DEM). J. Electrostat. 66:32–38 [Google Scholar]
  39. Hosseininia ES, Mirghasemi AA. 2006. Numerical simulation of breakage of two-dimensional polygon-shaped particles using discrete element method. Powder Technol. 166:100–12 [Google Scholar]
  40. Hsiau S-S, Yang S-C. 2003. Numerical simulation of self-diffusion and mixing in a vibrated granular bed with the cohesive effect of liquid bridges. Chem. Eng. Sci. 58:339–51 [Google Scholar]
  41. Imba M, Kanazawa T, Ida J, Yamamoto H, Ghadiri M, Matsuyama T. 2013. Tribo-electric charging particle in a shaker. AIP Conf. Proc. 1542:90–92 [Google Scholar]
  42. Israelachvili J. 1992. Intermolecular and Surface Forces New York: Academic, 2nd ed.. [Google Scholar]
  43. Jaeger HM, Miskin MZ, Waitukaitis SR. 2013. From nanoscale cohesion to macroscale entanglement: opportunities for designing aggregate behavior by tailoring grain shape and interactions. AIP Conf. Proc. 1542:3–6 [Google Scholar]
  44. Jenkins J. 2006. Dense shearing flows of inelastic disks. Phys. Fluids 18:103307 [Google Scholar]
  45. Jiang MJ, Yan HB, Zhu HH, Utili S. 2011. Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses. Comput. Geotech. 38:14–29 [Google Scholar]
  46. Johnson KL, Kendall K, Roberts AD. 1971. Surface energy and the contact of elastic solids. Proc. R. Soc. A 324:301–13 [Google Scholar]
  47. Kabanemi KK, Hétu JF. 2012. Effects of bending and torsion rigidity on deformation and breakage of flexible fibers: a direct simulation study. J. Chem. Phys. 136:074903 [Google Scholar]
  48. Kalman H, Rodnianski V, Haim M. 2009. A new method to implement comminution functions into DEM simulation of a size reduction system. Granul. Matter 11:253–66 [Google Scholar]
  49. Kantak AA, Hrenya CM, Davis RH. 2009. Initial rates of aggregation for dilute, granular flows of wet particles. Phys. Fluids 21:023301 [Google Scholar]
  50. Katagiri J, Matsushima T, Yamada Y. 2010. Simple shear simulation of 3D irregularly-shaped particles by image-based DEM. Granul. Matter 12:491–97 [Google Scholar]
  51. Kodam M, Bharadwaj R, Curtis J, Hancock B, Wassgren C. 2010. Cylindrical object contact detection for use in discrete element method simulations. Part 1: contact detection algorithms. Chem. Eng. Sci. 65:5852–62 [Google Scholar]
  52. Kohonen MM, Geromichalos D, Scheel M, Schier C, Herminghaus S. 2004. On capillary bridges in wet granular materials. Physica A 339:7–15 [Google Scholar]
  53. Kruggel-Emden H, Simsek E, Rickelt S, Wirtz S, Scherer V. 2007. Review and extension of normal force models for the Discrete Element Method. Powder Technol. 171:157–73 [Google Scholar]
  54. Krumbein WC, Pettijohn FJ. 1938. Manual of Sedimentary Petrography New York: Appleton-Century [Google Scholar]
  55. Lambert P, Chau A, Delchambre A, Regnier S. 2008. Comparison between two capillary forces models. Langmuir 24:3157–63 [Google Scholar]
  56. Langston P, Ai J, Yu H-S. 2013. Simple shear in 3D DEM polyhedral particles and in a simplified 2D continuum model. Granul. Matter 15:595–606 [Google Scholar]
  57. Lees G. 1964. A new method for determining the angularity of particles. Sedimentology 3:2–21 [Google Scholar]
  58. Li S, Marshall J, Liu G, Yao Q. 2011. Adhesive particulate flow: the discrete element method and its application in energy and environmental engineering. Prog. Energy Combust. Sci. 37:633–68 [Google Scholar]
  59. Lian G, Thornton C, Adams MJ. 1993. A theoretical study of the liquid bridge forces between two rigid spherical bodies. J. Colloid Interface Sci. 161:138–47 [Google Scholar]
  60. Lian G, Thornton C, Adams MJ. 1998. Discrete particle simulation of agglomerate impact coalescence. Chem. Eng. Sci. 53:3381–91 [Google Scholar]
  61. Lim EWC, Zhang Y, Wang CH. 2006. Effects of an electrostatic field in pneumatic conveying of granular materials through inclined and vertical pipes. Chem. Eng. Sci. 61:7889–908 [Google Scholar]
  62. Lindstrom SB, Uesaka T. 2007. Simulation of the motion of flexible fibers in viscous fluid flow. Phys. Fluids 19:113307 [Google Scholar]
  63. Liu G, Marshall J. 2010. Effect of particle adhesion and interactions on motion by traveling waves on an electric current. J. Electrostat. 68:179–89 [Google Scholar]
  64. Liu G, Marshall J, Li S, Yao Q. 2010. Discrete element method for particle capture by a body in an electrostatic field. Int. J. Numer. Methods Eng. 84:1589–612 [Google Scholar]
  65. Liu PY, Yang RY, Yu AB. 2011. Dynamics of wet particles in rotating drums: effect of liquid surface tension. Phys. Fluids 23:013304 [Google Scholar]
  66. Liu PY, Yang RY, Yu AB. 2013. DEM study of the transverse mixing of wet particles in rotating drums. Chem. Eng. Sci. 86:99–107 [Google Scholar]
  67. Luding S. 2008. Cohesive, frictional powders: contact models for tension. Granul. Matter 10:235–46 [Google Scholar]
  68. Luding S, Alonso-Marroquín F. 2011. The critical-state yield stress (termination locus) of adhesive powders from a single numerical experiment. Granul. Matter 13:109–19 [Google Scholar]
  69. Mani R, Kadau D, Or D, Herrmann HJ. 2012. Fluid depletion in shear bands. Phys. Rev. Lett. 109:248001 [Google Scholar]
  70. Mani R, Kadau D, Or D, Herrmann HJ. 2013. On liquid migration in sheared granular matter. AIP Conf. Proc. 1542:499–502 [Google Scholar]
  71. Marshall JS. 2009. Discrete element method modeling of particulate aerosol flows. J. Comput. Phys. 228:1541–61 [Google Scholar]
  72. Mason G, Clark WC. 1965. Liquid bridges between spheres. Chem. Eng. Sci. 20:859–66 [Google Scholar]
  73. McCarthy J. 2009. Turning the corner in segregation. Powder Technol. 192:137–42 [Google Scholar]
  74. Mikami T, Kamiya H, Horio M. 1998. Numerical simulation of cohesive powder behavior in a fluidized bed. Chem. Eng. Sci. 53:1927–40 [Google Scholar]
  75. Mishra BK. 2003. A review of computer simulation of tumbling mills by the discrete element method: Part I—contact mechanics. Int. J. Miner. Process. 71:73–93 [Google Scholar]
  76. Mitarai N, Nori F. 2006. Wet granular materials. Adv. Phys. 55:1–45 [Google Scholar]
  77. Moreno-Atanasio R. 2012. Energy dissipation in agglomerates during normal impact. Powder Technol. 223:12–18 [Google Scholar]
  78. Muguruma Y, Tanaka T, Tsuji Y. 2000. Numerical simulation of particulate flow with liquid bridge between particles (simulation of centrifugal tumbling granulator). Powder Technol. 109:49–57 [Google Scholar]
  79. Nase ST, Vargas WL, Adetola AA, McCarthy JJ. 2001. Discrete characterization tools for cohesive granular material. Powder Technol. 116:214–23 [Google Scholar]
  80. Neil AU, Bridgwater J. 1994. Attrition of particulate solids under shear. Powder Technol. 80:207–19 [Google Scholar]
  81. Nguyen DH, Kang N, Park J. 2013. Validation of partially flexible rod model based on discrete element method using beam deflection and vibration. Powder Technol. 237:147–52 [Google Scholar]
  82. Ning Z, Melrose JR. 1999. A numerical model for simulating mechanical behavior of flexible fibers. J. Chem. Phys. 111:10717–26 [Google Scholar]
  83. Nwose EN, Pei C, Wu CY. 2012. Modelling die filling with charged particles using DEM/CFD. Particuology 10:229–35 [Google Scholar]
  84. O'Sullivan C. 2011. Particulate Discrete Element Modelling: A Geomechanics Perspective London: Taylor & Francis [Google Scholar]
  85. Park HS, Park YO. 2005. Simulation of particle deposition on filter fiber in an external electric field. Korean J. Chem. Eng. 22:303–14 [Google Scholar]
  86. Park J, Kang N. 2009. Applications of fiber models based on discrete element method to string vibration. J. Mech. Sci. Technol. 23:372–80 [Google Scholar]
  87. Peña AA, García-Rojo R, Herrmann HJ. 2007. Influence of particle shape on sheared dense granular media. Granul. Matter 9:279–91 [Google Scholar]
  88. Pitois O, Moucheront P, Chateau X. 2000. Liquid bridge between two moving spheres: an experimental study of viscosity effects. J. Colloid Interface Sci. 231:26–31 [Google Scholar]
  89. Potapov AV, Campbell CS. 1997. Computer simulation of shear-induced particle attrition. Powder Technol. 94:109–22 [Google Scholar]
  90. Potyondy DO, Cundall PA. 2004. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41:1329–64 [Google Scholar]
  91. Prokopovich P, Starov V. 2011. Adhesion models: from single to multiple asperity contacts. Adv. Colloid Interface Sci. 168:210–22 [Google Scholar]
  92. Richefeu V, Youssoufi MSE, Peyroux R, Radjaï F. 2008. A model of capillary cohesion for numerical simulations of 3D polydisperse granular media. Int. J. Numer. Anal. Methods Geomech. 32:1365–83 [Google Scholar]
  93. Ross RF, Klingenberg DJ. 1997. Dynamic simulation of flexible fibers composed of linked rigid bodies. J. Chem. Phys. 106:2949–60 [Google Scholar]
  94. Sanchez DP, Scheeres DJ. 2013. Granular cohesion and fast rotators in the NEA population. AIP Conf. Proc. 1542:955–58 [Google Scholar]
  95. Savkoor AR, Briggs GAD. 1977. The effect of the tangential force on the contact of elastic solids in adhesion. Proc. R. Soc. A 356:103–14 [Google Scholar]
  96. Seville JPK, Willett CD, Knight PC. 2000. Interparticle forces in fluidisation: a review. Powder Technol. 113:261–68 [Google Scholar]
  97. Shi D, McCarthy JJ. 2008. Numerical simulation of liquid transfer between particles. Powder Technol. 184:64–75 [Google Scholar]
  98. Simons SJR. 2007. Liquid bridges in granules. Handbook of Powder Technology 11 AD Salman, MJ Hounslow, JPK Seville 1257–316 Amsterdam: Elsevier [Google Scholar]
  99. Soulié F, Cherblanc F, El Youssoufi MS, Saix C. 2006. Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials. Int. J. Numer. Anal. Methods Geomech. 30:213–28 [Google Scholar]
  100. Supuk E, Hassanpour A, Ahmadian H, Ghadiri M, Matsuyama T. 2011. Tribo-electrification and associated segregation of pharmaceutical bulk powders. KONA Powder Part. J. 29:208–23 [Google Scholar]
  101. Tafesse S, Fernlund JMR, Sun W, Bergholm F. 2012. Evaluation of image analysis methods used for quantification of particle angularity. Sedimentology 60:1100–10 [Google Scholar]
  102. Tatemoto Y, Mawatari Y, Noda K. 2005. Numerical simulation of cohesive particle motion in a vibrated fluidized bed. Chem. Eng. Sci. 60:5010–21 [Google Scholar]
  103. Thornton C. 1999. Future developments in discrete element approaches: an introduction. Mechanics of Granular Materials M Oda, K Iwashita 217–19 Boca Raton, FL: CRC [Google Scholar]
  104. Thornton C, Ning Z. 1998. A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres. Powder Technol. 99:154–62 [Google Scholar]
  105. Thornton C, Yin KK. 1991. Impact of elastic spheres with and without adhesion. Powder Technol. 65:153–66 [Google Scholar]
  106. Tomas J. 2007a. Adhesion of ultrafine particles: a micromechanical approach. Chem. Eng. Sci. 62:1997–2010 [Google Scholar]
  107. Tomas J. 2007b. Adhesion of ultrafine particles: energy absorption at contact. Chem. Eng. Sci. 62:5925–39 [Google Scholar]
  108. Tsuji T, Nakagawa Y, Matsumoto N, Kadono Y, Takayama T, Tanaka T. 2012. 3-D DEM simulation of cohesive soil-pushing behavior by bulldozer blade. J. Terramech. 49:37–47 [Google Scholar]
  109. Tykhoniuk R, Tomas J, Luding S, Kappl M, Heim LO, Butt HJ. 2007. Ultrafine cohesive powders: from interparticle contacts to continuum behaviour. Chem. Eng. Sci. 62:2843–64 [Google Scholar]
  110. Utili S, Nova R. 2008. DEM analysis of bonded granular geomaterials. Int. J. Numer. Anal. Methods Geomech. 32:1997–2031 [Google Scholar]
  111. Waitukaitis SR, Grütjen H, Royer JR, Jaeger HM. 2011. Droplet and cluster formation in freely falling granular streams. Phys. Rev. E 83:051302 [Google Scholar]
  112. Walton OR. 1994. Numerical simulation of inelastic frictional particle-particle interaction. Particulate Two-Phase Flows MC Roco 884–911 Oxford, UK: Butterworth-Heinemann [Google Scholar]
  113. Walton OR. 2008. Review of adhesion fundamentals for micron-scale particles. KONA Powder Part. J. 26:129–41 [Google Scholar]
  114. Walton OR, Johnson SM. 2009. Simulating the effects of interparticle cohesion in micron-scale powders. AIP Conf. Proc. 1145:897–900 [Google Scholar]
  115. Wang G, Yu W, Zhou C. 2006. Optimization of the rod chain model to simulate the motions of a long flexible fiber in simple shear flows. Eur. J. Mech. B 25:337–47 [Google Scholar]
  116. Weber MW, Hrenya CM. 2006. Square-well model for cohesion in fluidized beds. Chem. Eng. Sci. 61:4511–27 [Google Scholar]
  117. Wegner S, Börzsönyi T, Bien T, Rose G, Stannarius R. 2012. Alignment and dynamics of elongated cylinders under shear. Soft Matter 9:10950–58 [Google Scholar]
  118. Willett CD, Adams MJ, Johnson SA, Seville JPK. 2000. Capillary bridges between two spherical bodies. Langmuir 16:9396–405 [Google Scholar]
  119. Williams J, O'Connor R. 1999. Discrete element method and the contact problem. Arch. Comput. Methods Eng. 6:279–304 [Google Scholar]
  120. Wouterse A, Williams SR, Philipse AP. 2007. Effect of particle shape on the density and microstructure of random packings. J. Phys. Condens. Matter 19:406215 [Google Scholar]
  121. Wu J, Aidun CK. 2010. A method for direct simulation of flexible fiber suspensions using lattice Boltzmann equation with external boundary force. Int. J. Multiphase Flow 36:202–9 [Google Scholar]
  122. Yamamoto S, Matsuoka T. 1993. A method for dynamic simulation of rigid and flexible fibers in a flow field. J. Chem. Phys. 98:644–50 [Google Scholar]
  123. Yang J, Wu CY, Adams M. 2013a. DEM analysis of effects of particle properties and mixing conditions on particle attachment processes. AIP Conf. Proc. 1542:967–70 [Google Scholar]
  124. Yang M, Li S, Liu G, Yao Q. 2013b. Electrically-enhanced deposition of fine particles on a fiber: a numerical study using DEM. AIP Conf. Proc. 1542:943–46 [Google Scholar]
  125. Yang RY, Yu AB, Choi SK, Coates MS, Chan HK. 2008a. Agglomeration of fine particles subjected to centripetal compaction. Powder Technol. 184:122–29 [Google Scholar]
  126. Yang RY, Zou RP, Yu AB. 2003. Numerical study of the packing of wet coarse uniform spheres. AIChE J. 49:1656–66 [Google Scholar]
  127. Yang RY, Zou RP, Yu AB, Choi SK. 2008b. Characterization of interparticle forces in the packing of cohesive fine particles. Phys. Rev. E 78:031302 [Google Scholar]
  128. Yang S, Dong K, Zou RP, Yu AB. 2012. DEM simulation of dust cake formation related to electrostatic precipitation Presented at Int. Symp. Chem. React. Eng., Maastricht, Neth., Sept. 2–5 [Google Scholar]
  129. Ye M, van der Hoef MA, Kuipers JAM. 2004. A numerical study of fluidization behavior of Geldart A particles using a discrete particle model. Powder Technol. 139:129–39 [Google Scholar]
  130. Zhang R, Li J. 2007. Simulation on mechanical behavior of cohesive soil by distinct element method. J. Terramech. 43:303–16 [Google Scholar]
  131. Zhu H, Zhou Z, Yang RY, Yu AB. 2007. Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62:3378–96 [Google Scholar]
  132. Zhu H, Zhou Z, Yang RY, Yu AB. 2008. Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63:5728–70 [Google Scholar]
  133. Zhu R, Li S, Yao Q. 2013. Effects of cohesion on the flow patterns of granular materials in spouted beds. Phys. Rev. E 87:022206 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010814-014644
Loading
/content/journals/10.1146/annurev-fluid-010814-014644
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error