Ocean spray consists of small water droplets ejected from the ocean surface following surface breaking wave events. These drops get transported in the marine atmospheric boundary layer, in which they exchange momentum and heat with the atmosphere. Small spray droplets are transported over large distances and can remain in the atmosphere for several days, where they will scatter radiation; evaporate entirely, leaving behind sea salt; participate in the aerosol chemical cycle; and act as cloud condensation nuclei. Large droplets remain close to the ocean surface and affect the air-sea fluxes of momentum and enthalpy, thereby enhancing the intensity of tropical cyclones. This review summarizes recent progress and the emerging consensus about the number flux and implications of small sea spray droplets. I also summarize shortcomings in our understanding of the impact of large spray droplets on the meteorology of storm systems.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Afeti GM, Resch FJ. 1990. Distribution of the liquid aerosol produced from bursting bubbles in sea and distilled water. Tellus B 42:378–84 [Google Scholar]
  2. Aller JY, Kuznetsova MR, Jahns CJ, Kemp PF. 2005. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J. Aerosol Sci. 36:801–12 [Google Scholar]
  3. Andreae ML, Rosenfeld D. 2008. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci. Rev. 89:13–44 [Google Scholar]
  4. Andreas EL. 1989. Thermal and size evolution of sea spray droplets CRREL Rep. 89-11, US Army Corps Eng., Cold Reg. Res. Eng. Lab., Hanover, NH Derives the temperature and radius evolution for saline droplets based on the work of Pruppacher & Klett (1978). [Google Scholar]
  5. Andreas EL. 1990. Time constants for the evolution of sea spray droplets. Tellus B 42:481–97 [Google Scholar]
  6. Andreas EL. 1992. Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res. 97:11429–41 [Google Scholar]
  7. Andreas EL. 1995. The temperature of evaporating sea spray droplets. J. Atmos. Sci. 52:852–62 [Google Scholar]
  8. Andreas EL. 1998. A new sea spray generation function for wind speeds up to 32 m s−1. J. Phys. Oceanogr. 28:2175–84 [Google Scholar]
  9. Andreas EL. 2002. A review of the sea spray generation function for the open ocean. Atmosphere-Ocean Interactions 1 WA Perrie 1–46 Southhampton, UK: WIT [Google Scholar]
  10. Andreas EL. 2004. Spray stress revisited. J. Phys. Oceanogr. 34:1429–40 [Google Scholar]
  11. Andreas EL. 2005. Approximation formula for the microphysical properties of saline droplets. Atmos. Res. 75:323–45 [Google Scholar]
  12. Andreas EL. 2011. Fallacies of the enthalpy transfer coefficient over the ocean in high winds. J. Atmos. Sci. 68:1435–45 [Google Scholar]
  13. Andreas EL, DeCosmo J. 1999. Sea spray production and influence on air-sea heat and moisture fluxes over the open ocean. Air-Sea Exchange: Physics, Chemistry and Dynamics GL Geernaert 327–62 Dordrecht: Kluwer Acad. [Google Scholar]
  14. Andreas EL, Edson JB, Monahan EC, Rouault MP, Smith SD. 1995. The spray contribution to net evaporation from the sea: a review of recent progress. Bound.-Layer Meteorol. 72:3–52 [Google Scholar]
  15. Andreas EL, Emanuel KA. 2001. Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci. 58:3741–51 [Google Scholar]
  16. Andreas EL, Jones KF, Fairall CW. 2010. Production velocity of sea spray droplets. J. Geophys. Res. 115:C12065 [Google Scholar]
  17. Andreas EL, Persson POG, Hare JE. 2008. A bulk turbulent air-sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr. 38:1581–96 [Google Scholar]
  18. Anguelova M, Barber RP, Wu J. 1999. Spume drops produced by the wind tearing of wave crests. J. Phys. Oceanogr. 29:1156–65 [Google Scholar]
  19. Ault AP, Moffet RC, Baltrusaitis J, Collins DB, Ruppel MJ. et al. 2013. Size-dependent changes in sea spray aerosol composition and properties with different seawater conditions. Environ. Sci. Technol. 47:5603–12 [Google Scholar]
  20. Auton TR, Hunt JCR, Prud'Homme M. 1988. The force exerted on a body in inviscid unsteady non-uniform rotational flow. J. Fluid Mech. 197:241–57 [Google Scholar]
  21. Bao JW, Fairall CW, Michelson SA, Bianco L. 2011. Parameterizations of sea-spray impact on the air-sea momentum and heat fluxes. Mon. Weather Rev. 139:3781–97 [Google Scholar]
  22. Bao JW, Wilczak JM, Choi JK, Kantha LH. 2000. Numerical simulations of air-sea interaction under high wind conditions using a coupled model: a study of hurricane development. Mon. Weather Rev. 128:2190–210 [Google Scholar]
  23. Barenblatt GI, Chorin AJ, Prostokishin VM. 2005. A note concerning the Lighthill “sandwich model” of tropical cyclones. Proc. Natl. Acad. Sci. USA 102:11148–50 [Google Scholar]
  24. Bell MM, Montgomery MT, Emanuel KA. 2012. Air-sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci. 69:3197–222 [Google Scholar]
  25. Bianco L, Bao JW, Fairall CW, Michelson SA. 2011. Impact of sea-spray on the atmospheric surface layer. Bound.-Layer Meteorol. 140:361–81 [Google Scholar]
  26. Bigg EK, Leck C. 2008. The composition of fragments of bubbles bursting at the ocean surface. J. Geophys. Res. 113:D11209 [Google Scholar]
  27. Bird JC, de Ruitier R, Courbin L, Stone HA. 2010. Daughter bubble cascades produced by folding of ruptured thin films. Nature 465:759–62 [Google Scholar]
  28. Blanchard DC. 1963. The electrification of the atmosphere by particles from bubbles in the sea. Prog. Oceanogr. 171–202Extracted from Blanchard's PhD thesis work, this paper relaunched modern scientific interest in sea spray. [Google Scholar]
  29. Blanchard DC. 1964. Sea-to-air transport of surface active material. Science 146:396–97 [Google Scholar]
  30. Blanchard DC. 1989. The size and height to which jet drops are ejected from bursting bubbles in sea water. J. Geophys. Res. 94:10999–1002 [Google Scholar]
  31. Blanchard DC, Syzdek LD. 1972. Concentration of bacteria in jet drops from bursting bubbles. J. Geophys. Res. 77:5087–99 [Google Scholar]
  32. Blanchard DC, Syzdek LD. 1988. Film drop production as a function of bubble size. J. Geophys. Res. 93:3649–54 [Google Scholar]
  33. Bondur VG, Sharkov EA. 1982. Statistical properties of whitecaps on a rough sea. Oceanology 22:274–79 [Google Scholar]
  34. Bye JAT, Jenkins AD. 2006. Drag coefficient reduction at very high wind speeds. J. Geophys. Res. 111:C03024 [Google Scholar]
  35. Cipriano RJ, Blanchard DC. 1981. Bubble and aerosol spectra produced by a laboratory breaking wave. J. Geophys. Res. 86:8085–92Presents comprehensive experiments on spray generated by laboratory breaking waves. [Google Scholar]
  36. Clarke AD, Owens SR, Zhou J. 2006. An ultrafine sea-salt flux from breaking waves: implications for cloud condensation nuclei in the remote marine atmosphere. J. Geophys. Res. 111:D06202 [Google Scholar]
  37. Clift R, Gauvin WH. 1970. The motion of particles in turbulent gas streams. Proc. Chemeca 197014–28 London: Butterworth [Google Scholar]
  38. Crowe C, Sommerfeld M, Tsuji Y. 1998. Multiphase Flows with Droplets and Particles Boca Raton, FL: CRC [Google Scholar]
  39. Cunningham E. 1910. On the velocity of steady fall of spherical particles through fluid medium. Proc. R. Soc. Lond. A 83:357–65 [Google Scholar]
  40. Davies CN. 1945. Definitive equations for the fluid resistance of spheres. Proc. Phys. Soc. Lond. 57:259–70 [Google Scholar]
  41. de Leeuw G. 1986a. Size distributions of giant aerosol particles close above sea level. J. Aerosol Sci. 17:293–96 [Google Scholar]
  42. de Leeuw G. 1986b. Vertical profiles of giant particles close above the sea surface. Tellus B 38:51–61 [Google Scholar]
  43. de Leeuw G. 1990. Profiling of aerosol concentrations, particle size distribution and relative humidity in the atmospheric surface layer over the North Sea. Tellus B 42:342–54 [Google Scholar]
  44. de Leeuw G. 1993. Aerosols near the air-sea interface. Trends Geophys. Res. 2:55–70 [Google Scholar]
  45. de Leeuw G, Andreas EL, Anguelova MD, Fairall CW, Lewis ER. et al. 2011. Production flux of sea spray aerosol. Rev. Geophys. 49:RG2001Presents a recent review on fluxes associated with film and jet drops. [Google Scholar]
  46. Deane G, Stokes MD. 2002. Scale dependence of bubble creation mechanisms in breaking waves. Nature 418:839–44 [Google Scholar]
  47. Donelan MA, Haus BK, Reul N, Plant WJ, Stiassnie M. et al. 2004. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 31:L18306 [Google Scholar]
  48. Edson JB, Anquetin S, Mestayer PG, Sini JF. 1996. Spray droplet modeling. 2. An interactive Eulerian-Lagrangian model of evaporating spray droplets. J. Geophys. Res. 101:1279–93 [Google Scholar]
  49. Edson JB, Fairall CW. 1994. Spray droplet modeling. 1. Lagrangian model simulation of the turbulent transport of evaporating droplets. J. Geophys. Res. 99:25295–311 [Google Scholar]
  50. Facchini MC, Rinaldi M, Decesari S, Carbone C, Finessi E. et al. 2008. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. J. Geophys. Res. 35:L17814 [Google Scholar]
  51. Fairall CW, Banner ML, Peirson WL, Asher W, Morison RP. 2009. Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res. 114:C10001 [Google Scholar]
  52. Fairall CW, Kepert JD, Holland GJ. 1994. The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst. 2:121–42Presents what is considered to date to be the most reliable source function for spume. [Google Scholar]
  53. Fairall CW, Larsen SE. 1984. Dry deposition, surface production, and dynamics of aerosols in the marine boundary layer. Atmos. Environ. 18:69–77 [Google Scholar]
  54. Fitzgerald JW. 1975. Approximation formulas for the equilibrium size of an aerosol particle as a function of its dry size and composition and the ambient relative humidity. J. Appl. Meteorol. 14:1044–49 [Google Scholar]
  55. Fleming LE, Backer LC, Baden DG. 2005. Overview of aerosolized Florida red tide toxins: exposures and effects. Environ. Health Perspect. 113:618–20 [Google Scholar]
  56. Fuentes E, Coe H, Green D, de Leeuw G, McFiggans G. 2010. Laboratory-generated primary marine aerosol via bubble-bursting and atomization. Atmos. Meas. Tech. 3:141–62 [Google Scholar]
  57. Gong SL, Barrie LA, Blanchet JP. 1997. Modeling sea-salt aerosols in the atmosphere. 1. Model development. J. Geophys. Res. 102:3805–18 [Google Scholar]
  58. Gong SL, Barrie LA, Blanchet JP. 2003. A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Global Biogeochem. Cycles 17:1097 [Google Scholar]
  59. Goroch A, Burk S, Davidson KL. 1980. Stability effects on aerosol size and height distributions. Tellus 32:245–50 [Google Scholar]
  60. Holthuijsen LH, Powell MD, Pietrzak JD. 2012. Wind and waves in extreme hurricanes. J. Geophys. Res. 117:C09003 [Google Scholar]
  61. Hoppel WA, Frick GM, Fitzgerald JW. 2002. Surface source function for sea-salt aerosol and aerosol dry deposition to the ocean surface. J. Geophys. Res. 107:D194382 [Google Scholar]
  62. Innocentini V, Gonçalves IA. 2010. The impact of spume droplets and wave stress parameterizations on simulated near-surface maritime wind and temperature. J. Phys. Oceanogr. 40:1373–89 [Google Scholar]
  63. Keene WC, Maring H, Maben JR, Kieber DJ, Pszenny AAP. et al. 2007. Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface. J. Geophys. Res. 112:D21202 [Google Scholar]
  64. Kepert JD, Fairall CW, Bao JW. 1999. Modeling the interaction between the atmospheric boundary layer and evaporating sea spray droplets. Air-Sea Exchange: Physics, Chemistry and Dynamics GL Geernaert 363–409 Dordrecht: Kluwer Acad. [Google Scholar]
  65. Kientsler CF, Arons AB, Blanchard DC, Woodcock AH. 1954. Photographic investigation of the projection of droplets by bubbles bursting at a water surface. Tellus 6:1–7 [Google Scholar]
  66. Kiger KT, Duncan JH. 2012. Air-entrainment mechanisms in plunging jets and breaking waves. Annu. Rev. Fluid Mech. 44:563–96 [Google Scholar]
  67. Kleiss JM, Melville WK. 2011. The analysis of sea surface imagery for whitecap kinematics. J. Atmos. Oceanic Technol. 28:219–43 [Google Scholar]
  68. Koga M. 1981. Direct production of droplets from breaking wind-waves: its observation by a multi-colored overlapping exposure photographing technique. Tellus 33:552–63 [Google Scholar]
  69. Kudryavtsev VN. 2006. On the effect of sea drops on the atmospheric boundary layer. J. Geophys. Res. 111:C07020 [Google Scholar]
  70. Kudryavtsev VN, Makin VK. 2009. Model of the spume sea spray generation. Geophys. Res. Lett. 36:289–303 [Google Scholar]
  71. Kudryavtsev VN, Makin VK. 2011. Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Bound.-Layer Meteorol. 140:383–410 [Google Scholar]
  72. Lai RJ, Shemdin OH. 1974. Laboratory study of the generation of spray over water. J. Geophys. Res. 79:3055–63 [Google Scholar]
  73. Lewis ER, Schwartz SE. 2004. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models Washington, DC: Am. Geophys. UnionProvides an extensive review of sea salt aerosols. [Google Scholar]
  74. Lhuissier H, Villermaux E. 2012. Bursting bubble aerosols. J. Fluid Mech. 696:5–44 [Google Scholar]
  75. Liu B, Guan C, Xie L. 2012. The wave state and sea spray related parameterization of wind stress applicable from low to extreme winds. J. Geophys. Res. Oceans 117:C00J22 [Google Scholar]
  76. Liu B, Liu H, Xie L, Guan C, Zhao D. 2010. A coupled atmosphere–wave–ocean modeling system: simulation of the intensity of an idealized tropical cyclone. Mon. Weather Rev. 139:132–52 [Google Scholar]
  77. Long MS, Keene WC, Kieber DJ, Erickson DJ, Maring H. 2011. A sea-state based source function for size- and composition-resolved marine aerosol production. Atmos. Chem. Phys. 11:1203–16 [Google Scholar]
  78. MacIntyre F. 1972. Flow patterns in breaking bubbles. J. Geophys. Res. 77:5211–28 [Google Scholar]
  79. Magnaudet J, Rivero M, Fabre J. 1995. Accelerated flow past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J. Fluid Mech. 284:97–135 [Google Scholar]
  80. Makin VK. 2005. A note on the drag of the sea surface at hurricane winds. Bound.-Layer Meteorol. 115:169–76 [Google Scholar]
  81. Marmottant PH, Villermaux E. 2004. On spray formation. J. Fluid Mech. 498:73–111 [Google Scholar]
  82. Mårtensson M, Nilson ED, de Leeuw G, Cohen LH, Hansson HC. 2003. Laboratory simulations and parameterization of the primary marine aerosol production. J. Geophys. Res. 108:4297 [Google Scholar]
  83. Maxey MR, Riley JJ. 1983. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26:883–89Presents a thorough derivation of the equation of motion for a single drop. [Google Scholar]
  84. Meek CC, Jones BG. 1973. Studies of the behavior of heavy particles in a turbulent fluid flow. J. Atmos. Sci. 30:239–44 [Google Scholar]
  85. Meirink J. 2002. The role of wind waves and sea spray on air-sea interaction PhD Diss., Tech. Univ. Delft [Google Scholar]
  86. Melville WK. 1996. The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech. 28:279–321 [Google Scholar]
  87. Mestayer PG, Van Eijk AMJ, de Leeuw G, Tranchant BS. 1996. Numerical simulation of the dynamics of sea spray over the waves. J. Geophys. Res. 101:20771–97 [Google Scholar]
  88. Miller MA. 1987. An investigation of aerosol generation in the marine planetary boundary layer MS Thesis, Pa. State Univ. [Google Scholar]
  89. Modini RL, Russell LM, Deane GB, Stokes MD. 2013. Effect of soluble surfactant on bubble persistence and bubble-produced aerosol particles. J. Geophys. Res. 118:1388–400 [Google Scholar]
  90. Monahan EC. 1971. Oceanic whitecaps. J. Phys. Oceanogr. 1:139–44 [Google Scholar]
  91. Monahan EC, Davidson KL, Spiel DE. 1982. Whitecap aerosol productivity deduced from simulation tank measurements. J. Geophys. Res. 87:8898–904 [Google Scholar]
  92. Monahan EC, O'Muircheartaigh I. 1980. Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J. Phys. Oceanogr. 10:2094–99A seminal paper on whitecap coverage. [Google Scholar]
  93. Monahan EC, O'Muircheartaigh I. 1986. Whitecaps and the passive remote sensing of the ocean surface. Int. J. Remote Sens. 7:627–42 [Google Scholar]
  94. Monahan EC, Spiel D, Davidson K. 1986. A model of marine aerosol generation via whitecaps and wave disruption. Oceanic Whitecaps EC Monahan, G Niocaill 167–74 New York: Springer [Google Scholar]
  95. Mueller JA, Veron F. 2009a. A Lagrangian stochastic model for heavy particle dispersion in the atmospheric marine boundary layer. Bound.-Layer Meteorol. 130:229–47 [Google Scholar]
  96. Mueller JA, Veron F. 2009b. A sea state–dependent spume generation function. J. Phys. Oceanogr. 39:2363–72 [Google Scholar]
  97. Mueller JA, Veron F. 2010. A Lagrangian stochastic model for sea-spray evaporation in the atmospheric marine boundary layer. Bound.-Layer Meteorol. 137:135–52 [Google Scholar]
  98. Mueller JA, Veron F. 2014a. Impact of sea spray on air-sea fluxes part 1: results from stochastic simulations of sea spray drops over the ocean. J. Phys. Oceanogr. In press [Google Scholar]
  99. Mueller JA, Veron F. 2014b. Impact of sea spray on air-sea fluxes part 2: feedback effects. J. Phys. Oceanogr. In press [Google Scholar]
  100. Mulcahy JP, O'Dowd CD, Jennings SG, Ceburnis D. 2008. Significant enhancement of aerosol optical depth in marine air under high wind conditions. Geophys. Res. Lett. 35:L16810 [Google Scholar]
  101. Norris SJ, Brooks IM, Hill MK, Brooks BJ, Smith MH, Sproson DAJ. 2012. Eddy covariance measurements of the sea spray aerosol flux over the open ocean. J. Geophys. Res. 117:D07210 [Google Scholar]
  102. Norris SJ, Brooks IM, Yelland MJ, de Leeuw G, Pascal RW, Brooks B. 2013. Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean. Ocean Sci. 9:144–45 [Google Scholar]
  103. O'Dowd CD, de Leeuw G. 2007. Marine aerosol production: a review of the current knowledge. Philos. Trans. R. Soc.A 367:1753–74 [Google Scholar]
  104. Ovadnevaite J, Manders A, de Leeuw G, Ceburnis D, Monahan C. et al. 2014. A sea spray aerosol flux parameterization encapsulating wave state. Atmos. Chem. Phys. 14:1837–52 [Google Scholar]
  105. Pattison MJ, Belcher SE. 1999. Production rates of sea-spray droplets. J. Geophys. Res. 104:18397–407 [Google Scholar]
  106. Phillips OM. 1985. Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech. 156:505–31 [Google Scholar]
  107. Piazzola J, Forget P, Lafon C, Despiau S. 2009. Spatial variation of sea-spray fluxes over a Mediterranean coastal zone using a sea-state model. Bound.-Layer Meteorol. 132:167–83 [Google Scholar]
  108. Pilch M, Erdman CA. 1987. Use of breakup time and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int. J. Multiphase Flow 13:741–57 [Google Scholar]
  109. Powell MD, Vickery PJ, Reinhold TA. 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–83 [Google Scholar]
  110. Prosperetti A, Oguz HN. 1993. The impact of drops on liquid surfaces and the underwater noise of rain. Annu. Rev. Fluid Mech. 25:577–602 [Google Scholar]
  111. Pruppacher HR, Klett JD. 1978. Microphysics of Clouds and Precipitation Dordrecht: D. Riedel [Google Scholar]
  112. Pruppacher HR, Klett JD. 1997. Microphysics of Clouds and Precipitation. Dordrecht: Kluwer997, 2nd ed.. [Google Scholar]
  113. Rastigejev Y, Suslov S, Lin YL. 2011. Effect of ocean spray on vertical momentum transport under high-wind conditions. Bound.-Layer Meteorol. 141:1–20 [Google Scholar]
  114. Resch FJ, Afeti GM. 1991. Film drop distributions from bubbles bursting in sea water. J. Geophys. Res. 96:10681–88 [Google Scholar]
  115. Resch FJ, Darrozes JS, Afeti GM. 1986. Marine liquid aerosol production from bursting of air bubbles. J. Geophys. Res. 91:1019–29 [Google Scholar]
  116. Richter DH, Sullivan PP. 2013. Sea surface drag and the role of spray. Geophys. Res. Lett. 40:656–60 [Google Scholar]
  117. Richter DH, Sullivan PP. 2014. The sea spray contribution to sensible heat flux. J. Atmos. Sci. 71:640–54 [Google Scholar]
  118. Rosenfeld D, Woodley WL, Khain A, Cotton WR, Carrio G. et al. 2012. Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Am. Meteorol. Soc. 93:987–1001 [Google Scholar]
  119. Rouault MP, Mestayer PG, Schiestel R. 1991. A model of evaporating spray droplet dispersion. J. Geophys. Res. 96:7181–200 [Google Scholar]
  120. Saruwatari A, Abe N. 2014. Relationship between latent heat of sea spray and uncertainty of a meteorological field. Appl. Ocean Res. 44:102–11 [Google Scholar]
  121. Seinfeld JH, Pandis SN. 1998. Atmospheric Chemistry and Physics: From Air Pollution to Climate New York: Wiley [Google Scholar]
  122. Sellegri K, O'Dowd CD, Yoon YJ, Jennings SG, de Leeuw G. 2006. Surfactants and submicron sea spray generation. J. Geophys. Res. 111:D22215 [Google Scholar]
  123. Shaw RA. 2003. Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35:183–227 [Google Scholar]
  124. Shpund J, Pinsky M, Khain A. 2011. Microphysical structure of the marine boundary layer under strong wind and spray formation as seen from simulations using a 2D explicit microphysical model. Part I: The impact of large eddies. J. Atmos. Sci. 68:2366–84 [Google Scholar]
  125. Shpund J, Zhang JA, Pinsky M, Khain A. 2012. Microphysical structure of the marine boundary layer under strong wind and spray formation as seen from simulations using a 2D explicit microphysical model. Part II: The role of sea spray. J. Atmos. Sci. 69:3501–14 [Google Scholar]
  126. Slinn SA, Slinn WGN. 1980. Prediction for particle deposition on natural waters. Atmos. Env. 14:1013–16 [Google Scholar]
  127. Slinn WGN, Hasse L, Hicks B, Hogan A, Lal D. et al. 1978. Some aspects of the transfer of atmospheric trace constituents past the air-sea interface. Atmos. Environ. 12:2055–87 [Google Scholar]
  128. Smith MH, Park PM, Consterdine IE. 1993. Marine aerosol concentration and estimated fluxes over the sea. Q. J. R. Meteorol. Soc. 119:809–24 [Google Scholar]
  129. Spiel DE. 1994a. The number and size of jet drops produced by air bubbles bursting on a fresh water surface. J. Geophys. Res. 99:10289–96 [Google Scholar]
  130. Spiel DE. 1994b. The sizes of jet drops produced by air bubbles bursting on sea- and fresh-water surfaces. Tellus B 46:24907–18 [Google Scholar]
  131. Spiel DE. 1995. On the births of jet drops from bubbles bursting on water surfaces. J. Geophys. Res. 100:4995–5006 [Google Scholar]
  132. Spiel DE. 1997. More on the births of jet drops from bubbles bursting on seawater surfaces. J. Geophys. Res. 102:5815–21 [Google Scholar]
  133. Spiel DE. 1998. On the births of film drops from bubbles bursting on seawater surfaces. J. Geophys. Res. 103:24907–18 [Google Scholar]
  134. Stokes MD, Deane GB, Prather K, Bertram TH, Ruppel MJ. et al. 2013. A marine aerosol reference tank system as a breaking wave analogue for the production of foam and sea-spray aerosols. Atmos. Meas. Tech. 6:1085–94 [Google Scholar]
  135. Sullivan PP, McWilliams JC. 2010. Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech. 42:19–42 [Google Scholar]
  136. Tang IN, Tridico AC, Fung KH. 1997. Thermodynamic and optical properties of sea salt aerosols. J. Geophys. Res. Atmos. 102:23269–75 [Google Scholar]
  137. Textor C, Schulz M, Guibert S, Kinne S, Balkanski Y. et al. 2006. Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys. 6:1777–813 [Google Scholar]
  138. Thorpe SA. 1992. Bubble clouds and the dynamics of the upper ocean. Q. J. R. Meteorol. Soc. 118:1–22 [Google Scholar]
  139. Vaishya A, Jennings SG, O'Dowd C. 2012. Wind-driven influences on aerosol light scattering in north-east Atlantic air. Geophys. Res. Lett. 39:L05805 [Google Scholar]
  140. Veron F, Hopkins C, Harrison E, Mueller JA. 2012. Sea spray spume droplet production in high wind speeds. Geophys. Res. Lett. 39:L16602 [Google Scholar]
  141. Vignati E, Facchini MC, Rinaldi M, Scannell C, Ceburnis D. et al. 2010. Global scale emission and distribution of sea-spray aerosol: sea-salt and organic enrichment. Atmos. Environ. 44:670–77 [Google Scholar]
  142. Villermaux E. 2007. Fragmentation. Annu. Rev. Fluid Mech. 39:419–46 [Google Scholar]
  143. Villermaux E, Bossa B. 2009. Single-drop fragmentation distribution of raindrops. Nat. Phys. 5:697–702 [Google Scholar]
  144. Wang LP, Maxey MR. 1993. Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256:27–68 [Google Scholar]
  145. Wu J. 1973. Spray in the atmospheric surface layer: laboratory study. J. Geophys. Res. 78:511–19 [Google Scholar]
  146. Wu J. 1992. Bubble flux and marine aerosol spectra under various wind velocities. J. Geophys. Res. 97:2327–33 [Google Scholar]
  147. Wu J. 1993. Production of spume drops by the wind tearing of wave crests: the search for quantification. J. Geophys. Res. 98:18221–27 [Google Scholar]
  148. Wu J. 1994. Film drops produced by air bubbles bursting at the surface of sea water. J. Geophys. Res. 99:16403–7 [Google Scholar]
  149. Wu J. 2001. Production functions of film drops by bursting bubbles. J. Phys. Oceanogr. 31:3249–57 [Google Scholar]
  150. Wu J. 2002. Jet drops produced by bubbles bursting at the surface of seawater. J. Phys. Oceanogr. 32:3286–90 [Google Scholar]
  151. Wu J, Murray JJ, Lai RJ. 1984. Production and distributions of sea spray. J. Geophys. Res. 89:8163–69 [Google Scholar]
  152. Zhao D, Toba Y, Sugioka K, Komon S. 2006. New sea spray generation function for spume droplets. J. Geophys. Res. 111:C02007 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error