1932

Abstract

We provide a comprehensive and systematic description of the diverse microbubble generation methods recently developed to satisfy emerging technological, pharmaceutical, and medical demands. We first introduce a theoretical framework unifying the physics of bubble formation in the wide variety of existing types of generators. These devices are then classified according to the way the bubbling process is controlled: outer liquid flows (e.g., coflows, cross flows, and flow-focusing flows), acoustic forcing, and electric fields. We also address modern techniques developed to produce bubbles coated with surfactants and liquid shells. The stringent requirements to precisely control the bubbling frequency, the bubble size, and the properties of the coating make microfluidics the natural choice to implement such techniques.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010814-014658
2015-01-03
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/fluid/47/1/annurev-fluid-010814-014658.html?itemId=/content/journals/10.1146/annurev-fluid-010814-014658&mimeType=html&fmt=ahah

Literature Cited

  1. Abadie T, Aubin J, Legendre D, Xuereb C. 2012. Hydrodynamics of gas-liquid Taylor flow in rectangular microchannels. Microfluid. Nanofluid. 12:355–69 [Google Scholar]
  2. Anna SL, Bontoux N, Stone HA. 2003. Formation of dispersions using flow focusing in microchannels. Appl. Phys. Lett. 82:364–66 [Google Scholar]
  3. Artemyev MV, Woggon U, Wannemacher R. 2001. Photons confined in hollow microspheres. Appl. Phys. Lett. 78:1032–34 [Google Scholar]
  4. Aumaitre E, Knoche S, Cicuta P, Vella D. 2013. Wrinkling in the deflation of elastic bubbles. Eur. Phys. J. E 36:22 [Google Scholar]
  5. Barrero A, Loscertales IG. 2007. Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech. 39:89–106 [Google Scholar]
  6. Bolaños-Jiménez R, Sevilla A, Martínez-Bazán C, Gordillo JM. 2008. Axisymmetric bubble collapse in a quiescent liquid pool. Part II: Experimental study. Phys. Fluids 20:112104 [Google Scholar]
  7. Brennen C. 2002. Fission of collapsing cavitation bubbles. J. Fluid Mech. 472:153–66 [Google Scholar]
  8. Brenner MP, Hilgenfeldt S, Lohse D. 2002. Single-bubble sonoluminiscence. Rev. Mod. Phys. 74:425–84 [Google Scholar]
  9. Burton J, Waldrep R, Taborek P. 2005. Scaling instabilities in bubble pinch-off. Phys. Rev. Lett. 94:184502 [Google Scholar]
  10. Can T, Mingyan L, Yonggui X. 2013. 3-D numerical simulations on flow and mixing behaviors in gas-liquid-solid microchannels. AIChE J. 59:1934–51 [Google Scholar]
  11. Castro-Hernández E, Campo-Cortés F, Gordillo JM. 2012. Slender-body theory for the generation of micrometre-sized emulsions through tip streaming. J. Fluid Mech. 698:423–45 [Google Scholar]
  12. Castro-Hernández E, van Hoeve W, Lohse D, Gordillo J. 2011. Microbubble generation in a co-flow device operated in a new regime. Lab Chip 11:2023–29 [Google Scholar]
  13. Chabra R. 2006. Bubbles, Drops and Particles in Non-Newtonian Fluids Boca Raton, FL: Taylor & Francis, 2nd. ed. [Google Scholar]
  14. Chang CH, Franses EI. 1995. Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms. Colloid Surf. A 100:1–45 [Google Scholar]
  15. Chen H, Li J, Wan J, Weitz DA, Stone HA. 2013. Gas-core triple emulsions for ultrasound triggered release. Soft Matter 9:38–42 [Google Scholar]
  16. Chen K, Richter H. 1997. Instability analysis of the transition from bubbling to jetting in a gas injected into a liquid. Int. J. Multiphase Flow 23:699–712 [Google Scholar]
  17. Chen R, Dong PF, Xu JH, Wang YD, Luo GS. 2012. Controllable microfluidic production of gas-in-oil-in-water emulsions for hollow microspheres with thin polymer shells. Lab Chip 12:3858–60 [Google Scholar]
  18. Chuang SC, Goldschmidt VW. 1970. Bubble formation due to a submerged capillary tube in quiescent and coflowing streams. Trans. ASME D 92:705–11 [Google Scholar]
  19. Cubaud T, Ho CM. 2004. Transport of bubbles in square microchannels. Phys. Fluids 16:4575–85 [Google Scholar]
  20. Cubaud T, Tatieni M, Zhong X, Ho CM. 2005. Bubble dispenser in microfluidic devices. Phys. Rev. E 72:037302 [Google Scholar]
  21. De Menech M, Garstecki P, Jousse F, Stone HA. 2008. Transition from squeezing to dripping in a microfluidic T-shaped junction. J. Fluid Mech. 595:141–61 [Google Scholar]
  22. Di Bari S, Robinson AJ. 2013. Adiabatic bubble growth in uniform DC electric fields. Exp. Thermal Fluid Sci. 44:114–23 [Google Scholar]
  23. Di Marco P. 2012. The use of electric force as a replacement of buoyancy in two-phase flow. Microgravity Sci. Technol. 24:215–28 [Google Scholar]
  24. Eggers J, Villermaux E. 2008. Physics of liquid jets. Rep. Prog. Phys. 71:036601 [Google Scholar]
  25. Epstein PS, Plesset MS. 1950. On the stability of gas bubbles in liquid-gas solutions. J. Chem. Phys. 18:1505–9 [Google Scholar]
  26. Feinstein SB, Ten Cate JF, Zwehl W, Ong K, Maurer G. et al. 1984. Two-dimensional contrast echocardiography. I. In vitro development and quantitative analysis of echo contrast agents. J. Am. Coll. Cardiol. 3:14–20 [Google Scholar]
  27. Ferrara K, Pollard R, Borden M. 2007. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 9:415–47 [Google Scholar]
  28. Fischer P, Erni P. 2009. 2D rheology in food technology. Interfacial Rheology614–53 Boca Raton, FL: CRC [Google Scholar]
  29. Forrester SE, Rielly CD. 1998. Bubble formation from cylindrical, flat and concave sections exposed to a strong liquid cross-flow. Chem. Eng. Sci. 53:1517–27 [Google Scholar]
  30. Gañán-Calvo AM. 2004. Perfectly monodisperse microbubbling by capillary flow focusing: an alternate physical description and universal scaling. Phys. Rev. E 69:027301 [Google Scholar]
  31. Gañán-Calvo AM, Gordillo JM. 2001. Perfectly monodisperse microbubbling by capillary flow focusing. Phys. Rev. Lett. 87:274501Provides the first use of flow-focusing geometry to massively produce monodisperse microbubbles. [Google Scholar]
  32. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM. 2006. Formation of droplets in a microfluidic T-junction: scaling and mechanism of break-up. Lab Chip 6:437–46 [Google Scholar]
  33. Garstecki P, Fuerstman MJ, Whitesides GM. 2005a. Nonlinear dynamics of a flow-focusing bubble generator: an inverted dripping faucet. Phys. Rev. Lett. 94:234502 [Google Scholar]
  34. Garstecki P, Gañán-Calvo A, Whitesides GM. 2005b. Formation of bubbles and droplets in microfluidic systems. Bull. Pol. Acad. Sci. 53:361–72 [Google Scholar]
  35. Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA. 2004. Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl. Phys. Lett. 85:2649–51Provides the first use of planar flow-focusing geometry to generate monodisperse microbubbles. [Google Scholar]
  36. Garstecki P, Stone HA, Whitesides GM. 2005c. Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. Phys. Rev. Lett. 94:164501 [Google Scholar]
  37. Glawdel T, Ren CL. 2012. Droplet formation in microfluidic T-junction generators operating in the transitional regime. III. Dynamic surfactant effects. Phys. Rev. E 86:026308 [Google Scholar]
  38. Gordillo JM. 2008. Axisymmetric bubble collapse in a quiescent liquid pool. Part I: Theory and numerical simulations. Phys. Fluids 20:112103 [Google Scholar]
  39. Gordillo JM, Cheng Z, Márquez M, Gañán-Calvo AM, Weitz DA. 2004. A new device for the generation of microbubbles. Phys. Fluids 16:2828–34 [Google Scholar]
  40. Gordillo JM, Sevilla A, Campo-Cortés F. 2014. Global stability of stretched jets: conditions for the generation of monodisperse micro-emulsions using coflows. J. Fluid Mech. 738:335–57 [Google Scholar]
  41. Gordillo JM, Sevilla A, Martínez-Bazán C. 2007. Bubbling in a co-flow at high Reynolds numbers. Phys. Fluids 19:077102 [Google Scholar]
  42. Guillot P, Colin A. 2005. Stability of parallel flows in a microchannel after a T junction. Phys. Rev. E 72:066301 [Google Scholar]
  43. Guillot P, Colin A, Utada AS, Ajdari A. 2007. Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Phys. Rev. Lett. 99:104502 [Google Scholar]
  44. Herman C, Iacona E, Földes B, Suner G, Milburn C. 2002. Experimental visualization of bubble formation from an orifice in microgravity in the presence of electric fields. Exp. Fluids 32:396–412 [Google Scholar]
  45. Herrada M, Gañán-Calvo A, Montanero J. 2013. Theoretical investigation of a technique to produce microbubbles by a microfluidic T junction. Phys. Rev. E 88:033027 [Google Scholar]
  46. Hettiarachchi K, Talu E, Longo M, Dayton P, Lee A. 2007. On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging. Lab Chip 7:463–68Presents an effective procedure to massively produce stabilized monodisperse microbubbles. [Google Scholar]
  47. Higuera FJ. 2005. Injection and coalescence of bubbles in a very viscous liquid. J. Fluid Mech. 530:369–78 [Google Scholar]
  48. Higuera FJ. 2006. Injection of bubbles in a liquid under a uniform electric field. J. Fluid Mech. 568:203–22 [Google Scholar]
  49. Higuera FJ, Medina A. 2006. Injection and coalescence of bubbles in a quiescent inviscid liquid. Eur. J. Mech. B 25:164–71 [Google Scholar]
  50. Hinze JO. 1955. Fundamentals of the hydrodynamics mechanisms of splitting in dispersion process. AIChE J. 1:289–95 [Google Scholar]
  51. Huang YW, Shaikh FA, Ugaz VM. 2011. Tunable synthesis of encapsulated microbubbles by coupled electrophoretic stabilization and electrochemical inflation. Angew. Chem. Int. Ed. Engl. 50:3739–43 [Google Scholar]
  52. Kolmogorov AN. 1949. On the breakage of drops in a turbulent flow. Dokl. Akad. Nauk. SSSR 66:825–28 [Google Scholar]
  53. Kukizaki M, Goto M. 2006. Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes. J. Membr. Sci. 281:386–96 [Google Scholar]
  54. Kulkarni A, Joshi J. 2005. Bubble formation and bubble rise velocity in gas-liquid systems: a review. Ind. Eng. Chem. Res. 44:5873–931 [Google Scholar]
  55. Kumar R, Kuloor NR. 1970. The formation of bubbles and drops. Adv. Chem. Eng. 8:256–368 [Google Scholar]
  56. Landau L, Liftshitz E. 1986. Electrodynamics of Continuous Media New York: Pergamon, 2nd ed.. [Google Scholar]
  57. Lee MH, Prasad V, Lee D. 2010. Microfluidic fabrication of stable nanoparticle-shelled bubbles. Langmuir 26:2227–30 [Google Scholar]
  58. Lin SP, Reitz RD. 1998. Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30:85–105 [Google Scholar]
  59. Longuet-Higgins MS, Kerman BR, Lunde K. 1991. The release of air bubbles from an underwater nozzle. J. Fluid Mech. 230:365–90 [Google Scholar]
  60. Lorenceau E, Sang YYC, Holler R, Cohen-Addad S. 2006. A high rate flow-focusing foam generator. Phys. Fluids 18:097103 [Google Scholar]
  61. Makuta T, Suzuki R, Nakao T. 2013. Generation of microbubbles from hollow cylindrical ultrasonic horn. Ultrasonics 53:196–202 [Google Scholar]
  62. Makuta T, Takemura EH, Matsumoto Y, Shoji M. 2006. Generation of micro gas bubbles of uniform diameter in an ultrasonic field. J. Fluid. Mech. 548:113–31 [Google Scholar]
  63. Marshall S, Chudacek M, Bagster D. 1993. A model for bubble formation from an orifice with liquid cross-flow. Chem. Eng. Sci. 48:2049–59 [Google Scholar]
  64. Martínez-Bazán C, Montañés JL, Lasheras JC. 1999. On the breakup of an air bubble injected into a fully developed turbulent flow. Part I: Breakup frequency. J. Fluid Mech. 401:157–82 [Google Scholar]
  65. Martínez-Bazán C, Rodríguez-Rodríguez J, Deane GB, Montañés JL, Lasheras JC. 2010. Considerations on bubble fragmentation models. J. Fluid Mech. 661:159–77 [Google Scholar]
  66. Net A, Drenckhan W, Weaire D, Hutzler S. 2006. A dynamic model of crystal structure. Soft Matter 2:129–34 [Google Scholar]
  67. HN, Prosperetti A. 1993. Dynamics of bubble growth and detachment from a needle. J. Fluid Mech. 257:111–45Clarifies the physics common to bubbling processes and compares numerical simulations with experiments. [Google Scholar]
  68. Peyman SA, Abou-Saleh RH, MacLaughlan JR, Ingram N, Johnson BRG. et al. 2012. Expanding 3D geometry for enhanced on-chip microbubble production and single step formation of liposome modified microbubbles. Lab Chip 12:4544–52 [Google Scholar]
  69. Plesset MS, Prosperetti A. 1977. Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9:145–85 [Google Scholar]
  70. Pohorecki R, Kula K. 2008. A simple mechanism of bubble and slug formation in Taylor flow in microchannels. Chem. Eng. Res. Des. 86:997–1001 [Google Scholar]
  71. Rayleigh WS. 1878. On the instability of jets. Proc. Lond. Math. Soc. 10:4–13 [Google Scholar]
  72. Saville D. 1997. Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29:27–64 [Google Scholar]
  73. Sevilla A, Gordillo JM, Martínez-Bazán C. 2005a. Bubble formation in a coflowing air-water stream. J. Fluid Mech. 530:181–95 [Google Scholar]
  74. Sevilla A, Gordillo JM, Martínez-Bazán C. 2005b. Transition from bubbling to jetting in a coaxial air-water jet. Phys. Fluids 17:018105 [Google Scholar]
  75. Shih R, Bardin D, Martz TD, Sheeran PS, Dayton PA, Lee AP. 2013. Flow-focusing regimes for accelerated production of monodisperse drug-loadable microbubbles toward clinical-scale applications. Lab Chip 13:4816–26 [Google Scholar]
  76. Shirota M, Sanada T, Sato A, Watanabe M. 2008. Formation of a submillimeter bubble from an orifice using pulsed acoustic pressure waves in gas phase. Phys. Fluids 20:043301 [Google Scholar]
  77. Smith CS. 1949. On blowing bubbles for Bragg's dynamic crystal model. J. Appl. Phys. 20:631 [Google Scholar]
  78. Steijn V, Kleijn CR, Kreutzer MT. 2009. Flows around confined bubbles and their importance in triggering pinch-off. Phys. Rev. Lett. 103:214501 [Google Scholar]
  79. Steijn V, Kleijn CR, Kreutzer MT. 2010. Predictive model for the size of bubbles and droplets created in microfluidic T-junctions. Lab Chip 10:2513–18 [Google Scholar]
  80. Stoffel M, Wahl S, Lorenceau E, Hohler R, Mercier B, Angelescu D. 2012. Bubble production mechanism in a microfluidic foam generator. Phys. Rev. Lett. 108:198302 [Google Scholar]
  81. Stride E, Edirisinghe M. 2008. Novel microbubble preparation technologies. Soft Matter 4:2350–59 [Google Scholar]
  82. Stride E, Edirisinghe M. 2009. Novel preparation techniques for controlling microbubble uniformity: a comparison. Med. Biol. Eng. Comput. 47:883–92 [Google Scholar]
  83. Sunder S, Tomar G. 2013. Numerical simulations of bubble deformation from submerged needles under non-uniform direct current electric field. Phys. Fluids 25:102104 [Google Scholar]
  84. Suryo R. 2006. Break-up of simple and compound drops and bubbles PhD Thesis, Purdue Univ., West Layfayette, IN [Google Scholar]
  85. Suryo R, Basaran OA. 2006. Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid. Phys. Fluids 18:082102 [Google Scholar]
  86. Terasaka K, Hirabayashi A, Nishino T, Fujioka S, Kobayashi D. 2011. Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem. Eng. Sci. 66:3172–79 [Google Scholar]
  87. Thorsen T, Roberts RW, Arnold FH, Quake SR. 2001. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86:4163–66 [Google Scholar]
  88. Tsuge H. 1986. Encyclopedia of Fluid Mechanics Houston: Gulf [Google Scholar]
  89. Unger E, Porter T, Culp W, Labella R, Matsunaga T, Zutshia R. 2004. Therapeutic applications of lipid-coated microbubbles. Adv. Drug Deliv. Rev. 56:1291–314 [Google Scholar]
  90. van der Meer S, Dollet B, Voormolen M, Chin C, Bouakaz A. et al. 2007. Microbubble spectroscopy of ultrasound contrast agents. J. Acoust. Soc. Am. 121:648–56 [Google Scholar]
  91. Vella D, Aussillous P, Mahadevan L. 2004. Elasticity of an interfacial particle raft. Europhys. Lett. 68:212–18 [Google Scholar]
  92. Vitasari D, Grassia P, Martin P. 2013. Simulation of dynamics of adsorption of mixed protein-surfactant on a bubble surface. Colloids Surf. A 438:63–76 [Google Scholar]
  93. Wan J, Stone HA. 2012. Coated gas bubbles for the continuous synthesis of hollow inorganic particles. Langmuir 28:37–41 [Google Scholar]
  94. Ward AFH, Tordai L. 1946. Time-dependence of boundary tension of solutions. I. The role of diffusion in time effects. J. Chem. Phys. 14:453–61 [Google Scholar]
  95. Xing Z, Wang J, Ke H, Zhao B, Yue X. et al. 2010. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging. Nanotechnology 21:145607 [Google Scholar]
  96. Xu JH, Dong PF, Zhao H, Tostado CP, Luo GS. 2012. The dynamic effects of surfactants on droplet formation in coaxial microfluidic devices. Langmuir 28:9250–58 [Google Scholar]
  97. Yang L, Wang K, Mak S, Li Y, Luo G. 2013. A novel microfluidic technology for the preparation of gas-in-oil-in-water emulsions. Lab Chip 13:3355–59 [Google Scholar]
  98. Zaky AA, Nossier A. 1977. Bubble injection and electrically induced hydrostatic pressure in insulating liquids subjected to non-uniform fields. J. Phys. D 10:L189–91 [Google Scholar]
  99. Zhao CX. 2013. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv. Drug Deliv. Rev. 65:1420–46 [Google Scholar]
  100. Zimmerman W, Hewakandamby B, Tesar V, Bandulasenaa H, Omotowa O. 2009. On the design and simulation of an airlift loop bioreactor with microbubble generation by fluidic oscillation. Food Bioprod. Proc. 87:215–27 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010814-014658
Loading
/content/journals/10.1146/annurev-fluid-010814-014658
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error