Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10−2 to 107 Hz) and distances (10−2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abadi SH, Rouseff D, Dowling DR. 2012a. Blind deconvolution for robust signal estimation and approximate source localization. J. Acoust. Soc. Am. 131:2599–610 [Google Scholar]
  2. Abadi SH, Song HC, Dowling DR. 2012b. Broadband sparse-array blind deconvolution using frequency-difference beamforming. J. Acoust. Soc. Am. 132:3018–29 [Google Scholar]
  3. Abadi SH, Thode AM, Blackwell SB, Dowling DR. 2014. Comparison of three methods of ranging bowhead whale calls in a shallow-water dispersive waveguide. J. Acoust. Soc. Am. 136130–44 [Google Scholar]
  4. Baggeroer AB, Kuperman WA, Mikhalevsky PN. 1993. An overview of matched field methods in ocean acoustics. IEEE J. Ocean. Eng. 18:401–24 [Google Scholar]
  5. Baggeroer AB, Kuperman WA, Schimdt H. 1988. Matched-field processing: source localization in correlated noise as an optimum parameter estimation problem. J. Acoust. Soc. Am. 83:571–87 [Google Scholar]
  6. Blacodon D. 2011a. Array processing for noisy data: application for open and closed wind tunnels. AIAA J. 49:55–66 [Google Scholar]
  7. Blacodon D. 2011b. Spectral estimation method for noisy data using a noise reference. Appl. Acoust. 72:11–21 [Google Scholar]
  8. Bradley S. 2007. Atmospheric Acoustic Remote Sensing: Principles and Applications Boca Raton, FL: CRC [Google Scholar]
  9. Brandstein MS, Silverman HF. 1997. A practical methodology for speech source localization with microphone arrays. Comput. Speech Lang. 11:91–126 [Google Scholar]
  10. Brandstein MS, Ward D. 2001. Microphone Arrays Berlin: Springer-Verlag [Google Scholar]
  11. Broadhead MK, Pflug LA. 2000a. Performance of some sparseness criterion blind deconvolution methods in the presence of noise. J. Acoust. Soc. Am. 107:885–93 [Google Scholar]
  12. Broadhead MK, Pflug LA. 2000b. Use of higher order statistics in source signature estimation. J. Acoust. Soc. Am. 107:2576–85 [Google Scholar]
  13. Bucker HP. 1976. Use of calculated sound fields and matched-field detection to locate sound sources in shallow water. J. Acoust. Soc. Am. 59:368–73 [Google Scholar]
  14. Buckingham MJ, Berknout BV, Glegg SA. 1992. Imaging the ocean with ambient noise. Nature 356:327–29 [Google Scholar]
  15. Cabrelli CA. 1984. Minimum entropy deconvolution and simplicity: a noniterative algorithm. Geophysics 50:394–413 [Google Scholar]
  16. Caiti A, Garulli A, Livide F, Parttichizzo D. 2005. Localization of autonomous underwater vehicles by floating acoustic buoys: a set-membership approach. IEEE J. Ocean. Eng. 30:140–52 [Google Scholar]
  17. Capdevielle V, Serviere C, Lacoume JL. 1995. Blind separation of wide-band sources in the frequency domain. Proc. ICASSP-95: IEEE Int. Conf. Acoust. Speech Signal Proc. 32080–83 New York: IEEE [Google Scholar]
  18. Capon J. 1969. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 57:1408–18 [Google Scholar]
  19. Cardoso JF. 1991. Super-symmetric decomposition of the fourth-order cumulant tensor: blind identification of more sources than sensors. Proc. ICASSP-91: IEEE Int. Conf. Acoust. Speech Signal Proc. 53109–12 New York: IEEE [Google Scholar]
  20. Chang NA, Dowling DR. 2009. Ray-based acoustic localization of cavitation in a highly reverberant environment. J. Acoust. Soc. Am. 125:3088–100 [Google Scholar]
  21. Chen JC, Hudson RE, Yao K. 2002. Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near-field. IEEE Trans. Signal Process. 50:1843–54 [Google Scholar]
  22. Cherry EC. 1953. Some experiments on the recognition of speech with one and two ears. J. Acoust. Soc. Am. 25:975–79 [Google Scholar]
  23. Cho YT, Roan MJ. 2009. Adaptive near-field beamforming techniques for sound source imaging. J. Acoust. Soc. Am. 125:944–57 [Google Scholar]
  24. Cho YT, Roan MJ, Bolton JS. 2009. A comparison of near-field beamforming and acoustical holography for sound source visualization. Proc. Inst. Mech. Eng. C 223:819–83 [Google Scholar]
  25. Claerbout JF. 1985. Fundamentals of Geophysical Data Processing Boston, MA: Blackwell Sci. [Google Scholar]
  26. Collins MD, Kuperman WA. 1991. Focalization: environmental focusing and source localization. J. Acoust. Soc. Am. 90:1410–22 [Google Scholar]
  27. Collins MD, Makris NC, Fialkowski LT. 1994. Noise cancellation and source localization. J. Acoust. Soc. Am. 96:1773–76 [Google Scholar]
  28. Collins MD, McDonald BE, Kuperman WA, Siegmann WL. 1997. Jovian acoustic matched-field processing. J. Acoust. Soc. Am. 102:2487–93 [Google Scholar]
  29. Colosi JA, Baggeroer AB, Cornuelle BD, Dzieciuch MA, Munk WH. et al. 2005. Analysis of multipath acoustic field variability and coherence in the finale of broadband basin-scale transmissions in the North Pacific Ocean. J. Acoust. Soc. Am. 117:1538–64 [Google Scholar]
  30. Colosi JA, Scheer EK, Flatté SM, Cornuelle BD, Dzieciuch MA. et al. 1999. Comparisons of measured and predicted acoustic fluctuations for a 3250 km propagation experiment in the eastern North Pacific Ocean. J. Acoust. Soc. Am. 105:3202–18 [Google Scholar]
  31. De Moustier C, Matsumoto H. 1993. Seafloor acoustic remote sensing with multibeam echo-sounders and bathymetric sidescan sonar systems. Mar. Geophys. Res. 15:27–42 [Google Scholar]
  32. Dosso SE, Wilmut MJ. 2013. Bayesian tracking of multiple acoustic sources in an uncertain ocean. J. Acoust. Soc. Am. 133:EL274–80 [Google Scholar]
  33. Ferguson BG. 1999. Time-delay estimation techniques applied to acoustic detection of jet aircraft transits. J. Acoust. Soc. Am. 106:255–64 [Google Scholar]
  34. Ffowcs Williams JE. 1969. Hydrodynamic noise. Annu. Rev. Fluid Mech. 1:197–222 [Google Scholar]
  35. Fialkowski LT, Collins MD, Perkins JS. 1997. Source localization in noisy and uncertain environments. J. Acoust. Soc. Am. 101:3539–45 [Google Scholar]
  36. Foote KG. 2008. Underwater acoustic technology: review of some recent developments. Proc. OCEANS 20081327–32 New York: IEEE [Google Scholar]
  37. Gerard A, Berry A, Masson P. 2005. Control of tonal noise from subsonic axial fan. Part 1: reconstruction of aeroacoustics sources from far-field sound pressure. J. Sound Vib. 288:1049–75 [Google Scholar]
  38. Godin OA, Mikhin DY, Mokhov AV. 1995. A full field inversion method for acoustic tomography of ocean currents. Full Field Inversion Methods in Ocean and Seismo-Acoustics O Diachok, A Caiti, P Gerstoft, H Schmidt 261–66 Berlin: Springer-Verlag [Google Scholar]
  39. Goldstein ME. 1984. Aeroacoustics of turbulent shear flows. Annu. Rev. Fluid Mech. 16:263–85 [Google Scholar]
  40. Grantham DW. 1986. Detection and discrimination of simulated motion of auditory targets in the horizontal plane. J. Acoust. Soc. Am. 79:1939–49 [Google Scholar]
  41. Greene CR, McLennan MW, Norman RG, McDonald TL, Jakubczak RS, Richardson WJ. 2004. Directional frequency and recording (DIFAR) sensors in seafloor recorders to locate calling bowhead whales during their fall migration. J. Acoust. Soc. Am. 116:799–813 [Google Scholar]
  42. Gürelli MI, Nikais CL. 1995. EVAM: an eigenvector-based algorithm for multichannel blind deconvolution of input colored signals. IEEE Trans. Signal Process. 43:134–49 [Google Scholar]
  43. Handzel AA, Krishnaprasad PS. 2002. Biomimetic sound-source localization. IEEE Sens. J. 2:607–16 [Google Scholar]
  44. Hansen LK, Larsen J, Kolenda T. 2000. On independent component analysis for multimedia signals. Multimedia Image and Video Processing L Guan, S-Y Kung, J Larsen 175–99 Boca Raton, FL: CRC [Google Scholar]
  45. Hawkes M, Nehorai A. 2003. Wideband source localization using a distributed acoustic vector-sensor array. IEEE Trans. Signal Process. 51:1479–91 [Google Scholar]
  46. Heaney KD, Campbell RL, Snellen M. 2013. Long range acoustic measurements of an undersea volcano. J. Acoust. Soc. Am. 134:3299–306 [Google Scholar]
  47. Högbom JA. 1974. Aperture synthesis with a non-regular distribution of interferometer baselines. Astron. Astrophys. Suppl. Ser. 15:417–26 [Google Scholar]
  48. Holfort IK, Grain F, Jensen JA. 2009. Broadband minimum variance beamforming for ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Frequency Control 56:3 14–25 [Google Scholar]
  49. Hsieh J. 2009. Computed Tomography: Principles, Design, Artifacts, and Recent Advances Bellingham, WA: SPIE [Google Scholar]
  50. Huang E, Dowling DR, Whelan T, Spiesberger JL. 2003. High-sensitivity photoacoustic leak testing. J. Acoust. Soc. Am. 114:1926–33 [Google Scholar]
  51. Hursky P, Siderius M, Porter MB, McDonald VK. 2004. High-frequency (8–16 kHz) model-based source localization. J. Acoust. Soc. Am. 115:3021–32 [Google Scholar]
  52. Jensen FB, Kuperman WA, Porter MB, Schmidt H. 2011. Computational Ocean Acoustics New York: Springer, 2nd ed.. [Google Scholar]
  53. Johnson DH. 1982. The application of spectral estimation methods to bearing estimation problems. Proc. IEEE 70:1018–28 [Google Scholar]
  54. Karaman M, Li PC, O'Donnell M. 1995. Synthetic aperture imaging for small scale systems. IEEE Trans. Ultrason. Ferroelectr. Frequency Control 42:429–42 [Google Scholar]
  55. Kashino K, Murase H. 1999. A sound source identification system for ensemble music based on template adaption and music stream extraction. Speech Commun. 27:337–49 [Google Scholar]
  56. Kay SM. 1998. Fundamentals of Statistical Signal Processing II Detection Theory Englewood Cliffs, NJ: Prentice Hall [Google Scholar]
  57. Kenny AJ, Cato I, Desprez M, Fader G, Schüttenhelm RTE, Side J. 2003. An overview of seabed-mapping technologies in the context of marine habitat classification. ICES J. Mar. Sci. 60:411–18 [Google Scholar]
  58. Kinsler LE, Frey AR, Coppens AB, Sanders JV. 2000. Fundamentals of Acoustics New York: Wiley, 4th ed.. [Google Scholar]
  59. Koldovský Z, Tichavský P. 2007. Time-domain blind audio source separation using advanced ICA methods. Proc. Interspeech 2007: 8th Annu. Conf. Int. Speech Commun. Assoc.1861–64 Baixas, Fr: Int. Speech Commun. Assoc. [Google Scholar]
  60. Krim H, Viberg M. 1996. Two decades of array signal processing research. IEEE Signal Process. Mag. 13:467–94 [Google Scholar]
  61. Kuperman W, Roux P. 2007. Underwater acoustics. Springer Handbook of Acoustics TD Rossing 149–205 New York: Springer-Verlag [Google Scholar]
  62. Lani S, Satir S, Gurun G, Sabra KG, Degertekin FL. 2011. High frequency ultrasonic imaging using thermal mechanical noise recorded on capacitive micromachined transducer arrays. Appl. Phys. Lett. 99:224103 [Google Scholar]
  63. Lani SW, Sabra KG, Hodgkiss WS, Kuperman WA, Roux P. 2013. Coherent processing of shipping noise for ocean monitoring. J. Acoust. Soc. Am. 133:EL108–13 [Google Scholar]
  64. Larose E, Derode A, Campillo M, Fink M. 2004. Imaging from one-bit correlations of wideband diffuse wave fields. J. Appl. Phys. 95:8393–99 [Google Scholar]
  65. Larose E, Roux P, Campillo M. 2007. Reconstruction of Rayleigh-Lamb dispersion spectrum based on noise obtained from an air-jet forcing. J. Acoust. Soc. Am. 122:3437–44 [Google Scholar]
  66. Le Pichon A, Blanc E, Hauchecorne A. 2010. Infrasound Monitoring for Atmospheric Studies Berlin: Springer-Verlag [Google Scholar]
  67. Lenth RV. 1981a. Measures of location for directional data. Technometrics 23:77–81 [Google Scholar]
  68. Lenth RV. 1981b. On finding the source of a signal. Technometrics 23:149–54 [Google Scholar]
  69. Lighthill MJ. 1952. On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211:564–87 [Google Scholar]
  70. Liner CL. 2004. Elements of 3D Seismology Tulsa: PennWell, 2nd ed.. [Google Scholar]
  71. Luo Y, Schuster GT. 1991. Wave-equation traveltime inversion. Geophysics 56:645–53 [Google Scholar]
  72. Makris NC, Ratilal P, Symonds DT, Jagannathan S, Lee S, Nero RW. 2006. Fish population and behavior revealed by instantaneous continental shelf-scale imaging. Science 311:660–63 [Google Scholar]
  73. Mansour A, Barros AK, Ohnishi N. 2000. Blind separation of sources: methods, assumptions, and applications. IEICE Trans. Fundam. E83-A:1498–512 [Google Scholar]
  74. Mantzel W, Romberg J, Sabra K. 2012. Compressive matched field processing. J. Acoust. Soc. Am. 132:90–102 [Google Scholar]
  75. Martins N, Jesus S, Gervaise C, Quinquis A. 2002. A time-frequency approach to blind deconvolution in multipath underwater channels. Proc. ICASSP-02: IEEE Int. Conf. Acoust. Speech Signal Proc. 21225–28 New York: IEEE [Google Scholar]
  76. Maynard JD, Williams EG, Lee Y. 1985. Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH. J. Acoust. Soc. Am. 78:1395–413 [Google Scholar]
  77. Mennitt D, Johnson M. 2010. Multiple-array passive acoustic source localization in urban environments. J. Acoust. Soc. Am. 127:2932–42 [Google Scholar]
  78. Michalopoulou ZH. 1996. Matched-field processing for broadband source localization. IEEE J. Ocean. Eng. 21:384–92 [Google Scholar]
  79. Morrissey RP, Ward J, DiMarzio N, Jarvis S, Moretti DJ. 2006. Passive acoustic detection and localization of sperm whales (Physeter macrocephalus) in the tongue of the ocean. Appl. Acoust. 67:1091–105 [Google Scholar]
  80. Munk W, Worcester P, Wunsch C. 2009. Ocean Acoustic Tomography Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  81. Murphy SM, Hines PC. 2014. Examining the robustness of automated aural classification of active sonar echoes. J. Acoust. Soc. Am. 135:626–36 [Google Scholar]
  82. Nehorai A, Paldi E. 1994. Acoustic vector-sensor array processing. IEEE Trans. Signal Process. 42:2481–91 [Google Scholar]
  83. Padois T, Prax C, Valeau V, Marx D. 2012. Experimental localization of an acoustic sound source in wind-tunnel flow by using a numerical time-reversal technique. J. Acoust. Soc. Am. 132:2397–407 [Google Scholar]
  84. Perkins JS, Kuperman WA. 1990. Environmental signal processing: three-dimensional matched field processing with a vertical array. J. Acoust. Soc. Am. 87:1553–56 [Google Scholar]
  85. Pierce AD. 1990. Wave equation for sound in fluids with unsteady inhomogeneous flow. J. Acoust. Soc. Am. 87:2292–99 [Google Scholar]
  86. Pinkel R. 1980. Acoustic Doppler techniques. Air-Sea Interaction: Instruments and Methods F Dobson, L Hasse, R Davis 171–99 New York: Plenum [Google Scholar]
  87. Rietsch E. 1997. Euclid and the art of wavelet estimation, part I: basic algorithm for noise-free data. Geophysics 62:1931–38 [Google Scholar]
  88. Roan MJ, Gramann MR, Erling JG, Sibul LH. 2003. Blind deconvolution applied to acoustical systems identification with supporting experimental results. J. Acoust. Soc. Am. 114:1988–96 [Google Scholar]
  89. Roux P, Kuperman WA. 2004. Extracting coherent wave fronts from acoustic ambient noise in the ocean. J. Acoust. Soc. Am. 116:1995–2003 [Google Scholar]
  90. Sabra KG, Dowling DR. 2004. Blind deconvolution in oceanic waveguides using artificial time reversal. J. Acoust. Soc. Am. 116:262–71 [Google Scholar]
  91. Sabra KG, Gerstoft P, Roux P, Kuperman WA, Fehler MC. 2005a. Surface wave tomography from microseisms in Southern California. Geophys. Res. Lett. 32:L14311 [Google Scholar]
  92. Sabra KG, Roux P, Kuperman WA. 2005b. Emergence rate of the time-domain Green's function from the ambient noise cross-correlation function. J. Acoust. Soc. Am. 118:3524–31 [Google Scholar]
  93. Sabra KG, Roux P, Thode AM, D'Spain GL, Hodgkiss WS, Kuperman WA. 2005c. Using ocean ambient noise for array self-localization and self-synchronization. IEEE J. Ocean. Eng. 30:338–47 [Google Scholar]
  94. Sabra KG, Song HC, Dowling DR. 2010. Ray-based blind deconvolution in ocean sound channels. J. Acoust. Soc. Am. 127:EL42–47 [Google Scholar]
  95. Sabra KG, Winkel ES, Bourgoyne DA, Elbing BR, Ceccio SL. et al. 2007. Using cross correlations of turbulent flow-induced ambient vibrations to estimate the structural impulse response: application to structural health monitoring. J. Acoust. Soc. Am. 121:1987–95 [Google Scholar]
  96. Sambur MR. 1975. Selection of acoustic features for speaker identification. IEEE Trans. Acoust. Speech Signal Process. 23:176–82 [Google Scholar]
  97. Schau HC, Robinson AZ. 1987. Passive source localization employing intersecting spherical surfaces from time-of-arrival differences. IEEE Trans. Acoust. Speech Signal Process. 35:1223–25 [Google Scholar]
  98. Schmidt RO. 1972. A new approach to geometry of range difference location. IEEE Trans. Aerosp. Electron. Syst. 8:821–35 [Google Scholar]
  99. Schmidt RO. 1986. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34:276–80 [Google Scholar]
  100. Shapiro NM, Campillo M, Stehly L, Ritzwoller MH. 2005. High-resolution surface-wave tomography from ambient seismic noise. Science 307:1615–18 [Google Scholar]
  101. Siderius M, Harrison CH, Porter MB. 2006. A passive fathometer technique for imaging seabed layering using ambient noise. J. Acoust. Soc. Am. 120:1315–23 [Google Scholar]
  102. Siderius M, Jackson DR, Rouseff D, Porter R. 1997. Multipath compensation in shallow water environments using a virtual receiver. J. Acoust. Soc. Am. 102:3439–49 [Google Scholar]
  103. Singh V, Knisely KE, Yönak SH, Grosh K, Dowling DR. 2012. Non-line-of-sight sound source localization using matched-field processing. J. Acoust. Soc. Am. 131:292–302 [Google Scholar]
  104. Skolnik MI. 1990. Radar Handbook New York: McGraw-Hill, 2nd ed.. [Google Scholar]
  105. Smith JF, Finette S. 1993. Simulated annealing as a method of deconvolution for acoustic transients measured on a vertical array. J. Acoust. Soc. Am. 94:2315–25 [Google Scholar]
  106. Smith WH, Sandwell DT. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277:1956–62 [Google Scholar]
  107. Snieder R, Wapenaar K. 2010. Imaging with ambient noise. Phys. Today 63:44–49 [Google Scholar]
  108. Soares C, Jesus SM. 2003. Broadband matched-field processing: coherent and incoherent approaches. J. Acoust. Soc. Am. 113:2587–98 [Google Scholar]
  109. Song HC, de Rosny J, Kuperman WA. 2003. Improvement in matched field processing using the CLEAN algorithm. J. Acoust. Soc. Am. 113:1379–86 [Google Scholar]
  110. Song HC, Hodgkiss WS, Kuperman WA, Akal T, Stevenson M. 2009. High-frequency acoustic communications achieving high bandwidth efficiency. J. Acoust. Soc. Am. 126:561–63 [Google Scholar]
  111. Song HC, Hodgkiss WS, Kuperman WA, Stevenson M. 2010. High-rate multiuser communications in shallow water. J. Acoust. Soc. Am. 128:2920–25 [Google Scholar]
  112. Spiesberger JL. 1998. Linking auto- and cross-correlation functions with correlation equations: application to estimating the relative travel times and amplitudes of multipath. J. Acoust. Soc. Am. 104:300–12 [Google Scholar]
  113. Spiesberger JL. 2000. Finding the right cross-correlation peak for locating sounds in multipath environments with a fourth-moment function. J. Acoust. Soc. Am. 108:1349–52 [Google Scholar]
  114. Spiesberger JL. 2001a. Hyperbolic location errors due to insufficient numbers of receivers. J. Acoust. Soc. Am. 109:3076–79 [Google Scholar]
  115. Spiesberger JL. 2001b. The matched-lag filter: detecting broadband multipath signals with auto- and cross-correlation functions. J. Acoust. Soc. Am. 109:1997–2007 [Google Scholar]
  116. Spiesberger JL. 2002. Probability density functions for hyperbolic and isodiachronic locations. J. Acoust. Soc. Am. 112:3046–52 [Google Scholar]
  117. Spiesberger JL. 2004. Geometry of locating sounds from differences in travel time: isodriachrons. J. Acoust. Soc. Am. 116:3168–77 [Google Scholar]
  118. Spiesberger JL. 2005. Probability distributions for locations of calling animals, receivers, sound speeds, winds, and data from travel time differences. J. Acoust. Soc. Am. 118:1790–800 [Google Scholar]
  119. Spiesberger JL, Fristrup KM. 1990. Passive localization of calling animals and sensing of their acoustic environment using acoustic tomography. Am. Nat. 135:107–53 [Google Scholar]
  120. Spindel RC. 1985. Sound transmission in the ocean. Annu. Rev. Fluid Mech. 17:217–37 [Google Scholar]
  121. Steinberg BD. 1976. Principles of Aperture and Array System Design New York: Wiley [Google Scholar]
  122. Synnevag JF, Austeng A, Holm S. 2007. Adaptive beamforming applied to medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Frequency Control 54:1606–13 [Google Scholar]
  123. Szabo TL. 2004. Diagnostic Ultrasound Imaging: Inside Out Amsterdam: Elsevier Sci. [Google Scholar]
  124. Tantum SL, Nolte LW. 1998. Tracking and localizing a moving source in an uncertain shallow water environment. J. Acoust. Soc. Am. 103:362–73 [Google Scholar]
  125. Tantum SL, Nolte LW. 2000. On array design for matched field processing. J. Acoust. Soc. Am. 107:2101–11 [Google Scholar]
  126. Taxt T, Strand J. 2001. Two-dimensional noise-robust blind deconvolution of ultrasound images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48:861–66 [Google Scholar]
  127. Thode AM, Kuperman WA, D'Spain GL, Hodgkiss WS. 2000. Localization using Bartlett matched-field processing sidelobes. J. Acoust. Soc. Am. 107:278–86 [Google Scholar]
  128. Tiemann CO, Thode AM, Straley J, O'Connell V, Folkert K. 2006. Three-dimensional localization of sperm whales using a single hydrophone. J. Acoust. Soc. Am. 120:2355–65 [Google Scholar]
  129. Tohyama M, Tsunehiko K, Koike T. 1998. Fundamentals of Acoustic Signal Processing New York: Academic [Google Scholar]
  130. Tollefsen D, Dosso SE. 2009. Three-dimensional source tracking in an uncertain environment. J. Acoust. Soc. Am. 128:EL111–16 [Google Scholar]
  131. Tollefsen D, Dosso SE. 2013. Three-dimensional multiple-source focalization in an uncertain ocean environment. J. Acoust. Soc. Am. 134:EL426–30 [Google Scholar]
  132. Tolstoy A. 1993. Matched Field Processing for Underwater Acoustics Singapore: World Sci. [Google Scholar]
  133. Turek G, Kuperman WA. 1997. Applications of matched-field processing to structural vibration problems. J. Acoust. Soc. Am. 101:1430–40 [Google Scholar]
  134. Urick RJ. 1983. Principles of Underwater Sound New York: McGraw-Hill, 3rd ed.. [Google Scholar]
  135. Van Trees HL. 2004. Detection, Estimation, and Modulation Theory. Part IV: Optimum Array Processing New York: Wiley [Google Scholar]
  136. Van Trees HL, Bell KL. 2013. Detection, Estimation, Modulation Theory. Part I: Detection, Estimation, and Filtering Theory New York: Wiley, 2nd ed.. [Google Scholar]
  137. Van Veen BA, Buckley KM. 1988. Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag. 5:24–24 [Google Scholar]
  138. Veronesi WA, Maynard JD. 1987. Nearfield acoustic holography (NAH) II. Holographic reconstruction algorithms and computer implementation. J. Acoust. Soc. Am. 81:1307–22 [Google Scholar]
  139. Voltz P, Lu IT. 1994. A time domain backpropagating ray technique for source localization. J. Acoust. Soc. Am. 95:805–12 [Google Scholar]
  140. Wang M, Freund JB, Lele SK. 2006. Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech. 38:483–512 [Google Scholar]
  141. Wang Y, Li J, Stoica P, Sheplak M, Nishida T. 2004. Wideband RELAX and wideband CLEAN for aero-acoustic imaging. J. Acoust. Soc. Am. 115:757–67 [Google Scholar]
  142. Weaver RL, Lobkis OI. 2001. Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. Phys. Rev. Lett. 87:134301 [Google Scholar]
  143. Weber R, Bohme JF. 2002. Adaptive super-exponential methods for blind multichannel equalization. Proc. Sens. Array Multichannel Signal Process. Workshop585–89 New York: IEEE [Google Scholar]
  144. Westwood EK. 1992. Broadband matched-field source localization. J. Acoust. Soc. Am. 91:2777–89 [Google Scholar]
  145. Westwood EK, Knobles DP. 1997. Source track localization via multipath correlation matching. J. Acoust. Soc. Am. 102:2645–54 [Google Scholar]
  146. Wiggins RA. 1978. Minimum entropy deconvolution. Geoexploration 16:21–35 [Google Scholar]
  147. Williams EG. 1999. Fourier Acoustics San Diego: Academic [Google Scholar]
  148. Williams EG, Maynard JD. 1980. Holographic imaging without the wavelength resolution limit. Phys. Rev. Lett. 45:554–57 [Google Scholar]
  149. Wilson DK. 1998. Performance bounds for acoustic direction-of-arrival arrays operating in atmospheric turbulence. J. Acoust. Soc. Am. 103:1306–19 [Google Scholar]
  150. Xinhua Z, Anqing Z, Jianping F, Shaoquing Y. 2001. Study on blind separation of underwater acoustic signals. Proc. WCCC-ICSP 2000: 5th Int. Conf. Signal Process. 31802–5 New York: IEEE [Google Scholar]
  151. Yardim C, Gerstoft P, Michalopoulou Z-H. 2013. Geophysical signal processing using sequential Bayesian techniques. Geophysics 78:V87–100 [Google Scholar]
  152. Yönak SH, Dowling DR. 1999. Photoacoustic leak detection and localization. J. Acoust. Soc. Am. 105:2685–94 [Google Scholar]
  153. Yönak SH, Dowling DR. 2002. Parametric dependencies for photoacoustic leak localization. J. Acoust. Soc. Am. 112:145–55 [Google Scholar]
  154. Yost WA, Brown CA. 2013. Localizing the sources of two independent noises: role of time varying amplitude differences. J. Acoust. Soc. Am. 133:2301–13 [Google Scholar]
  155. Young VW, Hines PC. 2007. Perception-based automatic classification of impulsive-source active sonar echoes. J. Acoust. Soc. Am. 122:1502–17 [Google Scholar]
  156. Yu C, Zhang C, Xie L. 2012. A blind deconvolution approach to ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59:271–80 [Google Scholar]
  157. Zeng W-J, Jiang X, Li X-L, Zhang X-D. 2009. Deconvolution of sparse underwater acoustic multipath channel with a large time-delay spread. J. Acoust. Soc. Am. 127:909–19 [Google Scholar]
  158. Zielinski XGA. 1999. Precise multibeam acoustic bathymetry. Mar. Geodesy 22:157–67 [Google Scholar]
  159. Ziomek LJ. 1995. Fundamentals of Acoustic Field Theory and Space-Time Signal Processing Boca Raton, FL: CRC [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error