Internal gravity waves are a key process linking the large-scale mechanical forcing of the oceans to small-scale turbulence and mixing. In this review, we focus on internal waves generated by barotropic tidal flow over topography. We review progress made in the past decade toward understanding the different processes that can lead to turbulence during the generation, propagation, and reflection of internal waves and how these processes affect mixing. We consider different modeling strategies and new tools that have been developed. Simulation results, the wealth of observational material collected during large-scale experiments, and new laboratory data reveal how the cascade of energy from tidal flow to turbulence occurs through a host of nonlinear processes, including intensified boundary flows, wave breaking, wave-wave interactions, and the instability of high-mode internal wave beams. The roles of various nondimensional parameters involving the ocean state, roughness geometry, and tidal forcing are described.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Akylas T, Karimi H. 2012. Oblique collisions of internal wave beams and associated resonances. J. Fluid Mech. 711:337–63 [Google Scholar]
  2. Alford MH, Klymak JM, Carter GS. 2014. Breaking internal lee waves at Kaena Ridge, Hawaii. Geophys. Res. Lett. 41:906–12 [Google Scholar]
  3. Alford MH, MacKinnon JA, Zhao Z, Pinkel R, Klymak J, Peacock T. 2007. Internal waves across the Pacific. Geophys. Res. Lett. 34:L24601 [Google Scholar]
  4. Alford MH, Peacock T, MacKinnon JA, Nash JD, Buijsman MC. et al. 2015. The formation and fate of internal waves in the South China Sea. Nature 521:65–69 [Google Scholar]
  5. Armi L. 1978. Some evidence for boundary mixing in the deep ocean. J. Geophys. Res. 83:1971–79 [Google Scholar]
  6. Arnold VI, Khesin BA. 1998. Topological Methods in Hydrodynamics New York: Springer [Google Scholar]
  7. Aucan J, Merrifield MA, Luther DS, Flament P. 2006. Tidal mixing events on the deep flanks of Kaena Ridge, Hawaii. J. Phys. Oceanogr. 36:1202–19 [Google Scholar]
  8. Baines PG. 1995. Topographic Effects in Stratified Flows Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  9. Becker JJ, Sandwell DT. 2008. Global estimates of seafloor slope from single-beam ship soundings. J. Geophys. Res. Oceans 113:C05028 [Google Scholar]
  10. Bell TH. 1975. Lee waves in stratified fluid with simple harmonic time dependence. J. Fluid Mech. 67:705–22 [Google Scholar]
  11. Blayo E, Debreu L. 2006. Nesting ocean models. Ocean Weather Forecasting EP Chassignet, J Verron 127–46 New York: Springer [Google Scholar]
  12. Bluteau CE, Jones NL, Ivey GN. 2011. Dynamics of a tidally forced stratified shear flow on the continental slope. J. Geophys. Res. 116:C11017 [Google Scholar]
  13. Bourget B, Scolan H, Dauxois T, Le Bars M, Odier P, Joubaud S. 2014. Finite-size effects in parametric subharmonic instability. J. Fluid Mech. 759:739–50 [Google Scholar]
  14. Bühler O, Holmes-Cerfon M. 2011. Decay of an internal tide due to random topography in the ocean. J. Fluid Mech. 678:271–93 [Google Scholar]
  15. Bühler O, Muller CJ. 2007. Instability and focusing of internal tides in the deep ocean. J. Fluid Mech. 588:1–28 [Google Scholar]
  16. Buijsman M, Klymak JM, Legg S, Alford MH, Farmer D. et al. 2013. Three-dimensional double-ridge internal tide resonance in Luzon Strait. J. Phys. Oceanogr. 44:850–69 [Google Scholar]
  17. Buijsman M, Legg S, Klymak J. 2012. Double ridge internal tide interference and its effect on dissipation in Luzon Strait. J. Phys. Oceanogr. 42:1337–56 [Google Scholar]
  18. Cacchione DA, Pratson LF, Ogston AS. 2002. The shaping of continental slopes by internal tides. Science 296:724–27 [Google Scholar]
  19. Carter GS, Gregg MC. 2002. Intense, variable mixing near the head of Monterey Submarine Canyon. J. Phys. Oceanogr. 32:3145–65 [Google Scholar]
  20. Chalamalla VK, Gayen B, Scotti A, Sarkar S. 2013. Turbulence during the reflection of internal gravity waves at critical and near-critical slopes. J. Fluid Mech. 729:47–68 [Google Scholar]
  21. Chalamalla VK, Sarkar S. 2015. Mixing, dissipation rate, and their overturn-based estimates in a near-bottom turbulent flow driven by internal tides. J. Phys. Oceanogr. 45:1969–87 [Google Scholar]
  22. Chalamalla VK, Sarkar S. 2016. PSI in the case of internal wave beam reflection at a uniform slope. J. Fluid Mech. 789:347–67 [Google Scholar]
  23. Cole ST, Rudnick DL, Hodges BA, Martin JP. 2009. Observations of tidal internal wave beams at Kauai channel, Hawaii. J. Phys. Oceanogr. 39:421–36 [Google Scholar]
  24. Dale AC, Inall ME. 2015. Tidal mixing processes amid small-scale deep-ocean topography. Geophys. Res. Lett. 42:484–91 [Google Scholar]
  25. Dalziel SB, Patterson MD, Caulfield CP, Coomaraswamy IA. 2008. Mixing efficiency in high-aspect-ratio Rayleigh-Taylor experiments. Phys. Fluids 20:065106 [Google Scholar]
  26. Dauxois T, Young WR. 1999. Near-critical reflection of internal waves. J. Fluid Mech. 390:271–95 [Google Scholar]
  27. De Silva IPD, Imberger J, Ivey GN. 1997. Localized mixing due to a breaking internal wave ray at a sloping bed. J. Fluid Mech. 350:1–27 [Google Scholar]
  28. Debreu L, Marchesiello P, Penven P, Cambon G. 2012. Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. Ocean Model. 49:1–21 [Google Scholar]
  29. Diamessis P, Wunsch S, Delwiche I, Richter M. 2014. Nonlinear generation of harmonics through the interaction of an internal wave beam with a model oceanic pycnocline. Dyn. Atmos. Oceans 66:110–37 [Google Scholar]
  30. Duran-Matute M, Flór JB, Godeferd FS, Jause-Labert C. 2013. Turbulence and columnar vortex formation through inertial-wave focusing. Phys. Rev. E 87:041001 [Google Scholar]
  31. Echeverri P, Flynn MR, Winters KB, Peacock T. 2009. Low-mode internal tide generation by topography: an experimental and numerical investigation. J. Fluid Mech. 636:91–108 [Google Scholar]
  32. Egbert GD, Ray RD. 2001. Estimates of M2tidal dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res. 106:22475–502 [Google Scholar]
  33. Eriksen CC. 1982. Observations of internal wave reflection off sloping bottoms. J. Geophys. Res. 87:525–38 [Google Scholar]
  34. Garrett C, Kunze E. 2007. Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39:57–87 [Google Scholar]
  35. Gayen B, Sarkar S. 2010. Turbulence during the generation of internal tide on a critical slope. Phys. Rev. Lett. 104:218502 [Google Scholar]
  36. Gayen B, Sarkar S. 2011a. Boundary mixing by density overturns in an internal tidal beam. Geophys. Res. Lett. 38:L14608 [Google Scholar]
  37. Gayen B, Sarkar S. 2011b. Direct and large eddy simulations of internal tide generation at a near critical slope. J. Fluid Mech. 681:48–79 [Google Scholar]
  38. Gayen B, Sarkar S. 2013. Degradation of an internal wave beam by parametric subharmonic instability in an upper ocean pycnocline. J. Geophys. Res. Oceans 118:4689–98 [Google Scholar]
  39. Gayen B, Sarkar S. 2014. PSI to turbulence during internal wave beam refraction through the upper ocean pycnocline. Geophys. Res. Lett. 41:8953–60 [Google Scholar]
  40. Gerkema T. 2001. Internal and interfacial tides: beam scattering and local generation of solitary waves. J. Mar. Res. 59:227–55 [Google Scholar]
  41. Gostiaux L, Dauxois T, Didelle H, Sommeria J, Viboud S. 2006. Quantitative laboratory observations of internal wave reflection on ascending slopes. Phys. Fluids 18:056602 [Google Scholar]
  42. Gostiaux L, Didelle H, Mercier S, Dauxois T. 2007. A novel internal waves generator. Exp. Fluids 42:123–30 [Google Scholar]
  43. Grisouard N, Staquet C, Gerkema T. 2011. Generation of internal solitary waves in a pycnocline by an internal wave beam: a numerical study. J. Fluid Mech. 676:491–513 [Google Scholar]
  44. Hazewinkel J, Winters KB. 2011. PSI of the internal tide on a β plane: flux divergence and near-inertial wave propagation. J. Phys. Oceanogr. 41:1673–82 [Google Scholar]
  45. Ivey GN, Nokes RI. 1989. Vertical mixing due to the breaking of critical internal waves on sloping boundaries. J. Fluid Mech. 204:479–500 [Google Scholar]
  46. Ivey GN, Winters KB, Koseff JR. 2008. Density stratification, turbulence, but how much mixing?. Annu. Rev. Fluid Mech. 40:169–84 [Google Scholar]
  47. Jalali M, Chalamalla VK, Sarkar S. 2016. On the accuracy of overturn-based estimates of turbulent dissipation at rough topography. J. Phys. Oceanogr. Submitted manuscript [Google Scholar]
  48. Jalali M, Rapaka N, Sarkar S. 2014. Tidal flow over topography: effect of excursion number on wave energetics and turbulence. J. Fluid Mech. 750:259–83 [Google Scholar]
  49. Jayne SR. 2009. The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr. 39:1756–75 [Google Scholar]
  50. Kang D, Fringer O. 2012. Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr. 42:272–90 [Google Scholar]
  51. Karimi HH, Akylas TR. 2014. Parametric subharmonic instability of internal waves: locally confined beams versus monochromatic wavetrains. J. Fluid Mech. 757:381–402 [Google Scholar]
  52. Klymak JM, Legg S, Pinkel R. 2010. A simple parameterization of turbulent tidal mixing near supercritical topography. J. Phys. Oceanogr. 40:2059–74 [Google Scholar]
  53. Klymak JM, Moum JN, Nash JD, Kunze E, Girton JB. et al. 2006. An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr. 36:1148–64 [Google Scholar]
  54. Korobov AS, Lamb KG. 2008. Interharmonics in internal gravity waves generated by tide-topography interaction. J. Fluid Mech. 611:61–95 [Google Scholar]
  55. Kunze E, Toole JM. 1997. Tidally driven vorticity, diurnal shear and turbulence atop Fieberling Seamount. J. Phys. Oceanogr. 27:2663–93 [Google Scholar]
  56. Lamb KG. 2004. Nonlinear interaction among internal wave beams generated by tidal flow over supercritical topography. Geophys. Res. Lett. 31:L09313 [Google Scholar]
  57. Lamb KG. 2014. Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech. 46:231–54 [Google Scholar]
  58. Legg S. 2014. Scattering of low-mode internal waves at finite isolated topography. J. Phys. Oceanogr. 44:359–83 [Google Scholar]
  59. Legg S, Klymak J. 2008. Internal hydraulic jumps and overturning generated by tidal flows over a tall steep ridge. J. Phys. Oceanogr. 38:1949–64 [Google Scholar]
  60. Leichter JJ, Stewart HL, Miller SL. 2003. Episodic nutrient transport of Florida coral reefs. Limnol. Oceanogr. 48:1394–407 [Google Scholar]
  61. Li Q, Farmer DM. 2011. The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. J. Phys. Oceanogr. 41:1345–63 [Google Scholar]
  62. Smith SG, Young WR. Llewellyn 2002. Conversion of the barotropic tide. J. Phys. Oceanogr. 32:1554–66 [Google Scholar]
  63. Lueck RG, Mudge TD. 1997. Topographically induced mixing around a shallow seamount. Science 276:1831–33 [Google Scholar]
  64. MacKinnon JA, Alford MH, Sun O, Pinkel R, Zhao Z, Klymak J. 2013. Parametric subharmonic instability of the internal tide at 29°N. J. Phys. Oceanogr. 43:17–28 [Google Scholar]
  65. MacKinnon JA, Winters KB. 2005. Subtropical catastrophe: significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett. 32:L15605 [Google Scholar]
  66. Mathur M, Carter GS, Peacock T. 2014. Topographic scattering of the low-mode internal tide in the deep ocean. J. Geophys. Res. 119:2165–82 [Google Scholar]
  67. McPhee-Shaw EE. 2006. Boundary-interior exchange: reviewing the idea that internal-wave mixing enhances lateral dispersal near continental margins. Deep-Sea Res. 43:42–59 [Google Scholar]
  68. Melet A, Hallberg R, Legg S, Polzin K. 2013. Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr. 43:602–15 [Google Scholar]
  69. Melet A, Legg S, Hallberg R. 2016. Climatic impacts of parameterized local and remote tidal mixing. J. Climate 29:3473–500 [Google Scholar]
  70. Menemenlis D, Campin JM, Heimbach P, Hill C, Lee T. et al. 2008. ECCO2: high resolution global ocean and sea ice data synthesis. Mercator Ocean Q. Newsl. 31:13–21 [Google Scholar]
  71. Mercier MJ, Mathur M, Gostiaux L, Gerkema T, Magalhäes. et al. 2012. Soliton generation by internal tidal beams impinging on a pycnocline: laboratory experiments. J. Fluid Mech. 704:37–60 [Google Scholar]
  72. Moum JN, Caldwell DR, Nash JD, Gunderson GD. 2002. Observations of boundary mixing over the continental slope. J. Phys. Oceanogr. 32:2113–30 [Google Scholar]
  73. Munk W, Wunsch C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I 45:1977–2010 [Google Scholar]
  74. Nash JD, Alford MH, Kunze E, Martini K, Kelly S. 2007. Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett. 34:L01605 [Google Scholar]
  75. Nash JD, Kunze E, Toole JM, Schmitt RW. 2004. Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr. 34:1117–34 [Google Scholar]
  76. Garabato A, Polzin K, King B, Heywood K, Visbeck M. Naveira 2004. Widespread intense turbulent mixing in the Southern Ocean. Science 303:210–13 [Google Scholar]
  77. New A, Magalhaes J, da Silva J. 2013. Internal solitary waves on the Saya de Malha bank of the Mascarene Plateau: SAR observations and interpretation. Deep-Sea Res. I 79:50–61 [Google Scholar]
  78. Nikurashin M, Ferrari R. 2010. Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: theory. J. Phys. Oceanogr. 40:1055–74 [Google Scholar]
  79. Nikurashin M, Legg S. 2011. A mechanism for local dissipation of internal tides at rough topography. J. Phys. Oceanogr. 41:378–95 [Google Scholar]
  80. Nikurashin M, Vallis GK, Adcroft A. 2013. Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nat. Geosci. Lett. 6:48–51 [Google Scholar]
  81. Oka A, Niwa Y. 2013. Pacific deep circulation and ventilation controlled by mixing away from the sea bottom. Nat. Commun. 4:2419 [Google Scholar]
  82. Osborn T. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10:83–89 [Google Scholar]
  83. Osborne AR, Burch TL, Scarlet RI. 1978. The influence of internal waves on deepwater drilling. J. Petrol. Technol. 30:1497–504 [Google Scholar]
  84. Peacock T, Tabaei A. 2005. Visualization of nonlinear effects in reflecting internal wave beams. Phys. Fluids 17:061702 [Google Scholar]
  85. Pétrélis F, Llewellyn Smith SG, Young WR. 2006. Tidal conversion at submarine ridge. J. Phys. Oceanogr. 36:1053–71 [Google Scholar]
  86. Piggott M, Gorman G, Pain C, Allison P, Candy A. et al. 2008. A new computational framework for multi-scale ocean modelling based on adapting unstructured meshes. Int. J. Numer. Methods Fluids 56:1003–15 [Google Scholar]
  87. Pingree RD, New AL. 1992. Downward propagation of internal tidal energy into the Bay of Biscay. Deep-Sea Res. 36:735–58 [Google Scholar]
  88. Pinkel R, Alford M, Lucas AJ, Johnston S, MacKinnon J. et al. 2015. Turbulent dynamics of a critically reflecting internal gravity wave. Eos 96. doi:10.1029/2015EO039555 [Google Scholar]
  89. Polzin K. 2009. An abyssal recipe. Ocean Model. 30:298–309 [Google Scholar]
  90. Polzin K, Toole JM, Ledwell JR, Schmnitt RW. 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science 276:93–96 [Google Scholar]
  91. Rainville L, Pinkel R. 2006. Baroclinic energy flux at the Hawaiian Ridge: observations from the R/P FLIP. J. Phys. Oceanogr. 36:1104–22 [Google Scholar]
  92. Rapaka N, Gayen B, Sarkar S. 2013. Tidal conversion and turbulence at a model ridge: direct and large eddy simulations. J. Fluid Mech. 715:181–209 [Google Scholar]
  93. Rodenborn B, Kiefer D, Zhang H, Swinney HL. 2011. Harmonic generation by reflecting internal waves. Phys. Fluids 23:026601 [Google Scholar]
  94. Rudnick DL, Boyd TJ, Brainard RE, Carter GS, Egbert GD. et al. 2003. From tides to mixing along the Hawaiian Ridge. Science 301:355–57 [Google Scholar]
  95. Saenko OA. 2005. The effect of localized mixing on the ocean circulation and time-dependent climate change. J. Phys. Oceanogr. 36:140–60 [Google Scholar]
  96. Saenko OA, Merryfield WJ. 2005. On the effect of topographically enhanced mixing on the global ocean circulation. J. Phys. Oceanogr. 35:826–34 [Google Scholar]
  97. Santilli E, Scotti A. 2011. An efficient method for solving highly anisotropic elliptic equations. J. Comput. Phys. 230:8342–59 [Google Scholar]
  98. Santilli E, Scotti A. 2015. The stratified ocean model with adaptive refinement (SOMAR). J. Comput. Phys. 291:60–81 [Google Scholar]
  99. Scotti A. 2011. Inviscid critical and near-critical reflection of internal waves in the time domain. J. Fluid Mech. 674:464–88 [Google Scholar]
  100. Scotti A, Mitran S. 2008. An approximated method for the solution of elliptic problems in thin domains: application to nonlinear internal waves. Ocean Model. 25:144–53 [Google Scholar]
  101. Scotti A, White B. 2014. Diagnosing mixing in stratified turbulent flows with a locally defined available potential energy. J. Fluid Mech. 740:114–35 [Google Scholar]
  102. Slinn DN, Riley JJ. 1998. Turbulent dynamics of a critically reflecting internal gravity wave. Theor. Comput. Fluid Dyn. 11:281–303 [Google Scholar]
  103. Sobolev SL. 1955. On a new problem of mathematical physics. Izv. USSR Akad. Sci. Mat. 18:3–50 [Google Scholar]
  104. St. Laurent L, Simmons H, Jayne S. 2002. Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett. 29:2106 [Google Scholar]
  105. St. Laurent LC, Thurnherr AM. 2007. Intense mixing of lower thermocline water on the crest of the Mid-Atlantic Ridge. Nat. Lett. 448:680–83 [Google Scholar]
  106. Sutherland BR. 2016. Excitation of superharmonics by internal modes in non-uniformly stratified fluid. J. Fluid Mech. 793:335–52 [Google Scholar]
  107. Thorpe SA. 1987. On the reflection of a train of finite-amplitude internal waves from a uniform slope. J. Fluid Mech. 178:279–302 [Google Scholar]
  108. Thorpe SA, Hall P, White M. 1990. The variability of mixing at the continental slope. Philos. Trans. R. Soc. Lond. A 331:183–94 [Google Scholar]
  109. Thurnherr AM, St. Laurent LC, Speer KG, Toole JM, Ledwell JR. 2005. Mixing associated with sills in a canyon on the mid-ocean ridge flank. J. Phys. Oceanogr. 35:1370–81 [Google Scholar]
  110. Troy C, Koseff J. 2005. The generation and quantitative visualization of breaking internal waves. Exp. Fluids 38:549–62 [Google Scholar]
  111. Van Haren H, Cimatoribus A, Gostiaux L. 2015. Where large deep-ocean waves break. Geophys. Res. Lett. 42:2351–57 [Google Scholar]
  112. Venayagamoorthy SK, Fringer OB. 2006. Numerical simulations of the interaction of internal waves with a shelf break. Phys. Fluids 18:076603 [Google Scholar]
  113. Venayagamoorthy SK, Fringer OB. 2007. On the formation and propagation of nonlinear internal boluses across a shelf break. J. Fluid. Mech. 577:137–59 [Google Scholar]
  114. Vitousek S, Fringer OB. 2011. Physical versus numerical dispersion in nonhydrostatic ocean modeling. Ocean Model. 40:72–86 [Google Scholar]
  115. Wain DJ, Gregg MC, Alford MH, Lien RC, Hall RA, Carter G. 2013. Propagation and dissipation of the internal tide in upper Monterey Canyon. J. Geophys. Res. Oceans 118:4855–77 [Google Scholar]
  116. Walter RK, Squibb ME, Woodson CB, Koseff JR, Monismith SG. 2014. Stratified turbulence in the nearshore coastal ocean: dynamics and evolution in the presence of internal bores. J. Geophys. Res. Oceans 119:8709–30 [Google Scholar]
  117. Waterman S, Naveira Garabato AC, Polzin KL. 2012. Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr. 43:259–82 [Google Scholar]
  118. White M. 1994. Tidal and subtidal variability in the sloping benthic boundary layer. J. Geophys. Res. 99:7851–64 [Google Scholar]
  119. Winters KB. 2015. Tidally driven mixing and dissipation in the stratified boundary layer above steep submarine topography. Geophys. Res. Lett. 42:7123–30 [Google Scholar]
  120. Winters KB, Armi L. 2013. The response of a continuously stratified fluid to an oscillating flow past an obstacle. J. Fluid Mech. 727:83–118 [Google Scholar]
  121. Wong SH, Santoro AE, Nidzieko NJ, Hench JL, Boehm AB. 2012. Coupled physical, chemical, and microbiological measurements suggest a connection between internal waves and surf zone water quality in the Southern California Bight. Cont. Shelf Res. 34:64–78 [Google Scholar]
  122. Wunsch C, Ferrari R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36:281–314 [Google Scholar]
  123. Wunsch S. 2015. Nonlinear harmonic generation by diurnal tides. Dyn. Atmos. Oceans 71:91–97 [Google Scholar]
  124. Zhang HP, King B, Swinney HL. 2007. Experimental study of internal gravity waves generated by supercritical topography. Phys. Fluids 19:096602 [Google Scholar]
  125. Zhang HP, King B, Swinney HL. 2008. Resonant generation of internal waves on a model continental slope. Phys. Rev. Lett. 100:244504 [Google Scholar]
  126. Zhao Z. 2014. Internal tide radiation from the Luzon Strait. J. Geophys. Res. Oceans 119:5434–48 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error