1932

Abstract

Advances in experimental techniques and the ever-increasing fidelity of numerical simulations have led to an abundance of data describing fluid flows. This review discusses a range of techniques for analyzing such data, with the aim of extracting simplified models that capture the essential features of these flows, in order to gain insight into the flow physics, and potentially identify mechanisms for controlling these flows. We review well-developed techniques, such as proper orthogonal decomposition and Galerkin projection, and discuss more recent techniques developed for linear systems, such as balanced truncation and dynamic mode decomposition (DMD). We then discuss some of the methods available for nonlinear systems, with particular attention to the Koopman operator, an infinite-dimensional linear operator that completely characterizes the dynamics of a nonlinear system and provides an extension of DMD to nonlinear systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010816-060042
2017-01-03
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/fluid/49/1/annurev-fluid-010816-060042.html?itemId=/content/journals/10.1146/annurev-fluid-010816-060042&mimeType=html&fmt=ahah

Literature Cited

  1. Ahuja S, Rowley CW. 2010. Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators. J. Fluid Mech. 645:447–78 [Google Scholar]
  2. Åkervik E, Brandt L, Henningson DS, Hœpffner J, Marxen O, Schlatter P. 2006. Steady solutions of the Navier-Stokes equations by selective frequency damping. Phys. Fluids 18:068102 [Google Scholar]
  3. Antoulas AC. 2005. Approximation of Large-Scale Dynamical Systems Philadelphia: SIAM [Google Scholar]
  4. Bagheri S. 2013. Koopman-mode decomposition of the cylinder wake. J. Fluid Mech. 726:596–623 [Google Scholar]
  5. Barbagallo A, Sipp D, Schmid PJ. 2009. Closed-loop control of an open cavity flow using reduced-order models. J. Fluid Mech. 641:1–50 [Google Scholar]
  6. Belson BA, Semeraro O, Rowley CW, Henningson DS. 2013. Feedback control of instabilities in the two-dimensional Blasius boundary layer: the role of sensors and actuators. Phys. Fluids 25:054106 [Google Scholar]
  7. Belson BA, Tu JH, Rowley CW. 2014. A parallelized model reduction library. ACM Trans. Math. Softw. 40:30 [Google Scholar]
  8. Benner P, Gugercin S, Willcox K. 2015. A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57:483–531 [Google Scholar]
  9. Bishop CM. 2007. Pattern Recognition and Machine Learning New York: Springer [Google Scholar]
  10. Brunton SL, Dawson STM, Rowley CW. 2014. State-space model identification and feedback control of unsteady aerodynamic forces. J. Fluids Struct. 50:253–70 [Google Scholar]
  11. Brunton SL, Noack BR. 2015. Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67:050801 [Google Scholar]
  12. Brunton SL, Rowley CW, Williams DR. 2013. Reduced-order unsteady aerodynamic models at low Reynolds numbers. J. Fluid Mech. 724:203–33 [Google Scholar]
  13. Cabell RH, Kegerise MA, Cox DE, Gibbs GP. 2006. Experimental feedback control of flow-induced cavity tones. AIAA J. 44:1807–16 [Google Scholar]
  14. Carlsson H, Carlsson C, Fuchs L, Bai XS. 2014. Large eddy simulation and extended dynamic mode decomposition of flow-flame interaction in a lean premixed low swirl stabilized flame. Flow Turbul. Combust. 93:505–19 [Google Scholar]
  15. Chaturantabut S, Sorensen DC. 2010. Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32:2737–64 [Google Scholar]
  16. Chen KK, Rowley CW. 2011. H2 optimal actuator and sensor placement in the linearized complex Ginzburg-Landau equation. J. Fluid Mech. 681:241–60 [Google Scholar]
  17. Chen KK, Tu JH, Rowley CW. 2011. Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses. J. Nonlinear Sci. 22:887–915 [Google Scholar]
  18. Chomaz J. 2005. Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37:357–92 [Google Scholar]
  19. Colonius T, Taira K. 2008. A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions. Comput. Methods Appl. Mech. Eng. 197:2131–46 [Google Scholar]
  20. Hemati MS, Williams MO, Rowley CW. Dawson STM, 2016. Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition. Exp. Fluids 57:42 [Google Scholar]
  21. de Prony R. 1795. Essai expérimentale et analytique. J. École Polytech. 1:24–76 [Google Scholar]
  22. Dergham G, Sipp D, Robinet JC, Barbagallo A. 2011. Model reduction for fluids using frequential snapshots. Phys. Fluids 23:064101 [Google Scholar]
  23. Duke D, Honnery D, Soria J. 2012a. Experimental investigation of nonlinear instabilities in annular liquid sheets. J. Fluid Mech. 691:594–604 [Google Scholar]
  24. Duke D, Soria J, Honnery D. 2012b. An error analysis of the dynamic mode decomposition. Exp. Fluids 52:529–42 [Google Scholar]
  25. Dullerud GE, Paganini F. 1999. A Course in Robust Control Theory: A Convex Approach Berlin: Springer-Verlag [Google Scholar]
  26. Dunne R, McKeon BJ. 2015. Dynamic stall on a pitching and surging airfoil. Exp. Fluids 56:157 [Google Scholar]
  27. Flinois TL, Morgans AS. 2016. Feedback control of unstable flows: a direct modelling approach using the eigensystem realisation algorithm. J. Fluid Mech. 793:41–78 [Google Scholar]
  28. Flinois TLB, Morgans AS, Schmid PJ. 2015. Projection-free approximate balanced truncation of large unstable systems. Phys. Rev. E 92:023012 [Google Scholar]
  29. Ghommem M, Presho M, Calo VM, Efendiev Y. 2013. Mode decomposition methods for flows in high-contrast porous media: global-local approach. J. Comput. Phys. 253:226–38 [Google Scholar]
  30. Goman M, Khrabrov A. 1994. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack. J. Aircr. 31:1109–15 [Google Scholar]
  31. Gómez F, Blackburn HM, Rudman M, McKeon BJ, Luhar M. et al. 2014. On the origin of frequency sparsity in direct numerical simulations of turbulent pipe flow. Phys. Fluids 26:101703 [Google Scholar]
  32. Goulart PJ, Wynn A, Pearson D. 2012. Optimal mode decomposition for high dimensional systems. Proc. Conf. Decis. Control4965–70 New York: IEEE [Google Scholar]
  33. Grilli M, Schmid PJ, Hickel S, Adams NA. 2012. Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction. J. Fluid Mech. 700:16–28 [Google Scholar]
  34. Gugercin S, Antoulas AC. 2006. Model reduction of large-scale systems by least squares. Linear Algebra Appl. 415:290–321 [Google Scholar]
  35. He G, Wang J, Pan C. 2013. Initial growth of a disturbance in a boundary layer influenced by a circular cylinder wake. J. Fluid Mech. 718:116–30 [Google Scholar]
  36. Hemati MS, Rowley CW, Deem EA, Cattafesta LN. 2015. De-biasing the dynamic mode decomposition for applied Koopman spectral analysis. arXiv:1502.03854 [physics.flu-dyn]
  37. Hemati MS, Williams MO, Rowley CW. 2014. Dynamic mode decomposition for large and streaming datasets. Phys. Fluids 26:111701 [Google Scholar]
  38. Hildebrand FB. 1974. Introduction to Numerical Analysis New York: McGraw-Hill, 2nd ed.. [Google Scholar]
  39. Ho BL, Kalman RE. 1965. Effective construction of linear state-variable models from input/output data. Proc. 3rd Annu. Allerton Conf. Circuit Syst. Theory449–59 [Google Scholar]
  40. Hokanson JM. 2013. Numerically stable and statistically efficient algorithms for large scale exponential fitting PhD Thesis, Rice Univ., Houston, TX [Google Scholar]
  41. Holmes PJ, Lumley JL, Berkooz G, Rowley CW. 2011. Turbulence, Coherent Structures, Dynamical Systems and Symmetry Cambridge, UK: Cambridge Univ. Press, 2nd ed.. [Google Scholar]
  42. Hsu CS, Hou D. 1991. Reducing unstable linear control systems via real Schur transformation. Electron. Lett. 27:984–86 [Google Scholar]
  43. Ilak M, Bagheri S, Brandt L, Rowley CW, Henningson DS. 2010. Model reduction of the nonlinear complex Ginzburg-Landau equation. SIAM J. Appl. Dyn. Syst. 9:1284–302 [Google Scholar]
  44. Ilak M, Rowley CW. 2008. Modeling of transitional channel flow using balanced proper orthogonal decomposition. Phys. Fluids 20:034103 [Google Scholar]
  45. Illingworth SJ. 2016. Model-based control of vortex shedding at low Reynolds numbers. Theor. Comput. Fluid Dyn. 30429–48 [Google Scholar]
  46. Illingworth SJ, Morgans AS, Rowley CW. 2011. Feedback control of flow resonances using balanced reduced-order models. J. Sound Vib. 330:1567–81 [Google Scholar]
  47. Illingworth SJ, Morgans AS, Rowley CW. 2012. Feedback control of cavity flow oscillations using simple linear models. J. Fluid Mech. 709:223–48 [Google Scholar]
  48. Illingworth SJ, Naito H, Fukagata K. 2014. Active control of vortex shedding: an explanation of the gain window. Phys. Rev. E 90:043014 [Google Scholar]
  49. Jardin T, Bury Y. 2012. Lagrangian and spectral analysis of the forced flow past a circular cylinder using pulsed tangential jets. J. Fluid Mech. 696:285–300 [Google Scholar]
  50. Jovanović MR, Schmid PJ, Nichols JW. 2014. Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26:024103 [Google Scholar]
  51. Juang JN, Pappa RS. 1985. An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 8:620–27 [Google Scholar]
  52. Juang JN, Phan M, Horta LG, Longman RW. 1991. Identification of observer/Kalman filter Markov parameters: theory and experiments Tech. Memo. 104069, NASA Langley Res. Cent., Hampton, VA [Google Scholar]
  53. Koopman BO. 1931. Hamiltonian systems and transformations in Hilbert space. PNAS 17:315–18 [Google Scholar]
  54. Koopman BO, von Neumann J. 1932. Dynamical systems of continuous spectra. PNAS 18:255–63 [Google Scholar]
  55. Kramer B, Grover P, Boufounos P, Benosman M, Nabi S. 2015. Sparse sensing and DMD based identification of flow regimes and bifurcations in complex flows. arXiv:1510.02831 [math.DS]
  56. Kung SY. 1978. A new identification and model reduction algorithm via singular value decomposition. Proc. 12th Asilomar Conf. Circuits Syst. Comput.705–14 New York: IEEE [Google Scholar]
  57. Lall S, Marsden JE, Glavaški S. 1999. Empirical model reduction of controlled nonlinear systems. Proc. IFAC World Congr. F 473–78 Laxenburg, Austria: Int. Fed. Autom. Control [Google Scholar]
  58. Lall S, Marsden JE, Glavaški S. 2002. A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust Nonlinear Control 12:519–35 [Google Scholar]
  59. Laub AJ, Heath MT, Page CC, Ward RC. 1987. Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans. Autom. Control 32:115–22 [Google Scholar]
  60. Lee JH, Seena A, Hyun Lee S, Sung HJ. 2012. Turbulent boundary layers over rod- and cube-roughened walls. J. Turbul. 13:N40 [Google Scholar]
  61. Luchtenburg DM, Rowley CW, Lohry MW, Martinelli L, Stengel RF. 2015. Unsteady high-angle-of-attack aerodynamic models of a generic jet transport. J. Aircr. 52:890–95 [Google Scholar]
  62. Lumley JL. 1970. Stochastic Tools in Turbulence New York: Academic [Google Scholar]
  63. Ma BF, Liu TX. 2014. Low-frequency vortex oscillation around slender bodies at high angles-of-attack. Phys. Fluids 26:091701 [Google Scholar]
  64. Ma Z, Ahuja S, Rowley CW. 2011. Reduced order models for control of fluids using the eigensystem realization algorithm. Theor. Comput. Fluid Dyn. 25:233–47 [Google Scholar]
  65. Markovich DM, Abdurakipov SS, Chikishev LM, Dulin VM, Hanjalić K. 2014. Comparative analysis of low- and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions. Phys. Fluids 26:065109 [Google Scholar]
  66. Meslem A, Sobolik V, Bode F, Sodjavi K, Zaouali Y. et al. 2013. Flow dynamics and mass transfer in impinging circular jet at low Reynolds number: comparison of convergent and orifice nozzles. Int. J. Heat Mass Transf. 67:25–45 [Google Scholar]
  67. Mezić I. 2005. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41:309–25 [Google Scholar]
  68. Moore BC. 1981. Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26:17–32 [Google Scholar]
  69. Motheau E, Mery Y, Nicoud F, Poinsot T. 2013. Analysis and modeling of entropy modes in a realistic aeronautical gas turbine. J. Eng. Gas Turbines Power 135:092602 [Google Scholar]
  70. Muld TW, Efraimsson G, Henningson DS. 2012a. Flow structures around a high-speed train extracted using proper orthogonal decomposition and dynamic mode decomposition. Comput. Fluids 57:87–97 [Google Scholar]
  71. Muld TW, Efraimsson G, Henningson DS. 2012b. Mode decomposition on surface-mounted cube. Flow Turbul. Combust. 88:279–310 [Google Scholar]
  72. Nastase I, Meslem A, Hassan ME. 2011. Image processing analysis of vortex dynamics of lobed jets from three-dimensional diffusers. Fluid Dyn. Res. 43:065502 [Google Scholar]
  73. Noack B, Afanasiev K, Morzyński M, Tadmor G, Thiele F. 2003. A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497:335–63 [Google Scholar]
  74. Noack BR, Papas P, Monkewitz PA. 2005. The need for a pressure-term representation in empirical Galerkin models of incompressible shear flow. J. Fluid Mech. 523:339–65 [Google Scholar]
  75. Pan C, Xue D, Wang J. 2015. On the accuracy of dynamic mode decomposition in estimating instability of wave packet. Exp. Fluids 56:164 [Google Scholar]
  76. Pan C, Yu D, Wang J. 2011. Dynamical mode decomposition of Gurney flap wake flow. Theor. Appl. Mech. Lett. 1:012002 [Google Scholar]
  77. Pernebo L, Silverman LM. 1982. Model reduction via balanced state space representations. IEEE Trans. Autom. Control 27:382–87 [Google Scholar]
  78. Proctor JL, Brunton SL, Kutz JN. 2014. Dynamic mode decomposition with control. arXiv:1409.6358 [math.OC]
  79. Provansal M, Mathis C, Boyer L. 1987. Bénard–von Kármán instability: transient and forced regimes. J. Fluid Mech. 182:1–22 [Google Scholar]
  80. Qin SJ. 2006. An overview of subspace identification. Comput. Chem. Eng. 30:1502–13 [Google Scholar]
  81. Rowley CW. 2005. Model reduction for fluids using balanced proper orthogonal decomposition. Int. J. Bifurc. Chaos 15:997–1013 [Google Scholar]
  82. Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson DS. 2009. Spectral analysis of nonlinear flows. J. Fluid Mech. 641:115–27 [Google Scholar]
  83. Roy S, Hua JC, Barnhill W, Gunaratne GH, Gord JR. 2015. Deconvolution of reacting-flow dynamics using proper orthogonal and dynamic mode decompositions. Phys. Rev. E 91:013001 [Google Scholar]
  84. Sapsis TP, Lermusiaux. 2009. Dynamically orthogonal field equations for continuous stochastic dynamical systems. Physica D 238:2347–60 [Google Scholar]
  85. Sapsis TP, Majda A. 2013. Blended reduced subspace algorithms for uncertainty quantification of quadratic systems with a stable mean state. Physica D 258:61–76 [Google Scholar]
  86. Sarkar S, Ganguly S, Dalal A, Saha P, Chakraborty S. 2013. Mixed convective flow stability of nanofluids past a square cylinder by dynamic mode decomposition. Int. J. Heat Fluid Flow 44:624–34 [Google Scholar]
  87. Sarmast S, Dadfar R, Mikkelsen RF, Schlatter P, Ivanell S. et al. 2014. Mutual inductance instability of the tip vortices behind a wind turbine. J. Fluid Mech. 755:705–31 [Google Scholar]
  88. Sayadi T, Schmid PJ, Nichols JW, Moin P. 2014. Reduced-order representation of near-wall structures in the late transitional boundary layer. J. Fluid Mech. 748:278–301 [Google Scholar]
  89. Sayadi T, Schmid PJ, Richecoeur F, Durox D. 2015. Parametrized data-driven decomposition for bifurcation analysis, with application to thermo-acoustically unstable systems. Phys. Fluids 27:037102 [Google Scholar]
  90. Schmid PJ. 2007. Nonmodal stability theory. Annu. Rev. Fluid Mech. 39:129–62 [Google Scholar]
  91. Schmid PJ. 2010. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656:5–28 [Google Scholar]
  92. Schmid PJ. 2011. Application of the dynamic mode decomposition to experimental data. Exp. Fluids 50:1123–30 [Google Scholar]
  93. Schmid PJ, Henningson DS. 2001. Stability and Transition in Shear Flows Berlin: Springer-Verlag [Google Scholar]
  94. Schmid P, Li L, Juniper M, Pust O. 2011. Applications of the dynamic mode decomposition. Theor. Comput. Fluid Dyn. 25:249–59 [Google Scholar]
  95. Schmid PJ, Sesterhenn J. 2008. Dynamic mode decomposition of numerical and experimental data Presented at Annu. Meet. APS Div. Fluid Dyn., 61st, San Antonio, TX [Google Scholar]
  96. Schmid PJ, Violato D, Scarano F. 2012. Decomposition of time-resolved tomographic PIV. Exp. Fluids 52:1567–79 [Google Scholar]
  97. Seena A, Sung HJ. 2011. Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations. Int. J. Heat Fluid Flow 32:1098–110 [Google Scholar]
  98. Semeraro O, Bagheri S, Brandt L, Henningson DS. 2011. Feedback control of three-dimensional optimal disturbances using reduced-order models. J. Fluid Mech. 677:63–102 [Google Scholar]
  99. Semeraro O, Bagheri S, Brandt L, Henningson DS. 2013. Transition delay in a boundary layer flow using active control. J. Fluid Mech. 731:288–311 [Google Scholar]
  100. Semeraro O, Bellani G, Lundell F. 2012. Analysis of time-resolved PIV measurements of a confined turbulent jet using POD and Koopman modes. Exp. Fluids 53:1203–20 [Google Scholar]
  101. Sirovich L. 1987. Turbulence and the dynamics of coherent structures, parts I–III. Q. Appl. Math. 45:561–90 [Google Scholar]
  102. Skogestad S, Postlethwaite I. 2005. Multivariable Feedback Control: Analysis and Design New York: Wiley, 2nd ed.. [Google Scholar]
  103. Subbareddy PK, Bartkowicz MD, Candler GV. 2014. Direct numerical simulation of high-speed transition due to an isolated roughness element. J. Fluid Mech. 748:848–78 [Google Scholar]
  104. Taira K, Colonius T. 2007. The immersed boundary method: a projection approach. J. Comput. Phys. 225:2118–37 [Google Scholar]
  105. Thompson MC, Radi A, Rao A, Sheridan J, Hourigan K. 2014. Low-Reynolds-number wakes of elliptical cylinders: from the circular cylinder to the normal flat plate. J. Fluid Mech. 751:570–600 [Google Scholar]
  106. Tissot G, Cordier L, Benard N, Noack BR. 2014. Model reduction using dynamic mode decomposition. C. R. Méc. 342:410–16 [Google Scholar]
  107. Trefethen LN. 2000. Spectral Methods in MATLAB Philadelphia: SIAM [Google Scholar]
  108. Trefethen LN, Bau DI. 1997. Numerical Linear Algebra Philadelphia: SIAM [Google Scholar]
  109. Tu JH, Griffin J, Hart A, Rowley CW, Cattafesta LN III, Ukeiley LS. 2013. Integration of non-time-resolved PIV and time-resolved velocity point sensors for dynamic estimation of velocity fields. Exp. Fluids 54:1–20 [Google Scholar]
  110. Tu JH, Rowley CW, Kutz JN, Shang JK. 2014a. Spectral analysis of fluid flows using sub-Nyquist-rate PIV data. Exp. Fluids 55:1805 [Google Scholar]
  111. Tu JH, Rowley CW, Luchtenburg DM, Brunton SL, Kutz JN. 2014b. On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1:391–421 [Google Scholar]
  112. Verhaegen M, Dewilde P. 1992. Subspace model identification part 1. The output-error state-space model identification class of algorithms. Int. J. Control 56:1187–210 [Google Scholar]
  113. Viberg M. 1995. Subspace-based methods for the identification of linear time-invariant systems. Automatica 31:1835–51 [Google Scholar]
  114. von Neumann J. 1947. The mathematician. The Works of the Mind RB Heywood, Vol. I 180–96 Chicago: Univ. Chicago Press [Google Scholar]
  115. Willcox K. 2007. Model reduction for large-scale applications in computational fluid dynamics. Real-Time PDE-Constrained Optimization LT Biegler, O Ghattas, M Heinkenschloss, D Keyes, B van Bloemen Waanders 217–32 Philadelphia: SIAM [Google Scholar]
  116. Willcox K, Peraire J. 2002. Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40:2323–30 [Google Scholar]
  117. Williams DR, An X, Iliev S, King R, Reißner F. 2015a. Dynamic hysteresis control of lift on a pitching wing. Exp. Fluids 56:112 [Google Scholar]
  118. Williams MO, Kevrekidis IG, Rowley CW. 2015b. A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25:1307–46 [Google Scholar]
  119. Williams MO, Rowley CW, Kevrekidis IG. 2014. A kernel-based approach to data-driven Koopman spectral analysis. arXiv:1411.2260 [math.DS]
  120. Wynn A, Pearson DS, Ganapathisubramani B, Goulart PJ. 2013. Optimal mode decomposition for unsteady flows. J. Fluid Mech. 733:473–503 [Google Scholar]
  121. Zhou K, Salomon G, Wu E. 1999. Balanced realization and model reduction for unstable systems. Int. J. Robust Nonlinear Control 9:183–98 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010816-060042
Loading
/content/journals/10.1146/annurev-fluid-010816-060042
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error