1932

Abstract

An active fluid denotes a viscous suspension of particles, cells, or macromolecules able to convert chemical energy into mechanical work by generating stresses on the microscale. By virtue of this internal energy conversion, these systems display unusual macroscopic rheological signatures, including a curious transition to an apparent superfluid-like state where internal activity exactly compensates viscous dissipation. These behaviors are unlike those of classical complex fluids and result from the coupling of particle configurations with both externally applied flows and internally generated fluid disturbances. Focusing on the well-studied example of a suspension of microswimmers, this review summarizes recent experiments, models, and simulations in this area and highlights the critical role played by the rheological response of these active materials in a multitude of phenomena, from the enhanced transport of passive suspended objects to the emergence of spontaneous flows and collective motion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010816-060049
2018-01-05
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/fluid/50/1/annurev-fluid-010816-060049.html?itemId=/content/journals/10.1146/annurev-fluid-010816-060049&mimeType=html&fmt=ahah

Literature Cited

  1. Alizadeh PA, Saintillan D. 2011. Instability regimes in flowing suspensions of swimming micro-organisms Phys. Fluids 23:011901 [Google Scholar]
  2. Alonso-Matilla R, Ezhilan B, Saintillan D. 2016. Microfluidic rheology of active particle suspensions: kinetic theory. Biomicrofluidics 10:043505 [Google Scholar]
  3. Alt W. 1980. Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9:147–77 [Google Scholar]
  4. Altschuler E, Miño G, Pérez-Penichet C, del Río L, Lindner A. et al. 2013. Flow-controlled densification and anomalous dispersion of E. coli through a constriction. Soft Matter 9:1864–70 [Google Scholar]
  5. Baskaran A, Marchetti MC. 2009. Statistical mechanics and hydrodynamics of bacterial suspensions. PNAS 106:15567–72 [Google Scholar]
  6. Batchelor GK. 1970a. Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44:419–40 [Google Scholar]
  7. Batchelor GK. 1970b. The stress system in a suspension of force-free particles. J. Fluid Mech. 41:545–70 [Google Scholar]
  8. Batchelor GK. 1971. The stress generated in a non-dilute suspension of elongated particles by pure straining motion. J. Fluid Mech. 46:813–29 [Google Scholar]
  9. Batchelor GK. 1974. Transport properties of two-phase materials with random structure. Annu. Rev. Fluid Mech. 6:227–55 [Google Scholar]
  10. Bearon RN, Hazel AL. 2015. The trapping in high-shear regions of slender bacteria undergoing chemotaxis in a channel. J. Fluid Mech. 771:R3 [Google Scholar]
  11. Bearon RN, Pedley TJ. 2000. Modelling run-and-tumble chemotaxis in a shear flow. Bull. Math. Biol. 62:775 [Google Scholar]
  12. Bechtel TM, Khair AS. 2017. Linear viscoelasticity of a dilute active suspension. Rheol. Acta 56:149–60 [Google Scholar]
  13. Berg HC. 1993. Random Walks in Biology Princeton, NJ: Princeton Univ. Press [Google Scholar]
  14. Berg HC. 2004. E. coli in Motion New York: Springer-Verlag [Google Scholar]
  15. Berke AP, Turner L, Berg HC, Lauga E. 2008. Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101:038102 [Google Scholar]
  16. Bianchi S, Saglimbeni F, Di Leonardo R. 2017. Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria. Phys. Rev. X 7:011010 [Google Scholar]
  17. Blake JR. 2001. Fluid mechanics of ciliary propulsion. Computational Modeling in Biological Fluid Dynamics LJ Fauci, S Gueron 1–51 New York: Springer [Google Scholar]
  18. Blakemore RP. 1982. Magnetotactic bacteria. Annu. Rev. Microbiol. 36:217–38 [Google Scholar]
  19. Bozorgi Y, Underhill PT. 2014. Large-amplitude oscillatory shear rheology of dilute active suspensions. Rheol. Acta 53:899–909 [Google Scholar]
  20. Brennen C, Winet H. 1977. Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9:339–98 [Google Scholar]
  21. Brenner H. 1970. Rheology of a dilute suspension of dipolar spherical particles in an external field. J. Colloid Interface Sci. 32:141–58 [Google Scholar]
  22. Brenner H. 1974. Rheology of a dilute suspension of axisymmetric Brownian particles. Int. J. Multiph. Flow 1:195–341 [Google Scholar]
  23. Brenner H. 1980. A general theory of Taylor dispersion phenomena. Physicochem. Hydrodyn. 1:91–123 [Google Scholar]
  24. Brenner H, Condiff DW. 1974. Transport mechanics in systems of orientable particles. 4. Convective transport. J. Colloid Interface Sci. 47:199–264 [Google Scholar]
  25. Bretherton FP. 1962. The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14:284–304 [Google Scholar]
  26. Bricard A, Caussin J-B, Das D, Savoie C, Chikkadi V. et al. 2015. Emergent vortices in populations of colloidal rollers. Nat. Commun. 6:7470 [Google Scholar]
  27. Bricard A, Caussin J-B, Desreumaux N, Dauchot O, Bartolo D. 2013. Emergence of macroscopic directed motion in populations of motile colloids. Nature 503:95–98 [Google Scholar]
  28. Brotto T, Bartolo D, Saintillan D. 2015. Spontaneous flows in suspensions of active cyclic swimmers. J. Nonlinear Sci. 25:1125–39 [Google Scholar]
  29. Chattopadhyay S, Moldovan R, Yeung C, Wu XL. 2006. Swimming efficiency of bacterium Escherichia coli. PNAS 103:13712–17 [Google Scholar]
  30. Chen SB, Jiang L. 1999. Orientation distribution in a dilute suspension of fibers subject to simple shear flow. Phys. Fluids 11:2878–90 [Google Scholar]
  31. Chen SB, Koch DL. 1996. Rheology of dilute suspensions of charged fibers. Phys. Fluids 8:2792–807 [Google Scholar]
  32. Chengala A, Hondzo M, Sheng J. 2013. Microalga propels along vorticity direction in a shear flow. Phys. Rev. E 87:052704 [Google Scholar]
  33. Cisneros LH, Cortez R, Dombrowski C, Goldstein RE, Kessler JO. 2007. Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp. Fluids 43:737–53 [Google Scholar]
  34. Clément E, Lindner A, Douarche C, Auradou H. 2016. Bacterial suspensions under flow. Eur. Phys. J. Spec. Top. 225:2389–406 [Google Scholar]
  35. Creppy A, Plouraboué F, Praud O, Druart X, Cazin S. et al. 2016. Symmetry-breaking phase transitions in highly concentrated semen. J. R. Soc. Interface 13:20160575 [Google Scholar]
  36. Darnton NC, Turner L, Rojevsky S, Berg HC. 2007. On torque and tumbling in swimming Escherichia coli. J. Bacteriol. 189:1756–64 [Google Scholar]
  37. Das D, Saintillan D. 2013. Electrohydrodynamic interaction of spherical particles under Quincke rotation. Phys. Rev. E 87:043014 [Google Scholar]
  38. de Gennes PG Prost J. 2002. The Physics of Liquid Crystals Oxford, UK: Oxford Univ. Press [Google Scholar]
  39. DeCamp SJ, Redner GS, Baskaran A, Hagan MF, Dogic Z. 2015. Orientational order of motile defects in active nematics. Nat. Mater. 14:1110–15 [Google Scholar]
  40. Denissenko P, Kantsler V, Smith DJ, Kirkman-Brown J. 2012. Human spermatozoa migration in microchannels reveals boundary-following navigation. PNAS 109:8007–10 [Google Scholar]
  41. Di Leonardo R, Angelani L, Dell'Arciprete D, Ruocco G, Iebba V. et al. 2010. Bacterial ratchet motors. PNAS 107:9541–45 [Google Scholar]
  42. Doi M, Edwards SF. 1986. The Theory of Polymer Dynamics Oxford, UK: Oxford Univ. Press [Google Scholar]
  43. Drescher K, Dunkel J, Cisneros LH, Ganguly S, Goldstein RE. 2011. Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering. PNAS 108:10940–45 [Google Scholar]
  44. Drescher K, Goldstein RE, Michel N, Polin M, Tuval I. 2010. Direct measurement of the flow field around swimming microorganisms. Phys. Rev. Lett. 105:168101 [Google Scholar]
  45. Ebbens SJ, Howse JR. 2010. In the pursuit of propulsion at the nanoscale. Soft Matter 6:726–38 [Google Scholar]
  46. Elgeti J, Winkler RG, Gompper G. 2015. Physics of microswimmers—single particle motion and collective behavior: a review. Rep. Prog. Phys. 78:056601 [Google Scholar]
  47. Ericksen JL. 1962. Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9:371–78 [Google Scholar]
  48. Ewoldt RH, Bharadwaj NA. 2013. Low-dimensional intrinsic material functions for nonlinear viscoelasticity. Rheol. Acta 52:201–19 [Google Scholar]
  49. Ezhilan B, Alizadeh Pahlavan A, Saintillan D. 2012. Chaotic dynamics and oxygen transport in thin films of aerotactic bacteria. Phys. Fluids 24:091701 [Google Scholar]
  50. Ezhilan B, Saintillan D. 2015. Transport of a dilute active suspension in pressure-driven channel flow. J. Fluid Mech. 777:482–522 [Google Scholar]
  51. Figueroa-Morales N, Miño G, Rivera A, Caballero R, Clément E. et al. 2015. Living on the edge: transfer and traffic of E. coli in a confined flow. Soft Matter 11:6284–93 [Google Scholar]
  52. Foffano G, Lintuvuori JS, Morozov AN, Stratford K, Cates ME, Marenduzzo D. 2012a. Bulk rheology and microrheology of active fluids. Eur. Phys. J. E 35:98 [Google Scholar]
  53. Foffano G, Lintuvuori JS, Stratford K, Cates ME, Marenduzzo D. 2012b. Colloids in active fluids: anomalous microrheology and negative drag. Phys. Rev. Lett. 109:028103 [Google Scholar]
  54. Fürthauer S, Neef M, Grill SW, Kruse K, Jülicher F. 2012. The Taylor–Couette motor: spontaneous flows of active polar fluids between two coaxial cylinders. New J. Phys. 14:023001 [Google Scholar]
  55. Fürthauer S, Ramaswamy S. 2013. Phase-synchronized state of oriented active fluids. Phys. Rev. Lett. 111:238102 [Google Scholar]
  56. Gachelin J, Miño G, Berthet H, Landner A, Rousselet A, Clément E. 2013. Non-Newtonian viscosity of Escherichia coli suspensions. Phys. Rev. Lett. 110:268103 [Google Scholar]
  57. Gao T, Blackwell R, Glaser M, Betterton N, Shelley M. 2015. Multiscale polar theory of microtubule and motor-protein assemblies. Phys. Rev. Lett. 114:048101 [Google Scholar]
  58. Garcia M, Berti S, Peyla P, Rafaï S. 2011. Random walk of a swimmer in a low-Reynolds-number medium. Phys. Rev. E 83:035301 [Google Scholar]
  59. Ghose S, Adhikari R. 2014. Irreducible representations of oscillatory and swirling flows in active soft matter. Phys. Rev. Lett. 112:118102 [Google Scholar]
  60. Gibbs JG, Zhao YP. 2009. Autonomously motile catalytic nanomotors by bubble propulsion. Appl. Phys. Lett. 94:163104 [Google Scholar]
  61. Giomi L, Liverpool TB, Marchetti MC. 2010. Sheared active fluids: thickening, thinning, and vanishing viscosity. Phys. Rev. E 81:051908 [Google Scholar]
  62. Gluzman S, Karpeev DA, Berlyand LV. 2013. Effective viscosity of puller-like microswimmers: a renormalization approach. J. R. Soc. Interface 10:20130720 [Google Scholar]
  63. Goldstein RE. 2015. Green algae as model organisms for biological fluid dynamics. Annu. Rev. Fluid Mech. 47:343–75 [Google Scholar]
  64. Gray J, Hancock GJ. 1955. The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32:802–14 [Google Scholar]
  65. Guasto JS, Johnson KA, Gollub JP. 2010. Oscillatory flows induced by microorganisms swimming in two dimensions. Phys. Rev. Lett. 105:168102 [Google Scholar]
  66. Guazzelli E, Morris JF. 2012. A Physical Introduction to Suspension Dynamics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  67. Gyrya V, Lipnikov K, Aranson IS, Berlyand L. 2011. Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations. J. Math. Biol. 62:707–40 [Google Scholar]
  68. Haines BM, Sokolov A, Aranson IS, Berlyand L, Karpeev DA. 2009. Three-dimensional model for the effective viscosity of bacterial suspensions. Phys. Rev. E 80:041922 [Google Scholar]
  69. Hatwalne Y, Ramaswamy S, Rao M, Aditi Simha R. 2004. Rheology of active-particle suspensions. Phys. Rev. Lett. 92:118101 [Google Scholar]
  70. Heidenreich S, Hess S, Klapp SHL. 2011. Nonlinear rheology of active particle suspensions: insights from an analytical approach. Phys. Rev. E 83:011907 [Google Scholar]
  71. Hemingway EJ, Maitra A, Banerjee S, Marchetti MC, Ramaswamy S. et al. 2015. Active viscoelastic matter: from bacterial drag reduction to turbulent solids. Phys. Rev. Lett. 114:098302 [Google Scholar]
  72. Hinch EJ, Leal LG. 1972. The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J. Fluid Mech. 52:683–712 [Google Scholar]
  73. Hinch EJ, Leal LG. 1976. Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations. J. Fluid Mech. 76:187–208 [Google Scholar]
  74. Hope A, Croze OA, Poon WCK, Bees MA, Haw MD. 2016. Resonant alignment of microswimmer trajectories in oscillatory shear flows. Phys. Rev. Fluids 1:051201 [Google Scholar]
  75. Irving JH, Kirkwood JG. 1950. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18:817–29 [Google Scholar]
  76. Ishikawa T, Pedley TJ. 2007. The rheology of a semi-dilute suspension of swimming model micro-organisms. J. Fluid Mech. 588:399–435 [Google Scholar]
  77. Jeffery GB. 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. A 102:161–79 [Google Scholar]
  78. Jibuti L, Rafaï S, Peyla P. 2012. Suspensions with a tunable effective viscosity: a numerical study. J. Fluid Mech. 693:345–66 [Google Scholar]
  79. Jones TB. 1984. Quincke rotation of spheres. IEEE Trans. Ind. Appl. IA-20:845–49 [Google Scholar]
  80. Jones TB. 2005. Electromechanics of Particles Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  81. Kaiser A, Peshkov A, Sokolov A, ten Hagen B, Löwen H, Aranson IS. 2014. Transport powered by bacterial turbulence. Phys. Rev. Lett. 112:158101 [Google Scholar]
  82. Karmakar R, Gulvady R, Tirumkudulu MS, Venkatesh KV. 2014. Motor characteristics determine the rheological behavior of a suspension of microswimmers. Phys. Fluids 26:071905 [Google Scholar]
  83. Kasyap TV, Koch DL. 2012. Chemotaxis driven instability of a confined bacterial suspension. Phys. Rev. Lett. 108:038101 [Google Scholar]
  84. Kaya T, Koser H. 2012. Direct upstream motility in E. coli. Biophys. J. 102:1514–23 [Google Scholar]
  85. Kessler JO. 1986. Individual and collective dynamics of swimming cells. J. Fluid Mech. 173:191–205 [Google Scholar]
  86. Kim S, Karrila SJ. 2005. Microhydrodynamics: Principles and Selected Applications Mineola, NY: Dover [Google Scholar]
  87. Klindt GS, Friedrich BM. 2015. Flagellar swimmers oscillate between pusher- and puller-type swimming. Phys. Rev. E 92:063019 [Google Scholar]
  88. Koch DL, Subramanian G. 2011. Collective hydrodynamics of swimming microorganisms: living fluids. Annu. Rev. Fluid Mech. 43:637–59 [Google Scholar]
  89. Krieger IM, Dougherty TJ. 1959. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3:137–52 [Google Scholar]
  90. Lauga E. 2016. Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48:105–30 [Google Scholar]
  91. Lauga E, DiLuzio WR, Whitesides GM, Stones HA. 2006. Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90:400–12 [Google Scholar]
  92. Lauga E, Michelin S. 2016. Stresslets induced by active swimmers. Phys. Rev. Lett. 117:148001 [Google Scholar]
  93. Lauga E, Powers TR. 2009. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72:096601 [Google Scholar]
  94. Lemaire E, Lobry L, Pannacci N. 2006. Flow rate increased by electrorotation in a capillary. J. Electrostat. 64:586–90 [Google Scholar]
  95. Leoni M, Liverpool TB. 2014. Synchronization and liquid crystalline order in soft active fluids. Phys. Rev. Lett. 112:148104 [Google Scholar]
  96. Liao Q, DeLisa MP, Koch D, Wu M. 2007. Pair velocity correlations among swimming Escherichia coli bacteria are determined by force-quadrupole hydrodynamic interactions. Phys. Fluids 19:061701 [Google Scholar]
  97. Lighthill J. 1975. Mathematical Biofluiddynamics Philadelphia: Soc. Ind. Appl. Math. [Google Scholar]
  98. Lobry L, Lemaire E. 1999. Viscosity decrease induced by a DC electric field in a suspension. J. Electrostat. 47:61–69 [Google Scholar]
  99. López HM, Gachelin J, Douarche C, Auradou H, Clément E. 2015. Turning bacteria suspensions into superfluids. Phys. Rev. Lett. 115:028301 [Google Scholar]
  100. Lushi E, Wioland H, Goldstein RE. 2014. Fluid flows created by swimming bacteria drive self-organization in confined suspensions. PNAS 111:9733–38 [Google Scholar]
  101. Manela A, Frankel I. 2003. Generalized Taylor dispersion in suspensions of gyrotactic swimming micro-organisms. J. Fluid Mech. 490:99–127 [Google Scholar]
  102. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J. et al. 2013. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85:1143–89 [Google Scholar]
  103. Marcos Fu HC, Powers TR, Stocker R. 2012. Bacterial rheotaxis. PNAS 109:4780–85 [Google Scholar]
  104. McDonnell AG, Gopesh TC, Lo J, O'Bryan M, Yeo LY. et al. 2015. Motility induced changes in viscosity of suspensions of swimming microbes in extensional flows. Soft Matter 11:4658–68 [Google Scholar]
  105. Melcher JR, Taylor GI. 1969. Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1:111–46 [Google Scholar]
  106. Michelin S, Lauge E, Bartolo D. 2013. Spontaneous autophoretic motion of isotropic particles. Phys. Fluids 25:061701 [Google Scholar]
  107. Mofrad MRK. 2009. Rheology of the cytoskeleton. Annu. Rev. Fluid Mech. 41:433–53 [Google Scholar]
  108. Moradi M, Najafi A. 2015. Rheological properties of a dilute suspension of self-propelled particles. Europhys. Lett. 109:24001 [Google Scholar]
  109. Moran JL, Posner JD. 2017. Phoretic self-propulsion. Annu. Rev. Fluid Mech. 49:511–40 [Google Scholar]
  110. Mussler M, Rafaï S, Peyla P, Wagner C. 2013. Effective viscosity of non-gravitactic Chlamydomonas reinhardtii microswimmer suspensions. Europhys. Lett. 101:54004 [Google Scholar]
  111. Nambiar S, Nott PR, Subramanian G. 2017. Stress relaxation in a dilute bacterial suspension. J. Fluid Mech. 812:41–64 [Google Scholar]
  112. Pagonabarraga I, Llopis I. 2013. The structure and rheology of sheared model swimmer suspensions. Soft Matter 9:7174–84 [Google Scholar]
  113. Patteson AE, Gopinath A, Purohit PK, Arratia PE. 2016. Particle diffusion in active fluids is non-monotonic in size. Soft Matter 12:2365–72 [Google Scholar]
  114. Paxton WF, Kistler KC, Olmeda CC, Sen A, St. Angelo SK. et al. 2004. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126:13424–31 [Google Scholar]
  115. Pedley TJ, Kessler JO. 1990. A new continuum model for suspensions of gyrotactic micro-organisms. J. Fluid Mech. 212:155–82 [Google Scholar]
  116. Peng Y, Lai L, Tai YS, Zhang K, Xu X, Cheng X. 2016. Diffusion of ellipsoids in bacterial suspensions. Phys. Rev. Lett. 116:068303 [Google Scholar]
  117. Peters F, Lobry L, Lemaire E. 2010. Pressure-driven flow of a micro-polar fluid: measurement of the velocity profile. J. Rheol. 54:311–25 [Google Scholar]
  118. Petrie CJS. 1999. The rheology of fibre suspensions. J. Non-Newton. Fluid Mech. 87:369–402 [Google Scholar]
  119. Potomkin M, Ryan SD, Berlyand L. 2016. Effective rheological properties in semidilute bacterial suspensions. Bull. Math. Biol. 78:580–615 [Google Scholar]
  120. Pozrikidis C. 1992. Boundary Integral and Singularity Methods for Linearized Viscous Flow Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  121. Purcell EM. 1977. Life at low Reynolds number. Am. J. Phys. 45:3–11 [Google Scholar]
  122. Quincke G. 1896. Über Rotationen im constanten elektrischen Felde. Ann. Phys. Chem. 59:417–86 [Google Scholar]
  123. Rafaï S, Jibuti L, Peyla P. 2010. Effective viscosity of microswimmer suspensions. Phys. Rev. Lett. 104:098102 [Google Scholar]
  124. Ramaswamy S. 2010. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1:323–45 [Google Scholar]
  125. Rusconi R, Guasto JS, Stocker R. 2014. Bacterial transport suppressed by fluid shear. Nat. Phys. 10:212–17 [Google Scholar]
  126. Ryan SD, Haines BM, Berlyand L, Ziebert F, Aranson IS. 2011. Viscosity of bacterial suspensions: hydrodynamic interactions and self-induced noise. Phys. Rev. E 83:050904 [Google Scholar]
  127. Saintillan D. 2010a. Extensional rheology of active suspensions. Phys. Rev. E 81:056307 [Google Scholar]
  128. Saintillan D. 2010b. The dilute rheology of swimming suspensions: a simple kinetic model. Exp. Mech. 50:1275–81 [Google Scholar]
  129. Saintillan D, Shelley MJ. 2008. Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations. Phys. Rev. Lett. 100:178103 [Google Scholar]
  130. Saintillan D, Shelley MJ. 2012. Emergence of coherent structures and large-scale flows in motile suspensions. J. R. Soc. Interface 9:571–85 [Google Scholar]
  131. Saintillan D, Shelley MJ. 2015. Theory of active suspensions. Complex Fluids in Biological Systems SE Spagnolie 319–55 New York: Springer [Google Scholar]
  132. Sanchez T, Chen D, DeCamp S, Heymann M, Dogic Z. 2012. Spontaneous motion in hierarchically assembled active matter. Nature 491:431–34 [Google Scholar]
  133. Saracco GP, Gonnella G, Marenduzzo D, Orlandini E. 2011. Shearing self-propelled suspensions: arrest of coarsening and suppression of giant density fluctuations. Phys. Rev. E 84:031930 [Google Scholar]
  134. Schaar K, Zöttl A, Stark H. 2015. Detention times of microswimmers close to surfaces: influence of hydrodynamic interactions and noise. Phys. Rev. Lett. 115:038101 [Google Scholar]
  135. Secchi E, Rusconi R, Buzzaccaro S, Salek MM, Smriga S. et al. 2016. Intermittent turbulence in flowing bacterial suspensions. J. R. Soc. Interface 13:20160175 [Google Scholar]
  136. Shelley MJ. 2016. The dynamics of microtubule/motor-protein assemblies in biology and physics. Annu. Rev. Fluid Mech. 48:487–506 [Google Scholar]
  137. Simha RA, Ramaswamy S. 2002. Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89:058101 [Google Scholar]
  138. Sokolov A, Aranson IS. 2009. Reduction of viscosity in suspension of swimming bacteria. Phys. Rev. Lett. 103:148101 [Google Scholar]
  139. Sokolov A, Aranson IS. 2012. Physical properties of collective motion in suspensions of bacteria. Phys. Rev. Lett. 109:248109 [Google Scholar]
  140. Solon AP, Stenhammar J, Wittkowski R, Kardar M, Kafri Y. et al. 2015. Pressure and phase equilibria in interacting active Brownian spheres. Phys. Rev. Lett. 114:198301 [Google Scholar]
  141. Spagnolie SE, Lauga E. 2012. Hydrodynamics of self-propulsion near boundaries: predictions and accuracy of far-field approximations. J. Fluid Mech. 700:105–47 [Google Scholar]
  142. Subramanian G, Koch DL. 2009. Critical bacterial concentration for the onset of collective swimming. J. Fluid Mech. 632:359–400 [Google Scholar]
  143. Suzuki K, Miyazaki M, Takagi J, Itabashi T, Ishiwata S. 2017. Spatial confinement of active microtubule networks induces large-scale rotational cytoplasmic flow. PNAS 114:2922–27 [Google Scholar]
  144. Takatori SC, Brady JF. 2017. Superfluid behavior of active suspensions from diffusive stretching. Phys. Rev. Lett. 118:018003 [Google Scholar]
  145. Takatori SC, Wen Y, Brady JF. 2014. Swim pressure: stress generation in active matter. Phys. Rev. Lett. 113:028103 [Google Scholar]
  146. Theillard M, Alonso-Matilla R, Saintillan D. 2017. Geometric control of active collective motion. Soft Matter 13:363–75 [Google Scholar]
  147. Turner L, Ryu WS, Berg HC. 2000. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182:2793–801 [Google Scholar]
  148. Waisbord N, Lefèvre CT, Bocquet L, Ybert C, Cottin-Bizonne C. 2016. Destabilization of a flow focused suspension of magnetotactic bacteria. Phys. Rev. Fluids 1:053203 [Google Scholar]
  149. Wang J. 2013. Nanomachines: Fundamentals and Applications Weinheim, Ger.: Wiley-VCH [Google Scholar]
  150. Wioland H, Lushi E, Goldstein RE. 2015. Directed collective motion of bacterial under channel confinement. New J. Phys. 18:075002 [Google Scholar]
  151. Wioland H, Woodhouse FG, Dunkel J, Kessler JO, Goldstein RE. 2013. Confinement stabilizes a bacterial suspension into a spiral vortex. Phys. Rev. Lett. 110:268102 [Google Scholar]
  152. Wirtz D. 2009. Particle-tracking rheology of living cells: principles and applications. Annu. Rev. Biophys. 38:301–26 [Google Scholar]
  153. Wu K-T, Hishamunda JB, Chen DTN, DeCamp SJ, Chang Y-W. et al. 2017. Transition from turbulent to coherent flows in confined three-dimensional active fluids. Science 355:63312017 [Google Scholar]
  154. Wu XL, Libchaber A. 2000. Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett. 84:3017–20 [Google Scholar]
  155. Yan W, Brady JF. 2015. The force on a boundary in active matter. J. Fluid Mech. 785:R1 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010816-060049
Loading
/content/journals/10.1146/annurev-fluid-010816-060049
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error