1932

Abstract

Slamming, the violent impact between a liquid and solid, has been known to be important for a long time in the ship hydrodynamics community. More recently, applications ranging from the transport of liquefied natural gas (LNG) in LNG carriers to the harvesting of wave energy with oscillating wave surge converters have led to renewed interest in the topic. The main reason for this renewed interest is that the extreme impact pressures generated during slamming can affect the integrity of the structures involved. Slamming fluid mechanics is challenging to describe, as much from an experimental viewpoint as from a numerical viewpoint, because of the large span of spatial and temporal scales involved. Even the physical mechanisms of slamming are challenging: What physical phenomena must be included in slamming models? An important issue deals with the practical modeling of slamming: Are there any simple models available? Are numerical models viable? What are the consequences for the design of structures? This article describes the loading processes involved in slamming, offers state-of-the-art results, and highlights unresolved issues worthy of further research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010816-060121
2018-01-05
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/fluid/50/1/annurev-fluid-010816-060121.html?itemId=/content/journals/10.1146/annurev-fluid-010816-060121&mimeType=html&fmt=ahah

Literature Cited

  1. Am. Bur. Shipp. 2009. Guidance notes on strength assessment of membrane-type LNG containment systems under sloshing loads Rep., Am. Bur. Shipp Houston, TX: [Google Scholar]
  2. Am. Bur. Shipp. 2011. Guide for slamming loads and strength assessment for vessels Rep., Am. Bur. Shipp Houston, TX: [Google Scholar]
  3. Ancellin M, Brosset L, Ghidaglia JM. 2012. Influence of phase transition on sloshing impact pressures described by a generalized Bagnold's model. Proc. Int. Offshore Polar Eng. Conf., 22nd, 17–22 June, Rhodes, Greece JS Chung, I Langen, SY Hong, SJ Prinsenberg 300–10 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  4. Ancellin M, Brosset L, Ghidaglia JM. 2016. Preliminary numerical results on the influence of phase change on wave impacts loads. Proc. Int. Ocean Polar Eng. Conf., 26th, 26 June–July 1, Rhodes, Greece JS Chung, M Muskulus, T Kokkinis, AM Wang 886–93 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  5. ANSYS. 2013. ANSYS Fluent User's Guide: Release 15.0 Canonsburg, PA: ANSYS [Google Scholar]
  6. Bagnold RA. 1939. Interim report on wave-pressure research. Proc. Inst. Civil Eng. 12:201–26Provides the leading paper on waves breaking on a vertical wall. [Google Scholar]
  7. Behruzi P, Konopka M, de Rose F, Schwartz G. 2014. Cryogenic slosh modeling in LNG ship tanks and spacecrafts. Proc. Int. Ocean Polar Eng. Conf., 24th, 15–20 June, Busan, South Korea JS Chung, F Vorpahl, S-W Hong, SY Hong, T Kokknis et al.209–17 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  8. Blackmore PA, Hewson PJ. 1984. Experiments on full-scale wave impact pressures. Coast. Eng. 8:331–46 [Google Scholar]
  9. Bogaert H, Léonard S, Brosset L, Kaminski M. 2010. Sloshing and scaling: results from Sloshel project. Proc. Int. Offshore Polar Eng. Conf., 20th, 20–25 June, Beijing, China JS Chung, R Ayer, S Prinsenberg, SW Hong, I Langen Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  10. Braeunig JP, Brosset L, Dias F, Ghidaglia JM. 2009a. Phenomenological study of liquid impacts through 2D compressible two-fluid numerical simulations. Proc. Int. Offshore Polar Eng. Conf., 19th, 21–26 June, Osaka, Japan JS Chung, S Prinsenbeg, SW Hong, S Nagata 21–29 Mountain View, CA: Int. Soc. Offshore Polar Eng.Represents a shift in the study of liquid impacts. [Google Scholar]
  11. Braeunig JP, Desjardins B, Ghidaglia JM. 2009b. A pure Eulerian scheme for multi-material fluid flows. Eur. J. Mech. B 28:475–85 [Google Scholar]
  12. Bredmose H, Bullock GN, Hogg AJ. 2015. Violent breaking wave impacts. Part 3: effects of scale and aeration. J. Fluid Mech. 765:82–113 [Google Scholar]
  13. Bredmose H, Hunt-Raby A, Jayaratne R, Bullock GN. 2010. The ideal flip-through impact: experimental and numerical investigation. J. Eng. Math. 67:115–36 [Google Scholar]
  14. Bredmose H, Peregrine DH, Bullock GN. 2009. Violent breaking wave impacts. Part 2: modelling the effect of air. J. Fluid Mech. 641:389–430 [Google Scholar]
  15. Bresch D, Desjardins B, Ghidaglia J-M, Grenier E, Hillairet M. 2017. Multi-fluid models including compressible fluids. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids Y Giga, A Novotny New York: SpringerPresents the mathematical properties of two-fluid models. [Google Scholar]
  16. Brevig P, Greenhow M, Vinje T. 1982. Extreme wave forces on submerged wave energy devices. Appl. Ocean Res. 4:219–25 [Google Scholar]
  17. Brosset L, Ghidaglia JM, Guilcher PM, Le Tarnec L. 2013. Generalized Bagnold model. Proc. Int. Offshore Polar Eng. Conf., 23rd, 30 June–5 July, Anchorage, Alsk JS Chung, I Langen, T Kokkinis, AM Wang 209–23 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  18. Brosset L, Lafeber W, Bogaert H, Marhem M, Carden P, Maguire J. 2011. A Mark III panel subjected to a flip-through wave impact: results from the Sloshel project. Proc. Int. Offshore Polar Eng. Conf., 21st, 19–24 June, Maui, Hawaii JS Chung, SY Hong, I Langen, SJ Prinsenberg 84–96 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  19. Bullock GN, Crawford AR, Hewson PJ, Walkden MJA, Bird PAD. 2001. The influence of air and scale on wave impact pressures. Coast. Eng. 42:291–312 [Google Scholar]
  20. Bur. Veritas. 2011a. Design sloshing loads for LNG membrane tanks Guid. Note NI 554 DT R00 E, Bur Veritas, Neuilly-sur-Seine France: [Google Scholar]
  21. Bur. Veritas. 2011b. Strength assessment of LNG membrane tanks under sloshing loads Guidance Note NI 564 DT R00 E, Bur. Veritas, Neuilly-sur-Seine France: [Google Scholar]
  22. Calderón-Sánchez J, Duque D, Gómez-Goñi J. 2015. Modeling the impact pressure of a free falling liquid block with OpenFOAM. Ocean Eng 103:144–52 [Google Scholar]
  23. Cao Y, Schultz WW, Beck RF. 1991. Three-dimensional desingularized boundary integral methods for potential problems. Int. J. Numer. Methods Fluids 12:785–803 [Google Scholar]
  24. Chung JY, Nahm JO, Kang HD, Kwon SH. 2007. A novel experimental technique in slamming. Proc. Int. Workshop Water Waves Float. Bodies, 22nd, 15–18 April, Plitvice, Croat S Malencica, I Senjanović 41–44 http://www.iwwwfb.org/Abstracts/iwwwfb22/iwwwfb22_11.pdf [Google Scholar]
  25. Coe RG, Neary VS. 2014. Review of methods for modeling wave energy converter survival in extreme sea states. Proc. Mar. Energy Technol. Symp., 2nd, 14–17 April, Seattle, Wash. https://vtechworks.lib.vt.edu/bitstream/handle/10919/49221/101-Coe.pdf [Google Scholar]
  26. Colagrossi A, Landrini M. 2003. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191:448–75 [Google Scholar]
  27. Colagrossi A, Lugni C, Brocchini M. 2010. A study of violent sloshing wave impacts using an improved SPH method. J. Hydraul. Res. 48:Suppl. 194–104 [Google Scholar]
  28. Cooker MJ, Peregrine DH. 1990. Computation of violent wave motion due to waves breaking against a wall. Proc. Int. Conf. Coast. Eng., 22nd, 2–6 July, Delft, Neth BL Edge 164–76 Reston, VA: Am. Soc. Civ. Eng. [Google Scholar]
  29. Costes J, Ghidaglia JM, Mrabet AA. 2014. On the simulation of liquid impacts on a flat rigid wall by a 2D parallel finite volume solver. Proc. Int. Ocean Polar Eng. Conf., 24th, 15–20 June, Busan, South Korea JS Chung, F Vorpahl, S-W Hong, SY Hong, T Kokknis, et al 246–56 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  30. Cuomo G, Allsop W, Takahashi S. 2010. Scaling wave impact pressures on vertical walls. Coast. Eng. 57:604–9 [Google Scholar]
  31. Det Norske Veritas. 2014. Sloshing analysis of LNG membrane tanks Classif. Note 30.9, Det Norske Veritas, Olso [Google Scholar]
  32. Dias F, Dutykh D, Ghidaglia JM. 2010. A two-fluid model for violent aerated flows. Comput. Fluids 39:283–93 [Google Scholar]
  33. Donea J, Huerta A, Ponthot JP, Rodríguez–Ferran A. 2004. Arbitrary Lagrangian-Eulerian methods. Encyclopedia of Computational Mechanics I Fundamentals E Stein, R de Borst, T Hugues 413–37 New York: Wiley [Google Scholar]
  34. el Moctar O, Oberhagemann J, Schellin TE. 2011. Free-surface RANS method for hull girder springing and whipping. Trans. Soc. Nav. Archit. Mar. Eng. Houston 119:48–66 [Google Scholar]
  35. Elhimer M, Jacques N, el Malki Alaoui A, Gabillet C. 2017. The influence of aeration and compressibility on slamming loads during cone water entry. J. Fluids Struct. 70:24–46 [Google Scholar]
  36. Faltinsen OM. 2000. Hydroelastic slamming. J. Mar. Sci. Technol. 5:49–65 [Google Scholar]
  37. Faltinsen OM, Landrini M, Greco M. 2004. Slamming in marine applications. J. Eng. Math. 48:187–271 [Google Scholar]
  38. Faltinsen OM, Timokha AN. 2009. Sloshing Cambridge, UK: Cambridge Univ. PressRepresents the leading book on sloshing with a full chapter on slamming. [Google Scholar]
  39. Frihat M, Brosset L, Ghidaglia JM. 2017. Experimental study of surface tension effects on sloshing impact loads. Proc. Int. Workshop Water Waves Float. Bodies, 32nd, 23–26 Apr., Dalian, China B Teng, D Ning. http://www.iwwwfb.org/Abstracts/iwwwfb32/iwwwfb32_19.pdf [Google Scholar]
  40. Frihat M, Karimi MR, Brosset L, Ghidaglia JM. 2016. Variability of impact pressures induced by sloshing investigated through the concept of “singularization.”. Proc. Int. Offshore Polar Eng. Conf., 19th, 21–26 June, Osaka, Japan JS Chung, S Prinsenbeg, SW Hong, S Nagata 901–14 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  41. Gavory T, de Sèze PE. 2009. Sloshing in membrane LNG carriers and its consequences from a designer's perspective. Proc. Int. Offshore Polar Eng. Conf., 19th, 21–26 June, Osaka, Japan JS Chung, S Prinsenbeg, SW Hong, S Nagata 13–20 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  42. Gervaise E, de Sèze PE, Maillard S. 2009. Reliability-based methodology for sloshing assessment of membrane LNG vessels. Int. J. Offshore Polar Eng. 19:254–63 [Google Scholar]
  43. Ghidaglia JM, Kumbaro A, Le Coq G. 2001. On the numerical solution to two fluid models via a cell centered finite volume method. Eur. J. Mech. B 20:841–61 [Google Scholar]
  44. Gong K, Liu H, Wang B. 2009. Water entry of a wedge based on SPH model with an improved boundary treatment. J. Hydrodyn. 21:750–57 [Google Scholar]
  45. Gotoh H, Khayyer A, Ikari H, Arikawa T, Shimosako K. 2014. On enhancement of incompressible SPH method for simulation of violent sloshing flows. Appl. Ocean Res. 46:104–15 [Google Scholar]
  46. Grilli ST, Dias F, Guyenne P, Fochesato C, Enet F. 2010. Progress in fully nonlinear potential flow modeling of 3D extreme ocean waves. Advances in Numerical Simulation of Nonlinear Water Waves Q Ma 75–28 Singapore: World Sci. [Google Scholar]
  47. Guilcher PM, Couty N, Brosset L, Le Touzé D. 2013. Simulations of breaking wave impacts on a rigid wall at two different scales with a two phase fluid compressible SPH model. Int. J. Offshore Polar Eng. 23:241–53 [Google Scholar]
  48. Guilcher PM, Jus Y, Couty N, Brosset L, Scolan YM, Le Touzé D. 2014a. 2D simulations of breaking wave impacts on a flat rigid wall—Part 1: influence of the wave shape. Proc. Int. Ocean Polar Eng. Conf., 24th, 15–20 June, Busan, South Korea JS Chung, F Vorpahl, S-W Hong, SY Hong, T Kokknis et al.232–45 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  49. Guilcher PM, Oger G, Jacquin E, Brosset L, Grenier N, Le Touzé D. 2014b. Simulations of liquid impacts with a two-phase parallel SPH model. Int. J. Offshore Polar Eng. 24:11–20 [Google Scholar]
  50. Hattori M, Arami A, Yui T. 1994. Wave impact pressure on vertical walls under breaking waves of various types. Coast. Eng. 22:79–114 [Google Scholar]
  51. Hay A, Etienne S, Pelletier D, Brosset L. 2016. Accurate prediction of sloshing waves in tanks by an adaptive two-fluid incompressible front-tracking approach. Proc. Int. Ocean Polar Eng. Conf., 26th, 26 June–1 July, Rhodes, Greece JS Chung, M Muskulus, T Kokkinis, AM Wang 822–31 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  52. Henry A, Abadie T, Nicholson J, McKinley A, Kimmoun O, Dias F. 2015. The vertical distribution and evolution of slam pressure on an Oscillating Wave Surge Converter. Proc. Int. Conf. Ocean Offshore Arctic Eng., 34th., 31 May–5 June, St. John's, Can. Reston, VA: Am. Soc. Civ. Eng [Google Scholar]
  53. Henry A, Kimmoun O, Nicholson J, Dupont G, Wei Y, Dias F. 2014a. A two dimensional experimental investigation of slamming of an Oscillating Wave Surge Converter. Proc. Int. Offshore Polar Eng. Conf., 20th, 20–25 June, Beijing, China JS Chung, R Ayer, S Prinsenberg, SW Hong, I Langen 296–305 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  54. Henry A, Rafiee A, Schmitt P, Dias F, Whittaker T. 2014b. The characteristics of wave impacts on an Oscillating Wave Surge Converter. J. Ocean Wind Energy 1:101–10 [Google Scholar]
  55. Hong SY, Kim KH, Hwang SC. 2017. Comparative study on water impact problem for ship section and wedge drops. Int. J. Offshore Polar Eng. In press [Google Scholar]
  56. Hugoniot H. 1887. Mémoire sur la propagation des mouvements dans les corps et spécialement dans les gaz parfaits (première partie). J. Ecole Polytech. 57:3–97 [Google Scholar]
  57. Hugoniot H. 1889. Mémoire sur la propagation des mouvements dans les corps et spécialement dans les gaz parfaits (deuxième partie). J. Ecole Polytech. 58:1–125Presents the famous jump condition for the first time. [Google Scholar]
  58. Int. Ship. Offshore Struct. Congr. 2015. Report of committee V.2: natural gas storage and transportation. Proc. Int. Ship Offshore Struct. Congr., 19th, 7–10 Sept., Cascais, Portugal 2 C Guedes Soares, Y Garbatov 591–618 Boca Raton, FL: CRC [Google Scholar]
  59. Ishii M, Hibiki T. 2011. Thermo-Fluid Dynamics of Two-Phase Flow New York: SpringerRepresents the leading book on averaged models for two-phase flow. [Google Scholar]
  60. Kang HD, Oh SH, Kwon SH, Chung JY, Jung KH, Jo HJ. 2008. An experimental study of shallow water impact. Proc. Int. Workshop Water Waves Float. Bodies, 23rd, 13–16 Apr., Jeju, Korea HS Choi, Y Kim 92–95 http://www.iwwwfb.org/Abstracts/iwwwfb23/iwwwfb23_23.pdf [Google Scholar]
  61. Kapsenberg GK. 2011. Slamming of ships: Where are we now?. Philos. Trans. R. Soc. A 369:2892–919Reviews slamming from the point of view of someone working at a ship research institute. [Google Scholar]
  62. Karimi MR, Brosset L, Ghidaglia JM, Kaminski ML. 2015. Effect of ullage gas on sloshing, part I: global effects of gas-liquid density ratio. Eur. J. Mech. B 53:213–28 [Google Scholar]
  63. Karimi MR, Brosset L, Ghidaglia JM, Kaminski ML. 2016. Effect of ullage gas on sloshing, part II: local effects of gas-liquid density ratio. Eur. J. Mech. B 57:82–100 [Google Scholar]
  64. Karimi MR, Brosset L, Kaminski ML, Ghidaglia JM. 2017. Effects of ullage gas and scale on sloshing loads. Eur. J. Mech. B 62:59–85 [Google Scholar]
  65. Khayyer A, Gotoh H. 2013. Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios. J. Comput. Phys. 242:211–33 [Google Scholar]
  66. Kim SY, Kim KH, Kim Y. 2015. Comparative study on pressure sensors for sloshing experiment. Ocean Eng 94:199–212 [Google Scholar]
  67. Kimmoun O, Ratouis A, Brosset L. 2010. Sloshing and scaling: experimental study in a wave canal at two different scales. Proc. Int. Offshore Polar Eng. Conf., 20th, 20–25 June, Beijing, China JS Chung, R Ayer, S Prinsenberg, SW Hong, I Langen 33–43 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  68. Kirkgöz S. 1990. An experimental investigation of a vertical wall response to breaking wave impact. Ocean Eng 17:379–91 [Google Scholar]
  69. Korobkin AA. 1997. Asymptotic theory of liquid–solid impact. Philos. Trans. R. Soc. A 355:507–22 [Google Scholar]
  70. Korobkin AA. 1998. Elastic response of catamaran wetdeck to liquid impact. Ocean Eng 25:687–714 [Google Scholar]
  71. Korobkin AA, Pukhnachov VV. 1988. Initial stage of water impact. Annu. Rev. Fluid Mech. 20:159–85 [Google Scholar]
  72. Kuo JF, Campbell RB, Ding Z, Hoie SM, Rinehart AJ. et al. 2009. LNG tank sloshing assessment methodology—the new generation. Proc. Int. Offshore Polar Eng. Conf., 19th, 21–26 June, Osaka, Japan JS Chung, S Prinsenbeg, SW Hong, S Nagata 1–12 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  73. Lafeber W, Brosset L, Bogaert H. 2012a. Comparison of wave impact tests at large and full scale: results from the Sloshel project. Proc. Int. Offshore Polar Eng. Conf., 22nd, 17–22 June, Rhodes, Greece JS Chung, I Langen, SY Hong, SJ Prinsenberg 285–99 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  74. Lafeber W, Brosset L, Bogaert H. 2012b. Elementary Loading Processes (ELP) involved in breaking wave impacts: findings from the Sloshel project. Proc. Int. Offshore Polar Eng. Conf., 22nd, 17–22 June, Rhodes, Greece JS Chung, I Langen, SY Hong, SJ Prinsenberg 265–76 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  75. Lind SJ, Stansby PK, Rogers BD, Lloyd PM. 2015. Numerical predictions of water–air wave slam using incompressible–compressible smoothed particle hydrodynamics. Appl. Ocean Res. 49:57–71 [Google Scholar]
  76. Lloyd's Regist. 2009. Sloshing assessment guidance document for membrane tank LNG operations Rep., Lloyd's Regist London: [Google Scholar]
  77. Loubère R, Braeunig JP, Ghidaglia JM. 2012. A totally Eulerian finite volume solver for multi-material fluid flows: Enhanced Natural Interface Positioning (ENIP). Eur. J. Mech. B 31:1–11 [Google Scholar]
  78. Loysel T, Chollet S, Gervaise E, Brosset L, De Seze PE. 2012. Results of the first sloshing model test benchmark. Proc. Int. Offshore Polar Eng. Conf., 22nd, 17–22 June, Rhodes, Greece JS Chung, I Langen, SY Hong, SJ Prinsenberg 398–408 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  79. Loysel T, Gervaise E, Moreau S, Brosset L. 2013. Results of the 2012-2013 sloshing model test benchmark. Proc. Int. Offshore Polar Eng. Conf., 23rd, 30 June–5 July, Anchorage, Alsk JS Chung, I Langen, T Kokkinis, AM Wang 141–52 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  80. Lugni C, Bardazzi A, Faltinsen OM, Graziani G. 2014. Hydroelastic slamming response in the evolution of a flip-through event during shallow-liquid sloshing. Phys. Fluids 26:032108 [Google Scholar]
  81. Lugni C, Brocchini M, Faltinsen OM. 2006. Wave impact loads: the role of the flip-through. Phys. Fluids 18:122101 [Google Scholar]
  82. Malenica S, Korobkin AA, Ten I, Gazzola T, Mravak Z. et al. 2009. Combined semi-analytical and finite element approach for hydro structure interactions during sloshing impacts—“Sloshel Project.”. Proc. Int. Offshore Polar Eng. Conf., 19th, 21–26 June, Osaka, Japan JS Chung, S Prinsenbeg, SW Hong, S Nagata 143–52 Mountain View, CA: Int. Soc. Offshore Polar Eng.Discusses the importance of hydroelasticity. [Google Scholar]
  83. Monaghan JJ. 2012. Smoothed particle hydrodynamics and its diverse applications. Annu. Rev. Fluid Mech. 44:323–46 [Google Scholar]
  84. Monaghan JJ, Rafiee A. 2013. A simple SPH algorithm for multi-fluid flow with high density ratios. Int. J. Numer. Methods Fluids 71:537–61 [Google Scholar]
  85. Mrabet AM. 2017. Accélérations algorithmiques pour la simulation numérique d'impacts de vagues. Modèles de type “roofline” pour la performance des processeurs, application à la CFD PhD Thesis, ENS Paris-Saclay France: [Google Scholar]
  86. Neugebauer J, el Moctar O, Potthoff R. 2014. Experimental and numerical investigation of single impacts in a 2D tank. Proc. Int. Ocean Polar Eng. Conf., 24th, 15–20 June, Busan, South Korea JS Chung, F Vorpahl, S-W Hong, SY Hong, T Kokknis et al.286–95 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  87. Oh SH, Kwon SH, Chung JY. 2009. A close look at air pocket evolution in flat impact. Proc. Int. Workshop Water Waves Float. Bodies, 24th, 19–22 Apr., Zelenogorsk, Russ AA Korobkin, O Motygin 165–68 http://www.iwwwfb.org/Abstracts/iwwwfb24/iwwwfb24_42.pdf [Google Scholar]
  88. OpenFOAM. 2015. OpenFOAM User Guide: Version 3.0.1 Reading, UK: CFD Direct [Google Scholar]
  89. Oumeraci H, Klammer P, Partenscky HW. 1993. Classification of breaking wave loads on vertical structures. J. Waterw. Port Coast. Ocean Eng. 119:381–97 [Google Scholar]
  90. Pasquier R, Berthon CF. 2012. Model scale test versus full scale measurement: findings from the Full Scale Measurement of Sloshing project. Proc. Int. Offshore Polar Eng. Conf., 22nd, 17–22 June, Rhodes, Greece JS Chung, I Langen, SY Hong, SJ Prinsenberg 277–84 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  91. Peregrine DH. 2003. Water-wave impact on walls. Annu. Rev. Fluid Mech. 35:23–43 [Google Scholar]
  92. Pistani F, Thiagarajan K. 2012. Experimental measurements and data analysis of the impact pressures in a sloshing experiment. Ocean Eng 52:60–74 [Google Scholar]
  93. Popinet S. 2003. Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190:572–600 [Google Scholar]
  94. Rafiee A, Cummins S, Rudman M, Thiagarajan K. 2012. Comparative study on the accuracy and stability of SPH schemes in simulating energetic free-surface flows SPH. Eur. J. Mech. B 36:1–16 [Google Scholar]
  95. Rafiee A, Dutykh D, Dias F. 2015. Numerical simulation of wave impact on a rigid wall using a two-phase compressible SPH method. Procedia IUTAM 18:123–37 [Google Scholar]
  96. Rafiee A, Repalle N, Dias F. 2013. Numerical simulations of 2D liquid impact benchmark problem using two-phase compressible and incompressible methods. Proc. Int. Offshore Polar Eng. Conf., 23rd, 30 June–5 July, Anchorage, Alsk JS Chung, I Langen, T Kokkinis, AM Wang 251–61 Mountain View, CA: Int. Soc. Offshore Polar Eng. [Google Scholar]
  97. Rankine WJM. 1870. On the thermodynamics theory of waves of finite longitudinal disturbances. Philos. Trans. R. Soc. Lond. 160:277–88Represents a leading paper for acoustic waves. [Google Scholar]
  98. Renzi E, Doherty K, Henry A, Dias F. 2014. How does Oyster work? The simple interpretation of Oyster mathematics. Eur. J. Mech. B 47:124–31 [Google Scholar]
  99. Scardovelli R, Zaleski S. 1999. Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31:567–603 [Google Scholar]
  100. Scolan YM. 2010. Some aspects of the flip-through phenomenon: a numerical study based on the desingularized technique. J. Fluids Struct. 26:918–53 [Google Scholar]
  101. Scolan YM. 2014a. Hydrodynamic impact of an elliptic paraboloid on cylindrical waves. J. Fluids Struct. 48:470–86 [Google Scholar]
  102. Scolan YM. 2014b. Oblique water entry of a three dimensional body. Int. J. Nav. Archit. Ocean Eng. 6:1197–208 [Google Scholar]
  103. Scolan YM, Korobkin AA. 2003. Energy distribution from vertical impact of a three-dimensional solid body onto the flat free surface of an ideal fluid. J. Fluids Struct. 17:275–86 [Google Scholar]
  104. Scolan YM, Korobkin AA. 2015. Water entry of a body which moves in more than six degrees of freedom. Proc. R. Soc. A 471:20150058 [Google Scholar]
  105. Skillen A, Lind S, Stansby PK, Rogers BD. 2013. Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body–water slam and efficient wave–body interaction. Comput. Methods Appl. Mech. Eng. 265:163–73 [Google Scholar]
  106. Sun SY, Sun SL, Ren HL, Wu GX. 2015. Splash jet and slamming generated by a rotating flap. Phys. Fluids 27:092107 [Google Scholar]
  107. Ten I, Malenica S, Korobkin A. 2011. Semi-analytical models of hydroelastic sloshing impact in tanks of liquefied natural gas vessels. Philos. Trans. R. Soc. A 369:2920–41 [Google Scholar]
  108. Tenzer M, el Moctar O, Schellin TE. 2015. Experimental investigation of impact loads during water entry. Ship Technol. Res. 62:47–59 [Google Scholar]
  109. Tiron R, Mallon F, Dias F, Reynaud EG. 2015. The challenging life of wave energy devices at sea: a few points to consider. Renew. Sustain. Energy Rev. 43:1263–72 [Google Scholar]
  110. Toro EF. 2010. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction New York: SpringerPresents a reference book on Riemann solvers in fluid mechanics. [Google Scholar]
  111. Truscott TT, Epps BP, Belden J. 2014. Water entry of projectiles. Annu. Rev. Fluid Mech. 46:355–78 [Google Scholar]
  112. Van Paepegem W, Blommaert C, De Baere I, Degrieck J, De Backer G. et al. 2011. Slamming wave impact of a composite buoy for wave energy applications: design and large-scale testing. Polym. Compos. 32:700–13 [Google Scholar]
  113. Violeau D. 2012. Fluid Mechanics and the SPH Method New York: Oxford Univ. PressRepresents the first book with a comprehensive description of the SPH method for fluid modeling. [Google Scholar]
  114. von Kármán T. 1929. The impact of seaplane floats during landing NACA Tech. Note 321, Natl. Advis. Comm. Aeronaut Washington, DC: [Google Scholar]
  115. Wagner H. 1932. Über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten. Z. Angew. Math. Mech. 12:193–215Represents the leading paper on the water entry problem. [Google Scholar]
  116. Wan L, Gao Z, Moan T. 2015. Experimental and numerical study of hydrodynamic responses of a combined wind and wave energy converter concept in survival modes. Coast. Eng. 104:151–69 [Google Scholar]
  117. Wei Y, Abadie T, Henry A, Dias F. 2016. Wave interaction with an Oscillating Wave Surge Converter, part II: slamming. Ocean Eng 113:319–34 [Google Scholar]
  118. Wei Y, Rafiee A, Henry A, Dias F. 2015. Wave interaction with an oscillating wave surge converter, part I: viscous effects. Ocean Eng 104:185–203 [Google Scholar]
  119. Wei ZJ, Faltinsen OM, Lugni C, Yue QJ. 2015. Sloshing-induced slamming in screen-equipped rectangular tanks in shallow-water conditions. Phys. Fluids 27:032104 [Google Scholar]
  120. Xu GD, Duan WY, Wu GX. 2010. Simulation of water entry of a wedge through free fall in three degrees of freedom. Proc. R. Soc. A 466:2219–39 [Google Scholar]
  121. Yung TW, Sandström RE, He H, Minta MK. 2010. On the physics of vapor/liquid interaction during impact on solids. J. Ship Res. 54:174–83 [Google Scholar]
  122. Zhang S, Yue DKP, Tanizawa K. 1996. Simulation of plunging wave impact on a vertical wall. J. Fluid Mech. 327:221–54 [Google Scholar]
  123. Zhao R, Faltinsen O, Aarsnes J. 1997. Water entry of arbitrary two-dimensional sections with and without flow separation. Proc. Symp. Naval Hydrodyn., 21st, 24–28 June 1996, Trondheim, Norway 408–23 Washington, DC: Natl. Acad. [Google Scholar]
/content/journals/10.1146/annurev-fluid-010816-060121
Loading
/content/journals/10.1146/annurev-fluid-010816-060121
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error