1932

Abstract

Anisotropic particles are common in many industrial and natural turbulent flows. When these particles are small and neutrally buoyant, they follow Lagrangian trajectories while exhibiting rich orientational dynamics from the coupling of their rotation to the velocity gradients of the turbulence field. This system has proven to be a fascinating application of the fundamental properties of velocity gradients in turbulence. When particles are not neutrally buoyant, they experience preferential concentration and very different preferential alignment than neutrally buoyant tracer particles. A vast proportion of the parameter range of anisotropic particles in turbulence is still unexplored, with most existing research focusing on the simple foundational cases of axisymmetric ellipsoids at low concentrations in homogeneous isotropic turbulence and in turbulent channel flow. Numerical simulations and experiments have recently developed a fairly comprehensive picture of alignment and rotation in these cases, and they provide an essential foundation for addressing more complex problems of practical importance. Macroscopic effects of nonspherical particle dynamics include preferential concentration in coherent structures and drag reduction by fiber suspensions. We review the models used to describe nonspherical particle motion, along with numerical and experimental methods for measuring particle dynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010816-060135
2017-01-03
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/fluid/49/1/annurev-fluid-010816-060135.html?itemId=/content/journals/10.1146/annurev-fluid-010816-060135&mimeType=html&fmt=ahah

Literature Cited

  1. Abbasi Hoseini A, Zavareh Z, Lundell F, Anderson HI. 2014. Rod-like particles matching algorithm based on SOM neural network in dispersed two-phase flow measurements. Exp. Fluids 55:1705 [Google Scholar]
  2. Aidun CK, Clausen JR. 2010. Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42:439–72 [Google Scholar]
  3. Andersson HI, Zhao L, Barri M. 2012. Torque-coupling and particle–turbulence interactions. J. Fluid Mech. 696:319–29 [Google Scholar]
  4. Arribas M, Elipe A, Palacios M. 2006. Quaternions and the rotation of a rigid body. Celest. Mech. Dyn. Astron. 96:239–51 [Google Scholar]
  5. Balachandar S, Eaton JK. 2010. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42:111–33 [Google Scholar]
  6. Beckett F, Witham C, Hort M, Stevenson J, Bonadonna C, Millington S. 2015. Sensitivity of dispersion model forecasts of volcanic ash clouds to the physical characteristics of the particles. J. Geophys. Res. Atmos. 120:11636–52 [Google Scholar]
  7. Bellani G, Byron ML, Collignon AG, Meyer CR, Variano EA. 2012. Shape effects on turbulent modulation by large nearly neutrally buoyant particles. J. Fluid Mech. 712:41–60 [Google Scholar]
  8. Bellani G, Nole MA, Variano EA. 2013. Turbulence modulation by large ellipsoidal particles: concentration effects. Acta Mech. 224:2291–99 [Google Scholar]
  9. Bernstein O, Shapiro M. 1994. Direct determination of the orientation distribution function of cylindrical particles immersed in laminar and turbulent shear flows. J. Aerosol. Sci. 25:113–36 [Google Scholar]
  10. Bianco F, Chibbaro S, Marchioli C, Salvetti MV, Soldati A. 2012. Intrinsic filtering errors of Lagrangian particle tracking in LES flow fields. Phys. Fluids 24:045103 [Google Scholar]
  11. Bird RB, Stewart WE, Lightfoot EN. 1960. Transport Phenomena New York: Wiley [Google Scholar]
  12. Brenner H. 1963. The Stokes resistance of an arbitrary particle. Chem. Eng. Sci. 18:1–25 [Google Scholar]
  13. Brenner H. 1964a. The Stokes resistance of an arbitrary particle—II. An extension. Chem. Eng. Sci. 19:599–629 [Google Scholar]
  14. Brenner H. 1964b. The Stokes resistance of an arbitrary particle—III. Shear fields. Chem. Eng. Sci. 19:631–51 [Google Scholar]
  15. Brenner H. 1964c. The Stokes resistance of an arbitrary particle—IV. Arbitrary fields of flow. Chem. Eng. Sci. 19:703–27 [Google Scholar]
  16. Bretherton FP. 1962. The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14:284–304 [Google Scholar]
  17. Brown RD, Warhaft Z, Voth GA. 2009. Acceleration statistics of neutrally buoyant spherical particles in intense turbulence. Phys. Rev. Lett. 103:194501 [Google Scholar]
  18. Byron M, Einarsson J, Gustavsson K, Voth G, Mehlig B, Variano E. 2015. Shape-dependence of particle rotation in isotropic turbulence. Phys. Fluids 27:035101 [Google Scholar]
  19. Calzavarini E, Volk R, Bourgoin M, Leveque E, Pinton JF, Toschi F. 2009. Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces. J. Fluid Mech. 630:179–89 [Google Scholar]
  20. Capone A, Romano GP. 2015. Interactions between fluid and fibers in a turbulent backward-facing step flow. Phys. Fluids 27:053303 [Google Scholar]
  21. Capone A, Romano GP, Soldati A. 2015. Experimental investigation on interactions among fluid and rod-like particles in a turbulent pipe jet by means of particle image velocimetry. Exp. Fluids 56:1 [Google Scholar]
  22. Caporaloni M, Tampieri F, Trombetti F, Vittori O. 1975. Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci. 32:565–68 [Google Scholar]
  23. Carlsson A, Håkansson K, Kvick M, Lundell F, Söderberg LD. 2011. Evaluation of steerable filter for detection of fibers in flowing suspensions. Exp. Fluids 51:987–96 [Google Scholar]
  24. Carlsson A, Soderberg L, Lundell F. 2010. Fibre orientation measurements near a headbox wall. Nord. Pulp Pap. Res. J. 25:204–12 [Google Scholar]
  25. Challabotla NR, Zhao L, Andersson HI. 2015a. Orientation and rotation of inertial disk particles in wall turbulence. J. Fluid Mech. 766:R2 [Google Scholar]
  26. Challabotla NR, Zhao L, Andersson HI. 2015b. Shape effects on dynamics of inertia-free spheroids in wall turbulence. Phys. Fluids 27:061703 [Google Scholar]
  27. Chen J, Jin G, Zhang J. 2016. Large eddy simulation of orientation and rotation of ellipsoidal particles in isotropic turbulent flows. J. Turbul. 17:308–26 [Google Scholar]
  28. Chevillard L, Meneveau C. 2013. Orientation dynamics of small, triaxial-ellipsoidal particles in isotropic turbulence. J. Fluid Mech. 737:571–96 [Google Scholar]
  29. Crowe CT, Troutt R, Chung N. 1996. Two-phase turbulent flows. Annu. Rev. Fluid Mech. 28:11–43 [Google Scholar]
  30. Dearing SS, Campolo M, Capone A, Soldati A. 2013. Phase discrimination and object fitting to measure fibers distribution and orientation in turbulent pipe flows. Exp. Fluids 54:1419 [Google Scholar]
  31. Den Toonder J, Hulsen M, Kuiken G, Nieuwstadt F. 1997. Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments. J. Fluid Mech. 337:193–231 [Google Scholar]
  32. Ding EJ, Aidun CK. 2000. The dynamics and scaling law for particles suspended in shear flow with inertia. J. Fluid Mech. 423:317–44 [Google Scholar]
  33. Do-Quang M, Amberg G, Brethouwer G, Johansson AV. 2014. Simulation of finite-size fibers in turbulent channel flows. Phys. Rev. E 89:013006 [Google Scholar]
  34. Dritselis CD, Vlachos NS. 2008. Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow. Phys. Fluids 20:055103 [Google Scholar]
  35. Einarsson J. 2015. Angular dynamics of small particles in fluids PhD Thesis Univ. Gothenburg [Google Scholar]
  36. Einarsson J, Candelier F, Lundell F, Angilella JR, Mehlig B. 2015. Rotation of a spheroid in a simple shear at small Reynolds number. Phys. Fluids 27:063301 [Google Scholar]
  37. El Khoury GK, Andersson HI, Pettersen B. 2010. Crossflow past a prolate spheroid at Reynolds number of 10,000. J. Fluid Mech. 659:365–74 [Google Scholar]
  38. Elghobashi S, Prosperetti A. 2009. Point-particle model for disperse turbulent flows. Int. J. Multiphase Flow 35:791–878 [Google Scholar]
  39. Erni P, Cramer C, Marti I, Windhab EJ, Fischer P. 2009. Continuous flow structuring of anisotropic biopolymer particles. Adv. Colloid Interface Sci. 150:16–26 [Google Scholar]
  40. Ganser GH. 1993. A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol. 77:143–52 [Google Scholar]
  41. Gatignol R. 1983. The Faxen formulas for a rigid particle in an unsteady non-uniform Stokes flow. J. Mech. Theor. Appl. 2:143–60 [Google Scholar]
  42. Gerashchenko S, Sharp NS, Neuscamman S, Warhaft Z. 2008. Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer. J. Fluid Mech. 617:255–81 [Google Scholar]
  43. Geurts BJ, Kuerten JGM. 2012. Ideal stochastic forcing for the motion of particles in large-eddy simulation extracted from direct numerical simulation of turbulent channel flow. Phys. Fluids 24:081702 [Google Scholar]
  44. Gillissen JJJ, Boersma BJ, Mortensen PH, Andersson HI. 2007a. On the performance of the moment approximation for the numerical computation of fiber stress in turbulent channel flow. Phys. Fluids 19:035102 [Google Scholar]
  45. Gillissen JJJ, Boersma BJ, Mortensen PH, Andersson HI. 2007b. The stress generated by non-Brownian fibers in turbulent channel flow simulations. Phys. Fluids 19:115107 [Google Scholar]
  46. Gillissen JJJ, Boersma BJ, Mortensen PH, Andersson HI. 2008. Fibre-induced drag reduction. J. Fluid Mech. 602:209–18 [Google Scholar]
  47. Guazzelli É, Hinch J. 2011. Fluctuations and instability in sedimentation. Annu. Rev. Fluid Mech. 43:97–116 [Google Scholar]
  48. Guazzelli É, Morris JF. 2012. A Physical Introduction to Suspension Dynamics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  49. Gustavsson K, Einarsson J, Mehlig B. 2014. Tumbling of small axisymmetric particles in random and turbulent flows. Phys. Rev. Lett. 112:014501 [Google Scholar]
  50. Haider A, Levenspiel O. 1989. Drag coefficients and terminal velocity of spherical and nonspherical particles. Powder Technol. 58:63–70 [Google Scholar]
  51. Håkansson KMO, Fall AB, Lundell F, Yu S, Krywka C. et al. 2014. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5:4018 [Google Scholar]
  52. Håkansson KMO, Kvick M, Lundell F, Prahl Wittberg L, Söderberg LD. 2013. Measurement of width and intensity of particle streaks in turbulent flows. Exp. Fluids 54:1555 [Google Scholar]
  53. Harris JB, Pittman JFT. 1975. Equivalent ellipsoidal axis ratios of slender rod-like particles. J. Colloid Interface Sci. 50:280–82 [Google Scholar]
  54. Heymsfield AJ. 1977. Precipitation development in stratiform ice clouds: a microphysical and dynamical study. J. Atmos. Sci. 34:367–81 [Google Scholar]
  55. Hinch EJ, Leal LG. 1972. The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J. Fluid Mech. 52:683–712 [Google Scholar]
  56. Hinch EJ, Leal LG. 1975. Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension. J. Fluid Mech. 76:187–208 [Google Scholar]
  57. Holm R, Soderberg D. 2007. Shear influence on fibre orientation: dilute suspension in the near wall region. Rheol. Acta 46:721–29 [Google Scholar]
  58. Hölzer A, Sommerfeld M. 2008. New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technol. 184:361–65 [Google Scholar]
  59. Hoseini AA, Lundell F, Andersson HI. 2015. Finite-length effects on dynamical behavior of rod-like particles in wall-bounded turbulent flow. Int. J. Multiphase Flow 76:13–21 [Google Scholar]
  60. Hussain AKMF. 1983. Coherent structures—reality and myth. Phys. Fluids 26:2816–50 [Google Scholar]
  61. Jeffery GB. 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102:161–79 [Google Scholar]
  62. Jiang F, Gallardo JP, Andersson HI. 2014. The laminar wake behind a 6:1 prolate spheroid at 45° incidence angle. Phys. Fluids 26:113602 [Google Scholar]
  63. Jiang F, Gallardo JP, Andersson HI, Zhang Z. 2015. The transitional wake behind an inclined prolate spheroid. Phys. Fluids 27:093602 [Google Scholar]
  64. Khayat RE, Cox RG. 1989. Inertia effects on the motion of long slender bodies. J. Fluid Mech. 209:435–62 [Google Scholar]
  65. Kim S, Karrila SJ. 1991. Microhydrodynamics: Principles and Selected Applications Boston: Butterworth-Heinemann [Google Scholar]
  66. Koch DL, Shaqfeh ESG. 1989. The instability of a dispersion of sedimenting spheroids. J. Fluid Mech. 209:521–42 [Google Scholar]
  67. Kramel S, Tympel S, Toschi F, Voth GA. 2016. Preferential rotation of chiral dipoles in isotropic turbulence. arXiv:1602.07413v1 [physics.flu-dyn]
  68. Krochak PJ, Olson JA, Martinez DM. 2009. Fiber suspension flow in a tapered channel: the effect of flow/fiber coupling. Int. J. Multiphase Flow 35:676–88 [Google Scholar]
  69. Krochak PJ, Olson JA, Martinez DM. 2010. Near-wall estimates of the concentration and orientation distribution of a semi-dilute rigid fibre suspension in Poiseuille flow. J. Fluid Mech. 653:431–62 [Google Scholar]
  70. Krushkal EM, Gallily I. 1988. On the orientation distribution function of non-spherical aerosol particles in a general shear flow—II. The turbulent case. J. Aerosol. Sci. 19:197–211 [Google Scholar]
  71. Kvick M. 2014. Transitional and turbulent fibre suspension flows PhD Thesis R. Inst. Technol. KTH, Stockholm: [Google Scholar]
  72. Lapple CE, Shepherd CB. 1940. Calculation of particle trajectories. Ind. Eng. Chem. Res. 32:605–17 [Google Scholar]
  73. Lauga E. 2016. Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48:105–30 [Google Scholar]
  74. Lecrivain G, Rayan R, Hurtado A, Hampel U. 2016. Using quasi-DNS to investigate the deposition of elongated aerosol particles in a wavy channel flow. Comput. Fluids 124:78–85 [Google Scholar]
  75. Leith D. 1987. Drag on nonspherical objects. Aerosol Sci. Technol. 6:153–61 [Google Scholar]
  76. Liu D, Keaveny EE, Maxey MR, Karniadakis GE. 2009. Force-coupling method for flows with ellipsoidal particles. J. Comput. Phys. 228:3559–81 [Google Scholar]
  77. Loth E. 2008. Drag of non-spherical solid particles of regular and irregular shape. Powder Technol. 182:342–53 [Google Scholar]
  78. Lucci F, Ferrante A, Elghobashi S. 2010. Modulation of isotropic turbulence by particles of Taylor length-scale size. J. Fluid Mech. 650:5–55 [Google Scholar]
  79. Lumley J, Blossey P. 1998. Control of turbulence. Annu. Rev. Fluid Mech. 30:311–27 [Google Scholar]
  80. Lundell F, Söderberg LD, Alfredsson PH. 2011. Fluid mechanics of papermaking. Annu. Rev. Fluid Mech. 43:195–217 [Google Scholar]
  81. Mallier R, Maxey M. 1991. The settling of nonspherical particles in a cellular flow field. Phys. Fluids A 3:1481–94 [Google Scholar]
  82. Mandø M, Rosendahl L. 2010. On the motion of non-spherical particles at high Reynolds number. Powder Technol. 202:1–13 [Google Scholar]
  83. Marchioli C, Fantoni M, Soldati A. 2010. Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 22:033301 [Google Scholar]
  84. Marchioli C, Soldati A. 2013. Rotation statistics of fibers in wall shear turbulence. Acta Mech. 224:2311–29 [Google Scholar]
  85. Marchioli C, Zhao L, Andersson HI. 2016. On the relative rotational motion between rigid fibers and fluid in turbulent channel flow. Phys. Fluids 28:013301 [Google Scholar]
  86. Marcus GG, Parsa S, Kramel S, Ni R, Voth GA. 2014. Measurements of the solid-body rotation of anisotropic particles in 3D turbulence. New J. Phys. 16:102001 [Google Scholar]
  87. Maxey MR. 1983. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26:883–88 [Google Scholar]
  88. Meller Y, Liberzon A. 2015. Particle-fluid interaction forces as the source of acceleration PDF invariance in particle size. Int. J. Multiphase Flow 76:22–31 [Google Scholar]
  89. Meneveau C. 2011. Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 43:219–45 [Google Scholar]
  90. Mittal R, Iaccarino G. 2005. Immersed boundary methods. Annu. Rev. Fluid Mech. 37:239–61 [Google Scholar]
  91. Moffett RC, Prather KA. 2009. In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. PNAS 106:11872–77 [Google Scholar]
  92. Moin P, Mahesh K. 1998. Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30:539–78 [Google Scholar]
  93. Moosaie A. 2013. Effect of rotary inertia on the orientational behavior of dilute Brownian and non-Brownian fiber suspensions. J. Dispers. Sci. Technol. 34:70–79 [Google Scholar]
  94. Moosaie A, Manhart M. 2011. An algebraic closure for the DNS of fiber-induced turbulent drag reduction in a channel flow. J. Non-Newton. Fluid Mech. 166:1190–97 [Google Scholar]
  95. Moosaie A, Manhart M. 2015. On the structure of vorticity and near-wall partial enstrophy in fibrous drag-reduced turbulent channel flow. J. Non-Newton. Fluid Mech. 223:249–56 [Google Scholar]
  96. Mortensen PH, Andersson HI, Gillissen JJJ, Boersma BJ. 2008a. Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20:093302 [Google Scholar]
  97. Mortensen PH, Andersson HI, Gillissen JJJ, Boersma BJ. 2008b. On the orientation of ellipsoidal particles in a turbulent shear flow. Int. J. Multiphase Flow 34:678–83 [Google Scholar]
  98. Ni R, Kramel S, Ouellette NT, Voth GA. 2015. Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence. J. Fluid Mech. 766:202–25 [Google Scholar]
  99. Ni R, Ouellette NT, Voth GA. 2014. Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence. J. Fluid Mech. 743:R3 [Google Scholar]
  100. Njobuenwu DO, Fairweather M. 2015. Dynamics of single, non-spherical ellipsoidal particles in a turbulent channel flow. Chem. Eng. Sci. 123:265–82 [Google Scholar]
  101. Noel V, Sassen K. 2005. Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations. J. Appl. Meteorol. 44:653–64 [Google Scholar]
  102. Olson JA, Kerekes RJ. 1998. The motion of fibres in turbulent flow. J. Fluid Mech. 377:47–64 [Google Scholar]
  103. Ouchene R, Khalij M, Tanière A, Arcen B. 2015. Drag, lift and torque coefficients for ellipsoidal particles: from low to moderate particle Reynolds numbers. Comput. Fluids 113:53–64 [Google Scholar]
  104. Pan TW, Glowinski R, Galdi GP. 2002. Direct simulation of the motion of a settling ellipsoid in Newtonian fluid. J. Comput. Appl. Math. 149:71–82 [Google Scholar]
  105. Pan Y, Banerjee S. 1996. Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8:2733–55 [Google Scholar]
  106. Parsa S, Calzavarini E, Toschi F, Voth GA. 2012. Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109:134501 [Google Scholar]
  107. Parsa S, Voth GA. 2014. Inertial range scaling in rotations of long rods in turbulence. Phys. Rev. Lett. 112:024501 [Google Scholar]
  108. Parsheh M, Brown ML, Aidun CK. 2005. On the orientation of stiff fibres suspended in turbulent flow in a planar contraction. J. Fluid Mech. 545:245–69 [Google Scholar]
  109. Parsheh M, Brown ML, Aidun CK. 2006. Variation of fiber orientation in turbulent flow inside a planar contraction with different shapes. Int. J. Multiphase Flow 32:1354–69 [Google Scholar]
  110. Paschkewitz JS, Dimitropoulos CD, Hou YX, Somandepalli VSR, Mungal MG. et al. 2005a. An experimental and numerical investigation of drag reduction in a turbulent boundary layer using a rigid rodlike polymer. Phys. Fluids 17:085101 [Google Scholar]
  111. Paschkewitz JS, Dubief Y, Dimitropoulos CD, Shaqfeh ESG, Moin P. 2004. Numerical simulation of turbulent drag reduction using rigid fibres. J. Fluid Mech. 518:281–317 [Google Scholar]
  112. Paschkewitz JS, Dubief Y, Shaqfeh ESG. 2005b. The dynamic mechanism for turbulent drag reduction using rigid fibers based on Lagrangian conditional statistics. Phys. Fluids 17:063102 [Google Scholar]
  113. Pedley TJ, Kessler JO. 1992. Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24:313–58 [Google Scholar]
  114. Procaccia I, L'vov VS, Benzi R. 2008. Colloquium: theory of drag reduction by polymers in wall-bounded turbulence. Rev. Mod. Phys. 80:225 [Google Scholar]
  115. Pruppacher HR, Klett JD. 2010. Microphysics of Clouds and Precipitation Dordrecht: Kluwer Acad., 2nd ed.. [Google Scholar]
  116. Pumir A, Wilkinson M. 2011. Orientation statistics of small particles in turbulence. New J. Phys. 13:093030 [Google Scholar]
  117. Raman V, Fox RO. 2016. Modeling of fine-particle formation in turbulent flames. Annu. Rev. Fluid Mech. 48:159–90 [Google Scholar]
  118. Rogallo RS, Moin P. 1984. Numerical simulation of turbulent flows. Annu. Rev. Fluid Mech. 16:99–137 [Google Scholar]
  119. Rosén T, Einarsson J, Nordmark A, Aidun CK, Lundell F, Mehlig B. 2015. Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small Reynolds numbers. Phys. Rev. E 92:063022 [Google Scholar]
  120. Rosendahl L. 2000. Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow. Appl. Math. Model. 24:11–25 [Google Scholar]
  121. Sabban L, van Hout R. 2011. Measurements of pollen grain dispersal in still air and stationary, near homogeneous, isotropic turbulence. J. Aerosol Sci. 42:867–82 [Google Scholar]
  122. Shapiro M, Goldenberg M. 1993. Deposition of glass fiber particles from turbulent air flow in a pipe. J. Aerosol Sci. 24:65–87 [Google Scholar]
  123. Shin H, Maxey MR. 1997. Chaotic motion of nonspherical particles settling in a cellular flow field. Phys. Rev. E 56:5431–44 [Google Scholar]
  124. Shin M, Koch DL. 2005. Rotational and translational dispersion of fibres in isotropic turbulent flows. J. Fluid Mech. 540:143–74 [Google Scholar]
  125. Siewert C, Kunnen RPJ, Meinke M, Schröder W. 2014a. Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmos. Res. 142:45–56 [Google Scholar]
  126. Siewert C, Kunnen RPJ, Schröder W. 2014b. Collision rates of small ellipsoids settling in turbulence. J. Fluid Mech. 758:686–701 [Google Scholar]
  127. Soldati A, Andersson HI. 2013. Anisotropic particles in turbulence: status and outlook. Acta Mech. 224:2219–23 [Google Scholar]
  128. Soldati A, Marchioli C. 2009. Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study. Int. J. Multiphase Flow 35:827–39 [Google Scholar]
  129. Squires KD, Eaton JK. 1990. Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A 2:1191–203 [Google Scholar]
  130. Subramanian G, Koch DL. 2005. Inertial effects on fibre motion in simple shear flow. J. Fluid Mech. 535:383–414 [Google Scholar]
  131. Suen JKC, Joo YL, Armstrong RC. 2002. Molecular orientation effects in viscoelasticity. Annu. Rev. Fluid Mech. 34:417–44 [Google Scholar]
  132. Szeri AJ. 1993. Pattern formation in recirculating flows of suspensions of orientable particles. Philos. Trans. Phys. Sci. Eng. 345:477–506 [Google Scholar]
  133. Szeri AJ, Leal LG. 1992. A new computational method for the solution of flow problems of microstructured fluids. Part 1: theory. J. Fluid Mech. 242:549–76 [Google Scholar]
  134. Szeri AJ, Leal LG. 1993. Microstructure suspended in three-dimensional flows. J. Fluid Mech. 250:143–67 [Google Scholar]
  135. Szeri AJ, Leal LG. 1994. A new computational method for the solution of flow problems of microstructured fluids. Part 2: inhomogeneous shear flow of a suspension. J. Fluid Mech. 262:171–204 [Google Scholar]
  136. Tenneti S, Subramaniam S. 2014. Particle-resolved direct numerical simulation for gas-solid flow model development. Annu. Rev. Fluid Mech. 46:199–230 [Google Scholar]
  137. Toschi F, Bodenschatz E. 2009. Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41:375–404 [Google Scholar]
  138. Uhlmann M. 2008. Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20:53305 [Google Scholar]
  139. van Hout R, Sabban L, Cohen A. 2013. The use of high-speed PIV and holographic cinematography in the study of fiber suspension flows. Acta Mech. 224:2263–80 [Google Scholar]
  140. Voth GA. 2015. Disks aligned in a turbulent channel. J. Fluid Mech. 772:1–4 [Google Scholar]
  141. Wilkinson M, Bezuglyy V, Mehlig B. 2010. Emergent order in rheoscopic swirls. J. Fluid Mech. 667:158–87 [Google Scholar]
  142. Yin C, Rosendahl L, Knudsen SK, Henrik S. 2003. Modelling the motion of cylindrical particles in a nonuniform flow. Chem. Eng. Sci. 58:3489–98 [Google Scholar]
  143. Zastawny M, Mallouppas G, Zhao F, van Wachem B. 2012. Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Int. J. Multiphase Flow 39:227–39 [Google Scholar]
  144. Zhang H, Ahmadi G, Fan FG, McLaughlin JB. 2001. Ellipsoidal particle transport and deposition in turbulent channel flows. Int. J. Multiphase Flow 27:971–1009 [Google Scholar]
  145. Zhao F, George WK, van Wachem BGM. 2015. Four-way coupled simulations of small particles in turbulent channel flow: the effects of particle shape and Stokes number. Phys. Fluids 27:083301 [Google Scholar]
  146. Zhao F, van Wachem B. 2013. Direct numerical simulation of ellipsoidal particles in turbulent channel flow. Acta Mech. 224:2331–58 [Google Scholar]
  147. Zhao L, Andersson HI, Gillissen J. 2010. Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 22:081702 [Google Scholar]
  148. Zhao L, Challabotla NR, Andersson HI, Variano EA. 2015. Rotation of nonspherical particles in turbulent channel flow. Phys. Rev. Lett. 115:244501 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010816-060135
Loading
/content/journals/10.1146/annurev-fluid-010816-060135
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error