1932

Abstract

Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010816-060231
2017-01-03
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/fluid/49/1/annurev-fluid-010816-060231.html?itemId=/content/journals/10.1146/annurev-fluid-010816-060231&mimeType=html&fmt=ahah

Literature Cited

  1. Abma D, Heus T, Mellado JP. 2013. Direct numerical simulation of evaporative cooling at the lateral boundary of shallow cumulus clouds. J. Atmos. Sci. 70:2088–102 [Google Scholar]
  2. Ackerman AS, Kirkpatrick MP, Stevens DE, Toon OB. 2004. The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature 432:1014–17 [Google Scholar]
  3. Ackerman AS, van Zanten MC, Stevens B, Savic-Jovcic V, Bretherton CS. et al. 2009. Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Weather Rev. 137:1083–110 [Google Scholar]
  4. Albrecht BA, Penc RS, Schubert WH. 1985. An observational study of cloud-topped mixed layers. J. Atmos. Sci. 42:800–22 [Google Scholar]
  5. Andrejczuk M, Grabowski WW, Malinowski SP, Smolarkiewicz PK. 2004. Numerical simulation of cloud-clear air interfacial mixing. J. Atmos. Sci. 61:1726–39 [Google Scholar]
  6. Andrejczuk M, Grabowski WW, Malinowski SP, Smolarkiewicz PK. 2009. Numerical simulation of cloud-clear air interfacial mixing: homogeneous versus inhomogeneous mixing. J. Atmos. Sci. 66:2493–500 [Google Scholar]
  7. Antonia RA. 1981. Conditional sampling in turbulence measurements. Annu. Rev. Fluid Mech. 13:131–56 [Google Scholar]
  8. Beals MJ, Fugal JP, Shaw RA, Lu J, Spuler SM, Stith JL. 2015. Holographic measurements of inhomogeneous cloud mixing at the centimeter scale. Science 350:87–90 [Google Scholar]
  9. Bohren CF, Clothiaux EE. 2006. Fundamentals of Atmospheric Radiation New York: Wiley [Google Scholar]
  10. Bony S, Duffresne JL. 2005. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32:L20806 [Google Scholar]
  11. Breidenthal RE. 1992. Entrainment at thin stratified interfaces: the effects of Schmidt, Richardson and Reynolds numbers. Phys. Fluids A 4:2141–44 [Google Scholar]
  12. Bretherton CS. 1987. A theory for nonprecipitating moist convection between two parallel plates. Part I: thermodynamics and linear solutions. J. Atmos. Sci. 44:1809–27 [Google Scholar]
  13. Bretherton CS, Blossey PN, Uchida J. 2007. Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett. 34:L03813 [Google Scholar]
  14. Bretherton CS, MacVean MK, Bechtold P, Chlond A, Cotton WR. et al. 1999. An intercomparison of radiatively driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models. Q. J. R. Meteorol. Soc. 125:391–423 [Google Scholar]
  15. Bretherton CS, Wyant MC. 1997. Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci. 54:148–67 [Google Scholar]
  16. Brost AK, Lenschow DH, Wyngaard JC. 1982. Marine stratocumulus layers. Part II: turbulence budgets. J. Atmos. Sci. 39:818–36 [Google Scholar]
  17. Brucker KA, Sarkar S. 2007. Evolution of an initially turbulent stratified shear layer. Phys. Fluids 19:105105 [Google Scholar]
  18. Caldwell PM, Zhang Y, Klein SA. 2013. CMIP3 subtropical stratocumulus cloud feedback interpreted through a mixed-layer model. J. Climate 26:1607–25 [Google Scholar]
  19. Carpenter JR, Lawrence GA, Smyth WD. 2007. Evolution and mixing of asymmetric holmboe instabilities. J. Fluid Mech. 582:103–32 [Google Scholar]
  20. Caughey SJ, Crease BA, Roach WT. 1982. A field study of nocturnal stratocumulus: II. Turbulence structure and entrainment. Q. J. R. Meteorol. Soc. 108:125–44 [Google Scholar]
  21. Chillà F, Schumacher J. 2012. New perspectives in turbulent Rayleigh-Bénard convection. Eur. Phys. J. E 35:58 [Google Scholar]
  22. Conzemius R, Fedorovich E. 2007. Bulk models in the sheared convective boundary layer: evaluation through large eddy simulations. J. Atmos. Sci. 64:786–807 [Google Scholar]
  23. Corrsin S, Kistler A. 1955. Free-stream boundaries of turbulent flows Tech. Rep. 1244, Natl. Advis. Comm. Aeronaut., Washington, DC [Google Scholar]
  24. da Silva CB, Hunt JCR, Eames I, Westerweel J. 2014. Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46:567–90 [Google Scholar]
  25. Dal Gesso S, van der Dussen JJ, Siebesma AP, de Roode SR, Boutle IA. et al. 2015. A single-column model intercomparison on the stratocumulus representation in present-day and future climate. J. Adv. Model. Earth Syst. 7:617–47 [Google Scholar]
  26. de Lozar A, Mellado JP. 2013. Direct numerical simulations of a smoke cloud-top mixing layer as a model for stratocumuli. J. Atmos. Sci. 70:2356–75 [Google Scholar]
  27. de Lozar A, Mellado JP. 2014. Cloud droplets in a bulk formulation and its application for the buoyancy reversal instability. Q. J. R. Meteorol. Soc. 140:1493–504 [Google Scholar]
  28. de Lozar A, Mellado JP. 2015a. Evaporative-cooling amplification of the entrainment velocity in radiatively-driven stratocumulus. Geophys. Res. Lett. 42:7223–29 [Google Scholar]
  29. de Lozar A, Mellado JP. 2015b. Mixing driven by radiative and evaporative cooling at the stratocumulus top. J. Atmos. Sci. 72:4681–700 [Google Scholar]
  30. de Roode SR, Siebesma AP. Gesso S. Schalkwijk J, Sival J. , dal , Jonker HJJ, 2014. A mixed-layer model study of the stratocumulus response to changes in the large-scale conditions. J. Adv. Model. Earth Syst. 6:1256–70 [Google Scholar]
  31. de Roode SR, Wang Q. 2007. Do stratocumulus clouds detrain? FIRE I data revisited. Bound. Layer Meteorol. 122:479–91 [Google Scholar]
  32. Deardorff JW. 1970. Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci. 27:1211–13 [Google Scholar]
  33. Deardorff JW. 1980. Cloud top entrainment instability. J. Atmos. Sci. 37:131–47 [Google Scholar]
  34. Deardorff JW. 1981. On the distribution of mean radiative cooling at the top of a stratocumulus-capped mixed layer. Q. J. R. Meteorol. Soc. 107:191–202 [Google Scholar]
  35. Devenish BJ, Bartello P, Brenguier JL, Collins LR, Grabowski WW. et al. 2012. Droplet growth in warm turbulent clouds. Q. J. R. Meteorol. Soc. 138:1401–29 [Google Scholar]
  36. Dietze E, Mellado JP, Stevens B, Schmidt H. 2013. Study of low-order numerical effects in the two-dimensional cloud-top mixing layer. Theor. Comput. Fluid Dyn. 27:239–51 [Google Scholar]
  37. Dietze E, Schmidt H, Stevens B, Mellado JP. 2015. Controlling entrainment in the smoke cloud using level set-based front tracking. Meteorol. Z. 23:661–74 [Google Scholar]
  38. Dimotakis PE. 2005. Turbulent mixing. Annu. Rev. Fluid Mech. 37:329–56 [Google Scholar]
  39. Driedonks AGM, Duynkerke PG. 1989. Current problems in the statotocumulus-topped atmospheric boundary layer. Bound. Layer Meteorol. 46:275–303 [Google Scholar]
  40. Emanuel KA. 1994. Atmospheric Convection Oxford, UK: Oxford Univ. Press [Google Scholar]
  41. Faloona I, Lenschow DH, Campos T, Stevens B, van Zanten M. et al. 2005. Observations of entrainment in eastern Pacific marine stratocumulus using three conserved scalars. J. Atmos. Sci. 62:3268–84 [Google Scholar]
  42. Fedorovich E, Conzemius R. 2008. Effects of wind shear on the atmospheric convective boundary layer structure and evolution. Acta Geophys. 56:114–41 [Google Scholar]
  43. Fernando HJS. 1991. Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23:455–93 [Google Scholar]
  44. Fernando HJS, Hunt JCR. 1997. Turbulence, waves and mixing at shear-free density interfaces. Part 1. A theoretical model. J. Fluid Mech. 347:197–234 [Google Scholar]
  45. Garcia JR, Mellado JP. 2014. The two-layer structure of the entrainment zone in the convective boundary layer. J. Atmos. Sci. 71:1935–55 [Google Scholar]
  46. Gerber H, Frick G, Malinowski SP, Brenguier JL, Burnet F. 2005. Holes and entrainment in stratocumulus. J. Atmos. Sci. 62:443–59 [Google Scholar]
  47. Gerber H, Frick G, Malinowski SP, Jonsson H, Khelif D, Krueger SK. 2013. Entrainment rates and microphysics in POST stratocumulus. J. Geophys. Res. Atmos. 118:12094–109 [Google Scholar]
  48. Gerber H, Jensen JB, Davis AB, Marshak A, Wiscombe WJ. 2001. Spectral density of cloud liquid water content at high frequencies. J. Atmos. Sci. 58:497–503 [Google Scholar]
  49. Grabowski WW, Wang LP. 2013. Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech. 45:293–324 [Google Scholar]
  50. Haman KE. 2009. Simple approach to dynamics of entrainment interface layers and cloud holes in stratocumulus clouds. Q. J. R. Meteorol. Soc. 135:93–100 [Google Scholar]
  51. Haman KE, Malinowski SP, Kurowski MJ, Gerber H, Brenguier JL. 2007. Small-scale mixing processes at the top of a marine stratocumulus: a case study. Q. J. R. Meteorol. Soc. 133:213–26 [Google Scholar]
  52. Heus T, Jonker H. 2008. Subsiding shells around shallow cumulus clouds. J. Atmos. Sci. 65:1003–18 [Google Scholar]
  53. Hill A, Feingold G, Jiang H. 2009. The influence of entrainment and mixing assumption on aerosol-cloud interactions in marine stratocumulus. J. Atmos. Sci. 66:1450–64 [Google Scholar]
  54. Holzner M, Lüthi B. 2011. Laminar superlayer at the turbulence boundary. Phys. Rev. Lett. 106:134503 [Google Scholar]
  55. Ivey GN, Winters KB, Koseff JR. 2008. Density stratification, turbulence, but how much mixing?. Annu. Rev. Fluid Mech. 40:169–84 [Google Scholar]
  56. Plante I, Ma YF, Nurowska K, Gerber H, Khelif D. Jen-La et al. 2016. Physics of Stratocumulus Top (POST): turbulence characteristics. Atmos. Chem. Phys. Discuss. Manuscript under review [Google Scholar]
  57. Jones CR, Bretherton CS, Blossey PN. 2014. Fast stratocumulus time scale in mixed layer model and large eddy simulation. J. Adv. Model. Earth Syst. 6:206–22 [Google Scholar]
  58. Katzwinkel J, Siebert H, Heus T, Shaw R. 2014. Measurements of turbulent mixing and subsiding shells in trade wind cumuli. J. Atmos. Sci. 71:2810–22 [Google Scholar]
  59. Katzwinkel J, Siebert H, Shaw R. 2012. Observation of self-limiting, shear-induced turbulent inversion layer above marine stratocumulus. Bound. Layer Meteorol. 145:131–43 [Google Scholar]
  60. Khain A, Beheng KD, Heymsfield A, Korolev A, Krichak SO. et al. 2015. Representation of microphysical processes in cloud-resolving models: spectral (bin) microphysics versus bulk parameterization. Rev. Geophys. 53:247–322 [Google Scholar]
  61. Khain A, Ovtchinnikov M, Pinsky M, Pokrovsky A, Krugliak H. 2000. Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res. 55:159–224 [Google Scholar]
  62. Kovasznay LSG, Kibens V, Blackwelder RF. 1970. Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41:283–325 [Google Scholar]
  63. Krueger SK. 1993. Linear eddy modeling of entrainment and mixing in stratus clouds. J. Atmos. Sci. 50:3078–90 [Google Scholar]
  64. Kumar B, Schumacher J, Shaw R. 2013. Cloud microphysical effects of turbulent mixing and entrainment. Theor. Comput. Fluid Dyn. 27:361–76 [Google Scholar]
  65. Kuo H, Schubert WH. 1988. Stability of cloud-topped boundary layers. Q. J. R. Meteorol. Soc. 114:887–916 [Google Scholar]
  66. Kurowski MJ, Malinowski SP, Grabowski W. 2009. A numerical investigation of entrainment and transport within a stratocumulus-topped boundary layer. Q. J. R. Meteorol. Soc. 135:77–92 [Google Scholar]
  67. Larson VE, Kotenberg KE, Wood NB. 2007. An analytic longwave radiation formula for liquid layer clouds. Mon. Weather Rev. 135:689–99 [Google Scholar]
  68. Lehmann K, Siebert H, Wendish M, Shaw R. 2007. Evidence for inertial droplet clustering in weakly turbulent clouds. Tellus B 59:57–65 [Google Scholar]
  69. Lenschow DH, Zhou M, Zeng X, Chen L, Xu X. 2000. Measurements of fine-scale structure at the top of marine stratocumulus. Bound. Layer Meteorol. 97:331–57 [Google Scholar]
  70. Lilly DK. 1968. Models of cloud-topped mixed layers under strong inversion. Q. J. R. Meteorol. Soc. 94:292–309 [Google Scholar]
  71. Lilly DK. 2008. Validation of a mixed-layer closure. II: Observational tests. Q. J. R. Meteorol. Soc. 134:57–67 [Google Scholar]
  72. Lock AP. 2009. Factors influencing cloud area at the capping inversion for shallow cumulus clouds. Q. J. R. Meteorol. Soc. 135:941–52 [Google Scholar]
  73. Lock AP, MacVean MK. 1999a. The generation of turbulence and entrainment by buoyancy reversal. Q. J. R. Meteorol. Soc. 125:1017–38 [Google Scholar]
  74. Lock AP, MacVean MK. 1999b. The parametrization of entrainment driven by surface heating and cloud-top cooling. Q. J. R. Meteorol. Soc. 125:271–99 [Google Scholar]
  75. MacVean MK. 1993. A numerical investigation of the cloud-top entrainment instability. J. Atmos. Sci. 50:2481–95 [Google Scholar]
  76. Malinowski SP, Andrejczuk M, Grabowski WW, Korczyk P, Kowalewski T, Smolarkiewicz PK. 2008. Laboratory and modelling studies of cloud-clear air interfacial mixing: anisotropy of small-scale turbulence due to evaporative cooling. New J. Phys. 10:075020 [Google Scholar]
  77. Malinowski SP, Gerber H, Jen-La Plante I, Kopec MK, Kumala W. et al. 2013. Physics of Stratocumulus Top (POST): turbulent mixing across capping inversion. Atmos. Chem. Phys. 13:15234–69 [Google Scholar]
  78. Mazin I. 1999. The effect of condensation and evaporation on turbulence in clouds. Atmos. Res. 51:171–74 [Google Scholar]
  79. McGrath JL, Fernando HJS, Hunt JCR. 1997. Turbulence, waves and mixing at shear-free density interfaces. Part 2. Laboratory experiments. J. Fluid Mech. 347:235–61 [Google Scholar]
  80. Mellado JP. 2010. The evaporatively driven cloud-top mixing layer. J. Fluid Mech. 660:1–32 [Google Scholar]
  81. Mellado JP, Stevens B, Schmidt H. 2014. Wind shear and buoyancy reversal at the top of stratocumulus. J. Atmos. Sci. 71:1040–57 [Google Scholar]
  82. Mellado JP, Stevens B, Schmidt H, Peters N. 2009a. Buoyancy reversal in cloud-top mixing layers. Q. J. R. Meteorol. Soc. 135:963–78 [Google Scholar]
  83. Mellado JP, Stevens B, Schmidt H, Peters N. 2010. Two-fluid formulation of the cloud-top mixing layer for direct numerical simulation. Theor. Comput. Fluid Dyn. 24:511–36 [Google Scholar]
  84. Mellado JP, Wang L, Peters N. 2009b. Gradient trajectory analysis of a scalar field with external intermittency. J. Fluid Mech. 626:333–65 [Google Scholar]
  85. Moeng CH. 1998. Stratocumulus-topped atmospheric planetary boundary layer. Buoyant Convection in Geophysical Flows EJ Plate, EE Fedorovich, DX Viegas, JC Wyngaard 421–40 Dordrecht: Kluwer Acad. [Google Scholar]
  86. Moeng CH. 2000. Entrainment rate, cloud fraction, and liquid water path of PBL stratocumulus clouds. J. Atmos. Sci. 57:3627–43 [Google Scholar]
  87. Moeng CH, Lenschow DH, Randall DA. 1995. Numerical investigations of the roles of radiative and evaporative feedbacks in stratocumulus entrainment and breakup. J. Atmos. Sci. 52:2869–83 [Google Scholar]
  88. Moeng CH, Rotunno R. 1990. Vertical velocity skewness in the bouyancy-driven boundary layer. J. Atmos. Sci. 47:1149–62 [Google Scholar]
  89. Moeng CH, Stevens B, Sullivan PP. 2005. Where is the interface of the stratocumulus-topped PBL?. J. Atmos. Sci. 62:2626–31 [Google Scholar]
  90. Moeng CH, Sulllivan P, Stevens B. 1999. Including radiative effects in an entrainment rate formula for buoyancy-driven PBLs. J. Atmos. Sci. 56:1031–49 [Google Scholar]
  91. Nicholls S. 1989. The structure of radiatively driven convection in stratocumulus. Q. J. R. Meteorol. Soc. 115:487–511 [Google Scholar]
  92. Nicholls S, Leighton J. 1986. An observational study of the structure of stratiform cloud sheets. Part I. Structure Q. J. R. Meteorol. Soc. 112:431–60 [Google Scholar]
  93. Nicholls S, Turton JD. 1986. An observational study of the structure of stratiform cloud sheets. Part II. Entrainment Q. J. R. Meteorol. Soc. 112:461–80 [Google Scholar]
  94. Noda AT, Nakamura K, Iwasaki T, Satoh M. 2014. Responses of subtropical marine stratocumulus cloud to perturbed lower atmospheres. Sci. Online Lett. Atmos. 10:34–38 [Google Scholar]
  95. Noda AT, Satoh M. 2014. Intermodel variances of subtropical stratocumulus environments simulated in CMIP5 models. Geophys. Res. Lett. 41:7754–61 [Google Scholar]
  96. Peltier WR, Caulfield CP. 2003. Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech. 35:135–67 [Google Scholar]
  97. Petty GW. 2006. A First Course in Atmospheric Radiation Madison, WI: Sundog, 2nd ed.. [Google Scholar]
  98. Pope SB. 2000. Turbulent Flows Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  99. Randall DA. 1980. Conditional instability of the first kind upside-down. J. Atmos. Sci. 37:125–30 [Google Scholar]
  100. Randall DA, Coakley JA, Fairall CW, Kropfli RA, Lenschow DH. 1984. Outlook for research on subtropical marine stratiform clouds. Bull. Am. Meteorol. Soc. 65:1290–301 [Google Scholar]
  101. Rogers RR, Yau MK. 1989. A Short Course in Cloud Physics Oxford, UK: Butterworth-Heinemann, 3rd ed.. [Google Scholar]
  102. Sandu I, Stevens B. 2011. On the factor modulating the stratocumulus to cumulus transition. J. Atmos. Sci. 68:1865–81 [Google Scholar]
  103. Sayler BJ, Breidenthal RE. 1998. Laboratory simulations of radiatively induced entrainment in stratiform clouds. J. Geophys. Res. 103:8827–37 [Google Scholar]
  104. Shao Q, Randall DA, Moeng CH, Dickinson RE. 1997. A method to determine the amounts of cloud-top radiative and evaporative cooling in a stratocumulus-topped boundary layer. Q. J. R. Meteorol. Soc. 123:2187–213 [Google Scholar]
  105. Shaw RA. 2003. Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35:183–227 [Google Scholar]
  106. Sherman FS, Imberger J, Corcos GM. 1978. Turbulence and mixing in stably stratified waters. Annu. Rev. Fluid Mech. 10:267–88 [Google Scholar]
  107. Shy SS, Breidenthal RE. 1990. Laboratory experiments on the cloud-top entrainment instability. J. Fluid Mech. 214:1–15 [Google Scholar]
  108. Shy SS, Breidenthal RE. 1991. Turbulent stratified interfaces. Phys. Fluids A 3:1278–85 [Google Scholar]
  109. Siebert H, Gerashchenko S, Gylfason A, Lehmann K, Collins L. et al. 2010a. Towards understanding the role of turbulence on droplets in clouds: in situ and laboratory measurements. Atmos. Res. 97:426–37 [Google Scholar]
  110. Siebert H, Shaw RA, Warhaft Z. 2010b. Statistics of small-scale velocity fluctuations and internal intermittency in marine stratocumulus clouds. J. Atmos. Sci. 67:262–73 [Google Scholar]
  111. Siems ST, Bretherton CS. 1992. A numerical investigation of cloud-top entrainment instability and related experiments. Q. J. R. Meteorol. Soc. 118:787–818 [Google Scholar]
  112. Siems ST, Bretherton CS, Baker MB, Shy S, Breidenthal RE. 1990. Buoyancy reversal and cloud-top entrainment instability. Q. J. R. Meteorol. Soc. 116:705–39 [Google Scholar]
  113. Slingo A, Brown R, Wrench CL. 1982. A field study of nocturnal stratocumulus; III. High resolution radiative and microphysical observations. Q. J. R. Meteorol. Soc. 108:145–65 [Google Scholar]
  114. Smyth WD, Carpenter JR, Lawrence GA. 2007. Mixing in symmetric holmboe waves. J. Phys. Oceanogr. 37:1566–83 [Google Scholar]
  115. Smyth WD, Moum JN. 2000. Length scales of turbulence in stably stratified mixing layers. Phys. Fluids 12:1327–42 [Google Scholar]
  116. Sreenivasan KR, Ramshankar R, Meneveau C. 1989. Mixing, entrainment and fractal dimensions of surfaces in turbulent flows. Proc. R. Soc. Lond. A 421:79–108 [Google Scholar]
  117. Stevens B. 2002. Entrainment in stratocumulus-topped mixed layers. Q. J. R. Meteorol. Soc. 128:2663–90 [Google Scholar]
  118. Stevens B. 2005. Atmospheric moist convection. Annu. Rev. Earth Planet. Sci. 33:605–43 [Google Scholar]
  119. Stevens B. 2006. Bulk boundary-layer concepts for simplified models of tropical dynamics. Theor. Comput. Fluid Dyn. 20:279–304 [Google Scholar]
  120. Stevens B, Lenschow DH, Faloona I, Moeng CH, Lilly DK. et al. 2003. On entrainment rates in nocturnal marine stratocumulus. Q. J. R. Meteorol. Soc. 129:3469–93 [Google Scholar]
  121. Stevens B, Moeng CH, Ackerman AS, Bretherton CS, Chlond A. et al. 2005. Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Weather Rev. 133:1443–62 [Google Scholar]
  122. Stevens B, Moeng CH, Sullivan PP. 1999. Large-eddy simulation of radiatively driven convection: sensitivities to the representation of the small scales. J. Atmos. Sci. 56:3963–84 [Google Scholar]
  123. Stevens DE, Bell JB, Almgren AS, Beckner VE, Rendleman CA. 2000. Small-scale processes and entrainment in a stratocumulus marine boundary layer. J. Atmos. Sci. 57:567–81 [Google Scholar]
  124. Sullivan PP, Moeng CH, Stevens B, Lenschow DH, Mayor SD. 1998. Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci. 55:3042–64 [Google Scholar]
  125. Townsend AA. 1948. Local isotropy in the turbulent wake of a cylinder. Aust. J. Sci. Res. A 1:161–74 [Google Scholar]
  126. Townsend AA. 1976. The Structure of Turbulent Shear Flow Cambridge, UK: Cambridge Univ. Press, 2nd ed.. [Google Scholar]
  127. Tritton DJ. 1988. Physical Fluid Dynamics Oxford, UK: Oxford Sci. [Google Scholar]
  128. Tsinober A. 2009. An Informal Conceptual Introduction to Turbulence New York: Springer, 2nd ed.. [Google Scholar]
  129. Turner JS. 1973. Buoyancy Effects in Fluids Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  130. Turton JD, Nicholls S. 1987. A study of the diurnal variation of stratocumulus using a multiple mixed layer model. Q. J. R. Meteorol. Soc. 113:969–1009 [Google Scholar]
  131. Vaillancourt PA, Yau MK. 2000. Review of particle-turbulence interactions and consequences for cloud physics. Bull. Am. Meteorol. Soc. 81:285–99 [Google Scholar]
  132. van der Dussen JJ, de Roode SR, Siebesma AP. 2014. Factors controlling rapid stratocumulus cloud thinning. J. Atmos. Sci. 71:655–64 [Google Scholar]
  133. van Driel R, Jonker HJJ. 2010. Convective boundary layers driven by nonstationary surface heat fluxes. J. Atmos. Sci. 68:727–38 [Google Scholar]
  134. van Zanten MC, Duynkerke PG. 2002. Radiative and evaporative cooling in the entrainment zone of stratocumulus—the role of longwave radiative cooling above cloud top. Bound. Layer Meteorol. 102:253–80 [Google Scholar]
  135. Wang S, Golaz JC, Wang Q. 2008. Effect of intense shear across the inversion on stratocumulus. Geophys. Res. Lett. 35:L15814 [Google Scholar]
  136. Wang S, Wang Q, Feingold G. 2003. Turbulence, condensation, and liquid water transport in numerically simulated nonprecipitating stratocumulus clouds. J. Atmos. Sci. 60:262–78 [Google Scholar]
  137. Wang S, Zheng X, Jiang Q. 2012. Strongly sheared stratocumulus convection: an observationally based large-eddy simulation study. Atmos. Chem. Phys. 12:5223–35 [Google Scholar]
  138. Wang Y, Geerts B. 2010. Humidity variations across the edge of trade wind cumuli: observations and dynamical implications. Atmos. Res. 97:144–56 [Google Scholar]
  139. Winters KB, Lombard PN, Riley JJ, D'Asaro EA. 1995. Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289:115–28 [Google Scholar]
  140. Wood R. 2012. Stratocumulus clouds. Mon. Weather Rev. 140:2373–423 [Google Scholar]
  141. Wunsch S. 2003. Stochastic simulations of buoyancy reversal experiments. Phys. Fluids 15:1442–56 [Google Scholar]
  142. Xiao H, Wu CM, Mechoso CR. 2011. Buoyancy reversal, decoupling and the transition from stratocumulus to shallow cumulus topped marine boundary layers. Climate Dyn. 37:971–84 [Google Scholar]
  143. Yamaguchi T, Feingold G. 2013. On the size distribution of cloud holes in stratocumulus and their relationship to cloud-top entrainment. Geophys. Res. Lett. 40:2450–54 [Google Scholar]
  144. Yamaguchi T, Randall DA. 2008. Large-eddy simulation of evaporatively driven entrainment in cloud-topped mixed layers. J. Atmos. Sci. 65:1481–504 [Google Scholar]
  145. Yamaguchi T, Randall DA. 2012. Cooling of entrained parcels in a large-eddy simulation. J. Atmos. Sci. 69:1118–36 [Google Scholar]
  146. Yue Q, Kahn BH, Xiao H, Schreier MM, Fetzer E. et al. 2013. Transitions of cloud-topped marine boundary layers characterized by AIRS, MODIS, and a large eddy simulation model. J. Geophys. Res. 118:8598–611 [Google Scholar]
  147. Zhang M, Bretherton CS, Blossey PN, Austin PH, Bacmeister JT. et al. 2013. CGILS: results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models. J. Adv. Model. Earth Syst. 5:826–42 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010816-060231
Loading
/content/journals/10.1146/annurev-fluid-010816-060231
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error