1932

Abstract

Throughout history, capillary systems have aided the establishment of the fundamental laws of blood flow and its non-Newtonian properties. The advent of microfluidics technology in the 1990s propelled the development of highly integrated lab-on-a-chip platforms that allow highly accurate replication of vascular systems' dimensions, mechanical properties, and biological complexity. Applications include the detection of pathological changes to red blood cells, white blood cells, and platelets at unparalleled sensitivity and the efficacy assessment of drug treatment. Recent efforts have aimed at the development of microfluidics-based tests usable in a clinial environment or the replication of more complex diseases such as thrombosis. These microfluidic disease models enable the study of onset and progression of disease as well as the identification of key players and risk factors, which have led to a spectrum of clinically relevant findings.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010816-060246
2018-01-05
2024-04-30
Loading full text...

Full text loading...

/deliver/fulltext/fluid/50/1/annurev-fluid-010816-060246.html?itemId=/content/journals/10.1146/annurev-fluid-010816-060246&mimeType=html&fmt=ahah

Literature Cited

  1. Abkarian M, Lartigue C, Viallat A. 2002. Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Phys. Rev. Lett. 88:6068103 [Google Scholar]
  2. Abkarian M, Viallat A. 2005. Dynamics of vesicles in a wall-bounded shear flow. Biophys. J. 89:21055–66 [Google Scholar]
  3. Abkarian M, Viallat A. 2008. Vesicles and red blood cells in shear flow. Soft Matter 4:4653–55 [Google Scholar]
  4. Alapan Y, Kim C, Adhikari A, Gray KE, Gurkan-Cavusoglu E. et al. 2016a. Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease. Transl. Res. 173:74–91.e8 [Google Scholar]
  5. Alapan Y, Little JA, Gurkan UA. 2014. Heterogeneous red blood cell adhesion and deformability in sickle cell disease. Sci. Rep. 4:7173–78 [Google Scholar]
  6. Alapan Y, Matsuyama Y, Little JA, Gurkan UA. 2016b. Dynamic deformability of sickle red blood cells in microphysiological flow. Technology 4:271–79 [Google Scholar]
  7. Atherton A, Born GV. 1973. Relationship between the velocity of rolling granulocytes and that of the blood flow in venules. J. Physiol. 233:1157–65 [Google Scholar]
  8. Barber RW, Emerson DR. 2007. Optimal design of microfluidic networks using biologically inspired principles. Microfluid. Nanofluid. 4:3179–91 [Google Scholar]
  9. Bergmeier W, Piffath CL, Goerge T, Cifuni SM, Ruggeri ZM. et al. 2006. The role of platelet adhesion receptor GPIbα far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. PNAS 103:4516900–5 [Google Scholar]
  10. Bianchi E, Molteni R, Pardi R, Dubini G. 2013. Microfluidics for in vitro biomimetic shear stress-dependent leukocyte adhesion assays. J. Biomech. 46:2276–83 [Google Scholar]
  11. Birukov KG, Birukova AA, Dudek SM. 2002. Shear stress-mediated cytoskeletal remodeling and cortactin translocation in pulmonary endothelial cells. Am. J. Respir. Cell Mol. Biol. 26:4453–64 [Google Scholar]
  12. Bischel LL, Young EWK, Mader BR, Beebe DJ. 2013. Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials 34:51471–77 [Google Scholar]
  13. Bow H, Pivkin IV, Diez-Silva M, Goldfless SJ, Dao M. et al. 2011. A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 11:61065–19 [Google Scholar]
  14. Bureau L, Coupier G, Dubois F, Duperray A, Farutin A. et al. 2017. Blood flow and microgravity. C. R. Mec. 345:178–85 [Google Scholar]
  15. Callens N, Minetti C, Coupier G, Mader MA, Dubois F. et al. 2008. Hydrodynamic lift of vesicles under shear flow in microgravity. Europhys. Lett. 83:224002 [Google Scholar]
  16. Carroll J, Raththagala M, Subasinghe W, Baguzis S, D'Amico Oblak T. et al. 2006. An altered oxidant defense system in red blood cells affects their ability to release nitric oxide-stimulating ATP. Mol. BioSyst. 2:6–7305–11 [Google Scholar]
  17. Charoenphol P, Huang RB, Eniola-Adefeso O. 2010. Potential role of size and hemodynamics in the efficacy of vascular-targeted spherical drug carriers. Biomaterials 31:61392–402 [Google Scholar]
  18. Chau L, Doran M, Cooper-White J. 2009. A novel multishear microdevice for studying cell mechanics. Lab Chip 9:131897–902 [Google Scholar]
  19. Chen H, Angerer JI, Napoleone M, Reininger AJ, Schneider SW. et al. 2013. Hematocrit and flow rate regulate the adhesion of platelets to von Willebrand factor. Biomicrofluidics 7:6064113 [Google Scholar]
  20. Cheng S-Y, Heilman S, Wasserman M, Archer S, Shuler ML, Wu M. 2007. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7:6763–67 [Google Scholar]
  21. Chien S. 1987. Red cell deformability and its relevance to blood flow. Annu. Rev. Physiol. 49:177–92 [Google Scholar]
  22. Clark MR, Mohandas N, Shohet SB. 1983. Osmotic gradient ektacytometry: comprehensive characterization of red cell volume and surface maintenance. Blood 61:5899–910 [Google Scholar]
  23. Cokelet GR, Soave R, Pugh G, Rathbun L. 1993. Fabrication of in vitro microvascular blood flow systems by photolithography. Microvasc. Res. 46:3394–400 [Google Scholar]
  24. Conant CG, Schwartz MA, Beecher JE, Rudoff RC, Ionescu-Zanetti C, Nevill JT. 2011. Well plate microfluidic system for investigation of dynamic platelet behavior under variable shear loads. Biotechnol. Bioeng. 108:122978–87 [Google Scholar]
  25. Coupier G, Kaoui B, Podgorski T. 2008. Noninertial lateral migration of vesicles in bounded Poiseuille flow. Phys. Fluids 20:11111702 [Google Scholar]
  26. D'Apolito R, Taraballi F, Minardi S, Liu X, Caserta S. et al. 2016. Microfluidic interactions between red blood cells and drug carriers by image analysis techniques. Med. Eng. Phys. 38:117–23 [Google Scholar]
  27. Denis C, Methia N, Frenette PS, Rayburn H, Ullman-Culleré M. et al. 1998. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. PNAS 95:169524–29 [Google Scholar]
  28. Dintenfass L. 1967. Inversion of Fahraeus–Lindqvist phenomenon in blood flow through capillaries of diminishing diameter. Nature 215:1099–100 [Google Scholar]
  29. Dondorp AM, Angus BJ, Chotivanich K. 1999. Red blood cell deformability as a predictor of anemia in severe falciparum malaria. Am. J. Trop. Med. Hyg. 60:5733–37 [Google Scholar]
  30. Dondorp AM, Angus BJ, Hardeman MR. 1997. Prognostic significance of reduced red cell deformability in severe falciparum malaria. Am. J. Trop. Med. Hyg. 57:5507–11 [Google Scholar]
  31. Dondorp AM, Kager PA, Vreeken J, White NJ. 2000. Abnormal blood flow and red blood cell deformability in severe malaria. Parasitol. Today 16:6228–32 [Google Scholar]
  32. Dupire J, Socol M, Viallat A. 2012. Full dynamics of a red blood cell in shear flow. PNAS 109:20808–13 [Google Scholar]
  33. Epstein FH, Bunn HF. 1997. Pathogenesis and treatment of sickle cell disease. N. Engl. J. Med. 337:11762–69 [Google Scholar]
  34. Estrada R, Giridharan GA, Nguyen M-D, Roussel TJ, Shakeri M. et al. 2011. Endothelial cell culture model for replication of physiological profiles of pressure, flow, stretch, and shear stress in vitro. Anal. Chem. 83:83170–77 [Google Scholar]
  35. Fåhraeus R, Lindqvist T. 1931. The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96:562–68 [Google Scholar]
  36. Fay ME, Myers DR, Kumar A, Turbyfield CT, Byler R. et al. 2016. Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts. PNAS 113:81987–92 [Google Scholar]
  37. Felton EJ, Velasquez A, Lu S, Murphy RO, ElKhal A. et al. 2016. Detection and quantification of subtle changes in red blood cell density using a cell phone. Lab Chip 16:173286–95 [Google Scholar]
  38. Fiddes LK, Raz N, Srigunapalan S, Tumarkan E, Simmons CA. et al. 2010. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions. Biomaterials 31:133459–64 [Google Scholar]
  39. Forsyth AM, Wan J, Owrutsky PD. 2011. Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release. PNAS 108:2810986–91 [Google Scholar]
  40. Forsyth AM, Wan J, Ristenpart WD, Stone HA. 2010. The dynamic behavior of chemically “stiffened” red blood cells in microchannel flows. Microvasc. Res. 80:137–43 [Google Scholar]
  41. Geislinger TM, Chan S, Moll K, Wixforth A, Wahlgren M, Franke T. 2014. Label-free microfluidic enrichment of ring-stage Plasmodium falciparum-infected red blood cells using non-inertial hydrodynamic lift. Malar. J. 13:1375 [Google Scholar]
  42. Geislinger TM, Eggart B, Braunmüller S, Schmid L, Franke T. 2012. Separation of blood cells using hydrodynamic lift. Appl. Phys. Lett. 100:18183701 [Google Scholar]
  43. Gifford SC, Spillane AM, Vignes SM, Shevkoplyas SS. 2014. Controlled incremental filtration: a simplified approach to design and fabrication of high-throughput microfluidic devices for selective enrichment of particles. Lab Chip 14:234496–505 [Google Scholar]
  44. Giridharan GA, Nguyen MD, Estrada R. 2010. Microfluidic cardiac cell culture model (μCCCM). Anal. Chem. 82:187581–87 [Google Scholar]
  45. Goldsmith HL, Mason SG. 1961. Axial migration of particles in Poiseuille flow. Nature 190:4781159–60 [Google Scholar]
  46. Goldsmith HL, Spain S. 1984. Margination of leukocytes in blood flow through small tubes. Microvasc. Res. 27:2204–22 [Google Scholar]
  47. Grandchamp X, Coupier G, Srivastav A, Minetti C, Podgorski T. 2013. Lift and down-gradient shear-induced diffusion in red blood cell suspensions. Phys. Rev. Lett. 110:10108101 [Google Scholar]
  48. Guo Q, Duffy SP, Matthews K, Santoso AT, Scott MD, Ma H. 2014. Microfluidic analysis of red blood cell deformability. J. Biomech. 47:81767–76 [Google Scholar]
  49. Guo Q, Reiling SJ, Rohrbach P, Ma H. 2012. Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum. Lab Chip 12:61143–50 [Google Scholar]
  50. Gutierrez E, Petrich BG, Shattil SJ, Ginsberg MH, Groisman A, Kasirer-Friede A. 2008. Microfluidic devices for studies of shear-dependent platelet adhesion. Lab Chip 8:91486–95 [Google Scholar]
  51. Han S, Yan JJ, Shin Y, Jeon JJ, Won J, Jeong HE. 2012. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Lab Chip 12:203861–65 [Google Scholar]
  52. Handayani S, Chiu DT, Tjitra E, Kuo JS, Lampah D. et al. 2009. High deformability of Plasmodium vivax-infected red blood cells under microfluidic conditions. J. Infect. Dis. 199:3445–50 [Google Scholar]
  53. Hansen RR, Tipnis AA, White-Adams TC, Di Paola JA, Neeves KB. 2011. Characterization of collagen thin films for von Willebrand factor binding and platelet adhesion. Langmuir 27:2213648–58 [Google Scholar]
  54. Hansen RR, Wufsus AR, Barton ST, Onasoga AA, Johnson-Paben RM, Neeves KB. 2012. High content evaluation of shear dependent platelet function in a microfluidic flow assay. Ann. Biomed. Eng. 41:2250–62 [Google Scholar]
  55. Heal JM, Blumberg N. 2004. Optimizing platelet transfusion therapy. Blood Rev 18:3149–65 [Google Scholar]
  56. Higgins JM, Eddington DT, Bhatia SN, Mahadevan L. 2007. Sickle cell vasoocclusion and rescue in a microfluidic device. PNAS 104:5120496–500 [Google Scholar]
  57. Hou HW, Bhagat AAS, Chong AGL, Mao P, Tan KSW. 2010. Deformability based cell margination—a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10:192605–13 [Google Scholar]
  58. Huh D, Fujioka H, Tung Y-C, Futai N, Paine R III. et al. 2007. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. PNAS 104:4818886–91 [Google Scholar]
  59. Huh D, Matthews BD, Mammoto A. 2010. Reconstituting organ-level lung functions on a chip. Science 328:59861662–68 [Google Scholar]
  60. Int. Soc. Thromb. Haemost. Steer. Comm. World Thromb. Day. 2014. Thrombosis: a major contributor to the global disease burden. J. Thromb. Haemost. 12:101580–90 [Google Scholar]
  61. Irimia D, Liu S-Y, Tharp WG, Samadani A, Toner M, Poznansky MC. 2006. Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab Chip 6:2191–98 [Google Scholar]
  62. Jackson SP, Nesbitt WS, Westein E. 2009. Dynamics of platelet thrombus formation. J. Thromb. Haemost. 7:17–20 [Google Scholar]
  63. Jain A, Graveline A, Waterhouse A, Vernet A, Flaumenhaft R, Ingber DE. 2016. A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function. Nat. Commun. 7:10176 [Google Scholar]
  64. Kansas GS. 1996. Selectins and their ligands: current concepts and controversies. Blood 88:93259–87 [Google Scholar]
  65. Kantak AS, Gale BK, Lvov Y, Jones SA. 2003. Platelet function analyzer: shear activation of platelets in microchannels. Biomed. Microdevices 5:3207–15 [Google Scholar]
  66. Kantsler V, Segre E, Steinberg V. 2008. Dynamics of interacting vesicles and rheology of vesicle suspension in shear flow. Europhys. Lett. 82:558005 [Google Scholar]
  67. Kent NJ, Basabe-Desmonts L, Meade G, MacCraith BD, Corcoran BG. et al. 2010. Microfluidic device to study arterial shear-mediated platelet-surface interactions in whole blood: reduced sample volumes and well-characterised protein surfaces. Biomed. Microdevices 12:6987–1000 [Google Scholar]
  68. Kim M, Alapan Y, Adhikari A, Little JA, Gurkan UA. 2016. Hypoxia responsiveness in RBCs from patients with sickle cell disease associates with a more severe clinical phenotype. Blood 128:3643 [Google Scholar]
  69. Kong TF, Ye W, Peng WK, Hou HW, Marcos M. et al. 2015. Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection. Sci. Rep. 5:11425 [Google Scholar]
  70. Kurth F, Eyer K, Franco-Obregón A. 2012. A new mechanobiological era: microfluidic pathways to apply and sense forces at the cellular level. Curr. Opin. Chem. Biol. 16:3–4400–8 [Google Scholar]
  71. Kurth F, Franco-Obregón A, Casarosa M, Kuster SK, Wuertz-Kozak K, Dittrich PS. 2015. Transient receptor potential vanilloid 2-mediated shear-stress responses in C2C12 myoblasts are regulated by serum and extracellular matrix. FASEB J 29:114726–37 [Google Scholar]
  72. Kwan JM, Guo Q, Kyluik-Price DL, Ma H, Scott MD. 2013. Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells. Am. J. Hematol. 88:8682–89 [Google Scholar]
  73. Lam RHW, Weng S, Lu W, Fu J. 2012. Live-cell subcellular measurement of cell stiffness using a microengineered stretchable micropost array membrane. Integr. Biol. 4:101289–98 [Google Scholar]
  74. Lawrence MB, Springer TA. 1993. Neutrophils roll on E-selectin. J. Immunol. 151:116338–46 [Google Scholar]
  75. Lee JY, Lee SJ. 2009. Murray's law and the bifurcation angle in the arterial micro-circulation system and their application to the design of microfluidics. Microfluid. Nanofluid. 8:185–95 [Google Scholar]
  76. Li M, Hotaling NA, Ku DN, Forest CR. 2014. Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses. PLOS ONE 9:1e82493 [Google Scholar]
  77. Li M, Ku DN, Forest CR. 2012. Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood. Lab Chip 12:71355–62 [Google Scholar]
  78. Li X, Chen W, Li Z, Li L, Gu H, Fu J. 2014. Emerging microengineered tools for functional analysis and phenotyping of blood cells. Trends Biotechnol 32:11586–94 [Google Scholar]
  79. Li X, Du E, Lei H, Tang Y-H, Dao M. et al. 2015. Patient-specific blood rheology in sickle-cell anaemia. Interface Focus 6:120150065 [Google Scholar]
  80. Lim D, Kamotani Y, Cho B, Mazumder J, Takayama S. 2003. Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method. Lab Chip 3:4318–23 [Google Scholar]
  81. Linderkamp O, Meiselman HJ. 1982. Geometric, osmotic, and membrane mechanical properties of density-separated human red cells. Blood 59:61121–27 [Google Scholar]
  82. Little JA, Alapan Y, Gray KE, Gurkan UA. 2014. SCD-biochip: a functional assay for red cell adhesion in sickle cell disease. Blood 124:4053 [Google Scholar]
  83. Lorz B, Simson R, Nardi J, Sackmann E. 2000. Weakly adhering vesicles in shear flow: tanktreading and anomalous lift force. Europhys. Lett. 51:4468–74 [Google Scholar]
  84. Lu H, Koo LY, Wang WM, Lauffenburger DA, Griffith LG, Jensen KF. 2004. Microfluidic shear devices for quantitative analysis of cell adhesion. Anal. Chem. 76:185257–64 [Google Scholar]
  85. McCain ML, Agarwal A, Nesmith HW, Nesmith AP, Parker KK. 2014. Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials 35:215462–71 [Google Scholar]
  86. Mi S, Du Z, Xu Y, Wu Z, Qian X. et al. 2016. Microfluidic co-culture system for cancer migratory analysis and anti-metastatic drugs screening. Sci. Rep. 6:35544 [Google Scholar]
  87. Moazzam F, DeLano FA, Zweifach BW. 1997. The leukocyte response to fluid stress. PNAS 94:105338–43 [Google Scholar]
  88. Murray CD. 1926. The physiological principle of minimum work II. Oxygen exchange in capillaries. PNAS 12:5299–304 [Google Scholar]
  89. Nandurkar H, Nesbitt W, Brazilek R, Tovar-Lopez F, Wong A. et al. 2016. A shear micro-gradient microfluidic to monitor platelet aggregation dynamics in the context of von Willebrand disease. Blood 128:223753 [Google Scholar]
  90. Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A. et al. 2009. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15:6665–73 [Google Scholar]
  91. Nobis U, Pries AR, Cokelet GR, Gaehtgens P. 1985. Radial distribution of white cells during blood flow in small tubes. Microvasc. Res. 29:3295–304 [Google Scholar]
  92. Nuyttens BP, Thijs T, Deckmyn H, Broos K. 2010. Platelet adhesion to collagen. Thromb. Res. 127:S26–29 [Google Scholar]
  93. Papaiouannou GP, Stefanadis C. 2005. Vascular wall shear stress: basic principles and methods. Hell. J. Cardiol. 46:19–15 [Google Scholar]
  94. Para AN, Ku DN. 2013. A low-volume, single pass in-vitro system of high shear thrombosis in a stenosis. Thromb. Res. 131:5418–24 [Google Scholar]
  95. Rancourt-Grenier S, Wei M-T, Bai J-J, Chiou A, Bareil PP. et al. 2010. Dynamic deformation of red blood cell in dual-trap optical tweezers. Opt. Express 18:1010462–72 [Google Scholar]
  96. Rollins MR, Ahn B, Sakurai Y, Lam WA. 2015. Characterizing cellular interactions contributing to vaso-occlusion in patients with sickle cell disease utilizing a novel endothelialized microfluidic device. Blood 126:233381 [Google Scholar]
  97. Rosano JM, Tousi N, Scott RC, Krynska B. 2009. A physiologically realistic in vitro model of microvascular networks. Biomed. Microdevices 11:51051–57 [Google Scholar]
  98. Ross R, Glomset JA. 1976. The pathogenesis of atherosclerosis (first of two parts). N. Engl. J. Med. 295:369–77 [Google Scholar]
  99. Rossi M, Lindken R, Hierck BP, Westerweel J. 2009. Tapered microfluidic chip for the study of biochemical and mechanical response at subcellular level of endothelial cells to shear flow. Lab Chip 9:101403–11 [Google Scholar]
  100. Ruggeri ZM. 2006. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 108:61903–10 [Google Scholar]
  101. Rusconi R, Stone HA. 2008. Shear-induced diffusion of platelike particles in microchannels. Phys. Rev. Lett. 101:25254502 [Google Scholar]
  102. Saadi W, Rhee SW, Lin F, Vahidi B, Chung BG, Jeon NL. 2007. Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed. Microdevices 9:5627–35 [Google Scholar]
  103. Sakariassen KS, Orning L, Turitto VT. 2015. The impact of blood shear rate on arterial thrombus formation. Future Sci. OA 1:4FSO30 [Google Scholar]
  104. Schaff UY, Xing MMQ, Lin KK, Pan N, Jeon NL, Simon SI. 2007. Vascular mimetics based on microfluidics for imaging the leukocyte-endothelial inflammatory response. Lab Chip 7:4448–56 [Google Scholar]
  105. Schmid-Schönbein GW, Usami S, Skalak R. 1980. The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc. Res. 19:145–70 [Google Scholar]
  106. Schreiber TH, Shinder V, Cain DW, Alon R. 2007. Shear flow-dependent integration of apical and subendothelial chemokines in T-cell transmigration: implications for locomotion and the multistep paradigm. Blood 109:41381–86 [Google Scholar]
  107. Shelby JP, White J, Ganesan K. 2003. A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. PNAS 100:2514618–22 [Google Scholar]
  108. Shi X, Yang J, Huang J, Long Z, Ruan Z. et al. 2016. Effects of different shear rates on the attachment and detachment of platelet thrombi. Mol. Med. Rep. 13:32447–56 [Google Scholar]
  109. Skommer J, Wlodkowic D. 2015. Successes and future outlook for microfluidics-based cardiovascular drug discovery. Exp. Opin. Drug Discov. 10:3231–44 [Google Scholar]
  110. Song JW, Cavnar SP, Walker AC, Luker KE, Gupta M. et al. 2009. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLOS ONE 4:6e5756 [Google Scholar]
  111. Song S-H, Lim C-S, Shin S. 2013. Migration distance-based platelet function analysis in a microfluidic system. Biomicrofluidics 7:6064101 [Google Scholar]
  112. Sung JH, Shuler ML. 2009. A micro cell culture analog (μCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9:101385–94 [Google Scholar]
  113. Sutera SP, Skalak R. 1993. The history of Poiseuille's law. Annu. Rev. Fluid Mech. 25:1–20 [Google Scholar]
  114. Tasoglu S, Khoory JA, Tekin HC, Thomas C. 2015. Levitational image cytometry with temporal resolution. Adv. Mater. 27:263901–8 [Google Scholar]
  115. Toh YC, Voldman J. 2011. Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction. FASEB J 25:41208–17 [Google Scholar]
  116. Tomaiuolo G, Barra M, Preziosi V, Cassinese A, Rotoli B, Guido S. 2011. Microfluidics analysis of red blood cell membrane viscoelasticity. Lab Chip 11:3449–54 [Google Scholar]
  117. Tomaiuolo G, Guido S. 2011. Start-up shape dynamics of red blood cells in microcapillary flow. Microvasc. Res. 82:135–41 [Google Scholar]
  118. Tomaiuolo G, Lanotte L, D'Apolito R, Cassinese A, Guido S. 2016. Microconfined flow behavior of red blood cells. Med. Eng. Phys. 38:111–16 [Google Scholar]
  119. Tovar-Lopez FJ, Rosengarten G, Westein E, Khoshmanesh K, Jackson SP. et al. 2010. A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood. Lab Chip 10:3291–302 [Google Scholar]
  120. Tsai M, Kita A, Leach J, Rounsevell R, Huang JN. et al. 2012. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J. Clin. Investig. 122:1408–18 [Google Scholar]
  121. Ung R, Alapan Y, Hasan MN, Romelfanger M, He P. 2015. Point-of-care screening for sickle cell disease by a mobile micro-electrophoresis platform. Blood 126:3379 [Google Scholar]
  122. Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR. 2000. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:5463113–16 [Google Scholar]
  123. Wang X, Phan DTT, Sobrino A, George SC, Hughes CCW, Lee AP. 2016. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab Chip 16:2282–90 [Google Scholar]
  124. Watts T, Barigou M, Nash GB. 2013. Comparative rheology of the adhesion of platelets and leukocytes from flowing blood: Why are platelets so small. Am. J. Physiol. Heart Circ. Physiol. 304:11H1483–94 [Google Scholar]
  125. Westein E, van der Meer AD, Kuijpers MJE, Frimat F-P, van den Berg A, Heemskerk JWM. 2013. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. PNAS 110:41357–62 [Google Scholar]
  126. Whitesides GM. 2006. The origins and the future of microfluidics. Nature 442:7101368–73 [Google Scholar]
  127. Wood DK, Soriano A, Mahadevan L, Higgins JM, Bhatia SN. 2012. A biophysical marker of severity in sickle cell disease. Sci. Transl. Med. 4:123123ra26 [Google Scholar]
  128. Xia H, Strachan BC, Gifford SC, Shevkoplyas SS. 2016. A high-throughput microfluidic approach for 1000-fold leukocyte reduction of platelet-rich plasma. Sci. Rep. 6:35943 [Google Scholar]
  129. Xia Y, Whitesides GM. 1998. Soft lithography. Annu. Rev. Mater. Sci. 28:1153–84 [Google Scholar]
  130. Yeom E, Park JH, Kang YJ, Lee SJ. 2016. Microfluidics for simultaneous quantification of platelet adhesion and blood viscosity. Sci. Rep. 6:24994 [Google Scholar]
  131. Yu JQ, Liu XF, Chin LK, Liu AQ, Luo KQ. 2013. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system. Lab Chip 13:142693–700 [Google Scholar]
  132. Zhao R, Kameneva MV, Antaki JF. 2007. Investigation of platelet margination phenomena at elevated shear stress. Biorheology 44:3161–77 [Google Scholar]
  133. Zhao XM, Xia Y, Whitesides GM. 1997. Soft lithographic methods for nano-fabrication. J. Mater. Chem. 7:71069–74 [Google Scholar]
  134. Zheng W, Jiang B, Wang D, Zhang W, Wang Z, Jiang X. 2012. A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip 12:183441–50 [Google Scholar]
  135. Zheng Y, Chen J, Craven M, Choi NW, Totorica S. et al. 2012a. In vitro microvessels for the study of angiogenesis and thrombosis. PNAS 109:249342–47 [Google Scholar]
  136. Zheng Y, Nguyen J, Wang C, Sun Y. 2013. Electrical measurement of red blood cell deformability on a microfluidic device. Lab Chip 13:163275–79 [Google Scholar]
  137. Zheng Y, Shojaei-Baghini E, Azad A, Wang C, Sun Y. 2012b. High-throughput biophysical measurement of human red blood cells. Lab Chip 12:142560–68 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010816-060246
Loading
/content/journals/10.1146/annurev-fluid-010816-060246
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error