1932

Abstract

The microcirculation is an extensive network of microvessels that distributes blood flow throughout living tissues. Reynolds numbers are much less than 1, and the equations of Stokes flow apply. Blood is a suspension of cells with dimensions comparable to microvessel diameters. Highly deformable red blood cells, which transport oxygen, have a volume concentration (hematocrit) of 40–45% in humans. In the narrowest capillaries, these cells move in single file with a surrounding lubricating layer of plasma. In larger vessels, the red blood cells migrate toward the centerline, reducing the resistance to blood flow. Vessel walls are coated with a layer of macromolecules that restricts flow. At diverging bifurcations, hematocrit is not evenly distributed in the downstream vessels. Other particles are driven toward the walls by interactions with red blood cells. These physiologically important phenomena are discussed here from a fluid mechanical perspective.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010816-060302
2017-01-03
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/fluid/49/1/annurev-fluid-010816-060302.html?itemId=/content/journals/10.1146/annurev-fluid-010816-060302&mimeType=html&fmt=ahah

Literature Cited

  1. Barber JO, Alberding JP, Restrepo JM, Secomb TW. 2008. Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations. Ann. Biomed. Eng 361690–98 [Google Scholar]
  2. Barber JO, Restrepo JM, Secomb TW. 2011. Simulated red blood cell motion in microvessel bifurcations: effects of cell-cell interactions on cell partitioning. Cardiovasc. Eng. Technol. 2:349–60 [Google Scholar]
  3. Barnard ACL, Lopez L, Hellums JD. 1968. Basic theory of blood flow in capillaries. Microvasc. Res. 1:23–34 [Google Scholar]
  4. Barthes-Biesel D. 2016. Motion and deformation of elastic capsules and vesicles in flow. Annu. Rev. Fluid Mech. 48:25–52 [Google Scholar]
  5. Beaucourt J, Biben T, Misbah C. 2004. Optimal lift force on vesicles near a compressible substrate. Europhys. Lett. 67:676–82 [Google Scholar]
  6. Cameron A. 1966. The Principles of Lubrication New York: Wiley [Google Scholar]
  7. Chien S. 1975. Biophysical behavior of red blood cells in suspension. The Red Blood Cell, Vol II DM Surgenor 1031–133 New York: Academic [Google Scholar]
  8. Coupier G, Kaoui B, Podgorski T, Misbah C. 2008. Noninertial lateral migration of vesicles in bounded Poiseuille flow. Phys. Fluids 20:111702 [Google Scholar]
  9. Dimitrakopoulos P. 2012. Analysis of the variation in the determination of the shear modulus of the erythrocyte membrane: effects of the constitutive law and membrane modeling. Phys. Rev. E 85:041917 [Google Scholar]
  10. Discher DE, Mohandas N, Evans EA. 1994. Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266:1032–35 [Google Scholar]
  11. Doddi SK, Bagchi P. 2009. Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys. Rev. E 79:046318 [Google Scholar]
  12. Doyeux V, Podgorski T, Peponas S, Ismail M, Coupier G. 2011. Spheres in the vicinity of a bifurcation: elucidating the Zweifach-Fung effect. J. Fluid Mech. 674:359–88 [Google Scholar]
  13. Dupin MM, Halliday I, Care CM, Alboul L, Munn LL. 2007. Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75:066707 [Google Scholar]
  14. Evans EA. 1983. Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys. J. 43:27–30 [Google Scholar]
  15. Evans EA, Hochmuth RM. 1976. Membrane viscoelasticity. Biophys. J. 16:1–11 [Google Scholar]
  16. Evans EA, Skalak R. 1980. Mechanics and Thermodynamics of Biomembranes Boca Raton, FL: CRC [Google Scholar]
  17. Fahraeus R. 1928. Die Strömungsverhältnisse und die Verteilung der Blutzellen im Gefäßsystem. Zur Frage der Bedeutung der intravasculären Erythrocytenaggregation. Klin. Wochenschr. 7:100–6 [Google Scholar]
  18. Fahraeus R, Lindqvist T. 1931. The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96:562–68 [Google Scholar]
  19. Fedosov DA, Caswell B, Karniadakis GE. 2010a. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98:2215–25 [Google Scholar]
  20. Fedosov DA, Caswell B, Popel AS, Karniadakis GE. 2010b. Blood flow and cell-free layer in microvessels. Microcirculation 17:615–28 [Google Scholar]
  21. Feng J, Weinbaum S. 2000. Lubrication theory in highly compressible porous media: the mechanics of skiing, from red cells to humans. J. Fluid Mech. 422:281–317 [Google Scholar]
  22. Fischer TM, Stohr-Lissen M, Schmid-Schönbein H. 1978. The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow. Science 202:894–96 [Google Scholar]
  23. Fitz-Gerald JM. 1969. Mechanics of red-cell motion through very narrow capillaries. Proc. R. Soc. B 174:193–227 [Google Scholar]
  24. Freund JB. 2007. Leukocyte margination in a model microvessel. Phys. Fluids 19:023301 [Google Scholar]
  25. Freund JB. 2014. Numerical simulation of flowing blood cells. Annu. Rev. Fluid Mech. 46:67–95 [Google Scholar]
  26. Freund JB, Orescanin MM. 2011. Cellular flow in a small blood vessel. J. Fluid Mech. 671:466–90 [Google Scholar]
  27. Fung YC. 1973. Stochastic flow in capillary blood vessels. Microvasc. Res. 5:34–48 [Google Scholar]
  28. Gaehtgens P, Dührssen C, Albrecht KH. 1980. Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes. Blood Cells 6:799–812 [Google Scholar]
  29. Gaehtgens P, Schmid-Schönbein H. 1982. Mechanisms of dynamic flow adaptation of mammalian erythrocytes. Naturwissenschaften 69:294–96 [Google Scholar]
  30. Goldsmith HL. 1971. Red cell motions and wall interactions in tube flow. Fed. Proc 30:1578–90 [Google Scholar]
  31. Goldsmith HL, Cokelet GR, Gaehtgens P. 1989. Robin Fahraeus: evolution of his concepts in cardiovascular physiology. Am. J. Physiol. 257:H1005–15 [Google Scholar]
  32. Goldsmith HL, Spain S. 1984. Margination of leukocytes in blood flow through small tubes. Microvasc. Res. 27:204–22 [Google Scholar]
  33. Grandchamp X, Coupier G, Srivastav A, Minetti C, Podgorski T. 2013. Lift and down-gradient shear-induced diffusion in red blood cell suspensions. Phys. Rev. Lett. 110:108101 [Google Scholar]
  34. Hagenbach E. 1860. Uber die Bestimmung der Zähigkeit einer Flüssigkeit durch den Ausfluss aus Röhren. Poggendorf's Ann. Phys. Chem. 108:385–426 [Google Scholar]
  35. Hariprasad DS, Secomb TW. 2012. Motion of red blood cells near microvessel walls: effects of a porous wall layer. J. Fluid Mech. 705:195–212 [Google Scholar]
  36. Hariprasad DS, Secomb TW. 2014. Two-dimensional simulation of red blood cell motion near a wall under a lateral force. Phys. Rev. E 90:053014 [Google Scholar]
  37. Harvey W. 1958 (1628). Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus transl. CD Leake Springfield, IL: Thomas, 4th ed.. [Google Scholar]
  38. Hochmuth RM, Evans CA, Wiles HC, McCown JT. 1983. Mechanical measurement of red cell membrane thickness. Science 220:101–2 [Google Scholar]
  39. Hochmuth RM, Waugh RE. 1987. Erythrocyte membrane elasticity and viscosity. Annu. Rev. Physiol. 49:209–19 [Google Scholar]
  40. Hsu R, Secomb TW. 1989. Motion of nonaxisymmetric red blood cells in cylindrical capillaries. J. Biomech. Eng. 111:147–51 [Google Scholar]
  41. Intaglietta M, Tompkins WR, Richardson DR. 1970. Velocity measurements in the microvasculature of the cat omentum by on-line method. Microvasc. Res. 2:462–73 [Google Scholar]
  42. Kaoui B, Biros G, Misbah C. 2009. Why do red blood cells have asymmetric shapes even in a symmetric flow. ? Phys. Rev. Lett. 103:188101 [Google Scholar]
  43. Kaoui B, Ristow GH, Cantat I, Misbah C, Zimmermann W. 2008. Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow. Phys. Rev. E 77:021903 [Google Scholar]
  44. Katanov D, Gompper G, Fedosov DA. 2015. Microvascular blood flow resistance: role of red blood cell migration and dispersion. Microvasc. Res. 99:57–66 [Google Scholar]
  45. Keller SR, Skalak R. 1982. Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120:27–47 [Google Scholar]
  46. Kumar A, Graham MD. 2012. Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys. Rev. Lett. 109:108102 [Google Scholar]
  47. Leighton D, Acrivos A. 1987. The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181:415–39 [Google Scholar]
  48. Lighthill MJ. 1968. Pressure-forcing of tightly fitting pellets along fluid-filled elastic tubes. J. Fluid Mech. 34:113–43 [Google Scholar]
  49. Lin KL, Lopez L, Hellums JD. 1973. Blood flow in capillaries. Microvasc. Res. 5:7–19 [Google Scholar]
  50. Lipowsky HH, Kovalcheck S, Zweifach BW. 1978. The distribution of blood rheological parameters in the microvasculature of the cat mesentery. Circ. Res. 43:738–49 [Google Scholar]
  51. Lipowsky HH, Usami S, Chien S. 1980. In vivo measurements of “apparent viscosity” and microvessel hematocrit in the mesentery of the cat. Microvasc. Res. 19:297–319 [Google Scholar]
  52. Lykov K, Li XJ, Lei H, Pivkin IV, Karniadakis GE. 2015. Inflow/outflow boundary conditions for particle-based blood flow simulations: application to arterial bifurcations and trees. PLOS Comput. Biol. 11:e1004410 [Google Scholar]
  53. Malpighi M. 1661. De Pulmonibus. Observations Anatomicae Bologna, transl. J Young, 1929, in Proc. R. Soc. Med. 23:1–11 [Google Scholar]
  54. Martini P, Pierach A, Schreyer E. 1930. Die Strömung des Blutes in engen Gefäßen. Eine Abweichung vom Poiseuille'schen Gesetz. Dt. Arch. Klin. Med. 169:212–22 [Google Scholar]
  55. McWhirter JL, Noguchi H, Gompper G. 2009. Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. PNAS 106:6039–43 [Google Scholar]
  56. Mehrabadi M, Ku DN, Aidun CK. 2015. A continuum model for platelet transport in flowing blood based on direct numerical simulations of cellular blood flow. Ann. Biomed. Eng 43:1410–21 [Google Scholar]
  57. Muller K, Fedosov DA, Gompper G. 2014. Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Sci. Rep. 4:4871 [Google Scholar]
  58. Nobis U, Pries AR, Cokelet GR, Gaehtgens P. 1985. Radial distribution of white cells during blood flow in small tubes. Microvasc. Res. 29:295–304 [Google Scholar]
  59. Noguchi H, Gompper G. 2005. Shape transitions of fluid vesicles and red blood cells in capillary flows. PNAS 102:14159–64 [Google Scholar]
  60. Olla P. 1997. The lift on a tank-treading ellipsoidal cell in a shear flow. J. Phys. II 7:1533–40 [Google Scholar]
  61. Olla P. 1999. Simplified model for red cell dynamics in small blood vessels. Phys. Rev. Lett. 82:453–56 [Google Scholar]
  62. Poiseuille JLM. 1846. Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamêtres. Mem. Acad. R. Sci. Inst. Fr. 9:433–544 [Google Scholar]
  63. Pranay P, Henriquez-Rivera RG, Graham MD. 2012. Depletion layer formation in suspensions of elastic capsules in Newtonian and viscoelastic fluids. Phys. Fluids 24:061902 [Google Scholar]
  64. Pries AR, Ley K, Claassen M, Gaehtgens P. 1989. Red cell distribution at microvascular bifurcations. Microvasc. Res. 38:81–101 [Google Scholar]
  65. Pries AR, Neuhaus D, Gaehtgens P. 1992. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. 263:H1770–78 [Google Scholar]
  66. Pries AR, Secomb TW. 2005. Microvascular blood viscosity in vivo and the endothelial surface layer. Am. J. Physiol. Heart Circ. Physiol. 289:H2657–64 [Google Scholar]
  67. Pries AR, Secomb TW. 2014. Making microvascular networks work: angiogenesis, remodeling, and pruning. Physiology 29:446–55 [Google Scholar]
  68. Pries AR, Secomb TW, Gaehtgens P. 2000. The endothelial surface layer. Pflug. Arch. 440:653–66 [Google Scholar]
  69. Pries AR, Secomb TW, Gaehtgens P, Gross JF. 1990. Blood flow in microvascular networks. Experiments and simulation. Circ. Res. 67:826–34 [Google Scholar]
  70. Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P. 1994. Resistance to blood flow in microvessels in vivo. Circ. Res. 75:904–15 [Google Scholar]
  71. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, Oude Egbrink MG. 2007. The endothelial glycocalyx: composition, functions, and visualization. Pflug. Arch. 454:345–59 [Google Scholar]
  72. Secomb TW. 1987. Flow-dependent rheological properties of blood in capillaries. Microvasc. Res. 34:46–58 [Google Scholar]
  73. Secomb TW. 1995. Mechanics of blood flow in the microcirculation. Symp. Soc. Exp. Biol. 49:305–21 [Google Scholar]
  74. Secomb TW. 2003. Mechanics of red blood cells and blood flow in narrow tubes. Modeling and Simulation of Capsules and Biological Cells C Pozrikidis 163–96 Boca Raton, FL: CRC [Google Scholar]
  75. Secomb TW. 2008. Theoretical models for regulation of blood flow. Microcirculation 15:765–75 [Google Scholar]
  76. Secomb TW, Hsu R. 1993. Non-axisymmetrical motion of rigid closely fitting particles in fluid-filled tubes. J. Fluid Mech. 257:403–20 [Google Scholar]
  77. Secomb TW, Hsu R, Pries AR. 1998. A model for red blood cell motion in glycocalyx-lined capillaries. Am. J. Physiol. 274:H1016–22 [Google Scholar]
  78. Secomb TW, Hsu R, Pries AR. 2001a. Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. Biorheology 38:143–50 [Google Scholar]
  79. Secomb TW, Hsu R, Pries AR. 2001b. Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Am. J. Physiol. Heart Circ. Physiol. 281:H629–36 [Google Scholar]
  80. Secomb TW, Pries AR. 2013. Blood viscosity in microvessels: experiment and theory. C. R. Phys. 14:470–78 [Google Scholar]
  81. Secomb TW, Skalak R. 1982. A two-dimensional model for capillary flow of an asymmetric cell. Microvasc. Res. 24:194–203 [Google Scholar]
  82. Secomb TW, Skalak R, Ozkaya N, Gross JF. 1986. Flow of axisymmetric red blood cells in narrow capillaries. J. Fluid Mech. 163:405–23 [Google Scholar]
  83. Secomb TW, Styp-Rekowska B, Pries AR. 2007. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels. Ann. Biomed. Eng 35:755–65 [Google Scholar]
  84. Shi LL, Pan TW, Glowinski R. 2012. Lateral migration and equilibrium shape and position of a single red blood cell in bounded Poiseuille flows. Phys. Rev. E 86:056308 [Google Scholar]
  85. Skalak R, Branemark PI. 1969. Deformation of red blood cells in capillaries. Science 164:717–19 [Google Scholar]
  86. Sutera SP, Seshadri V, Croce PA, Hochmuth RM. 1970. Capillary blood flow. II. Deformable model cells in tube flow. Microvasc. Res. 2:420–33 [Google Scholar]
  87. Tangelder GJ, Teirlinck HC, Slaaf DW, Reneman RS. 1985. Distribution of blood platelets flowing in arterioles. Am. J. Physiol. 248:H318–23 [Google Scholar]
  88. Timoshenko S. 1940. Theory of Plates and Shells New York: McGraw-Hill [Google Scholar]
  89. Tomaiuolo G, Simeone M, Martinelli V, Rotoli B, Guido S. 2009. Red blood cell deformation in microconfined flow. Soft Matter 5:3736–40 [Google Scholar]
  90. Vahidkhah K, Diamond SL, Bagchi P. 2014. Platelet dynamics in three-dimensional simulation of whole blood. Biophys. J. 106:2529–40 [Google Scholar]
  91. Vand V. 1948. Viscosity of solutions and suspensions. I. Theory. J. Phys. Colloid Chem. 52:277–99 [Google Scholar]
  92. Weinbaum S, Tarbell JM, Damiano ER. 2007. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng 9121–67 [Google Scholar]
  93. Wiederhielm CA, Woodbury JW, Kirk S, Rushmer RF. 1964. Pulsatile pressures in the microcirculation of frog's mesentery. Am. J. Physiol. 207:173–76 [Google Scholar]
  94. Yin X, Thomas T, Zhang J. 2013. Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation. Microvasc. Res. 89:47–56 [Google Scholar]
  95. Zarda PR, Chien S, Skalak R. 1977. Interaction of viscous incompressible fluid with an elastic body. Computational Methods for Fluid-Solid Interaction Problems T Belytschko, TL Geers 65–82 New York: Am. Soc. Mech. Eng. [Google Scholar]
/content/journals/10.1146/annurev-fluid-010816-060302
Loading
/content/journals/10.1146/annurev-fluid-010816-060302
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error