Space-time correlation is a staple method for investigating the dynamic coupling of spatial and temporal scales of motion in turbulent flows. In this article, we review the space-time correlation models in both the Eulerian and Lagrangian frames of reference, which include the random sweeping and local straining models for isotropic and homogeneous turbulence, Taylor's frozen-flow model and the elliptic approximation model for turbulent shear flows, and the linear-wave propagation model and swept-wave model for compressible turbulence. We then focus on how space-time correlations are used to develop time-accurate turbulence models for the large-eddy simulation of turbulence-generated noise and particle-laden turbulence. We briefly discuss their applications to two-point closures for Kolmogorov's universal scaling of energy spectra and to the reconstruction of space-time energy spectra from a subset of spatial and temporal signals in experimental measurements. Finally, we summarize the current understanding of space-time correlations and conclude with future issues for the field.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Armenio V, Piomelli U, Fiorotto V. 1999. Effect of the subgrid scales on particle motion. Phys. Fluids 11:3030–42 [Google Scholar]
  2. Bailly C, Lafon P, Candel S. 1997. Subsonic and supersonic jet noise predictions from statistical source models. AIAA J. 35:1688–96 [Google Scholar]
  3. Balachandar S, Eaton JK. 2010. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42:111–33 [Google Scholar]
  4. Balarac G, Le Sommer J, Meunier X, Vollant A. 2013. A dynamic regularized gradient model of the subgrid-scale scalar flux for large eddy simulations. Phys. Fluids 25:075107 [Google Scholar]
  5. Bardina J, Ferziger JH, Reynolds WC. 1980. Improved subgrid-scale models for large-eddy simulation Presented at AIAA Fluid Plasma Dyn. Conf., 13th, Snowmass, CO, AIAA Pap 1980–1357 [Google Scholar]
  6. Bertoglio JP. 1985. A stochastic subgrid model for sheared turbulence. Lect. Notes Phys. 230:100–19 [Google Scholar]
  7. Biferale L, Boffetta G, Celani A, Devenish BJ, Lanotte A, Toschi F. 2004. Multifractal statistics of Lagrangian velocity and acceleration in turbulence. Phys. Rev. Lett. 93:064502 [Google Scholar]
  8. Bodony DJ, Lele SK. 2003. A statistical subgrid scale noise model: formulation Presented at AIAA/CEAS Aeroacoust. Conf., 9th, Hilton Head, SC, AIAA Pap 2003–3252 [Google Scholar]
  9. Borgas MS. 1993. The multifractal Lagrangian nature of turbulence. Philos. Trans. R. Soc. Lond. A 342:379–411 [Google Scholar]
  10. Bos WJT, Bertoglio JP. 2013. Lagrangian Markovianized field approximation for turbulence. J. Turbul. 14:99–120 [Google Scholar]
  11. Cambon C, Scott JF. 1999. Linear and nonlinear models of anisotropic turbulence. Annu. Rev. Fluid Mech. 31:1–53 [Google Scholar]
  12. Carati D, Ghosal S, Moin P. 1995. On the representation of backscatter in dynamic localization models. Phys. Fluids 7:606–16 [Google Scholar]
  13. Cernick MJ, Tullis SW, Lightstone MF. 2015. Particle subgrid scale modelling in large-eddy simulations of particle-laden turbulence. J. Turbul. 16:101–35 [Google Scholar]
  14. Chen SY, Kraichnan RH. 1989. Sweeping decorrelation in isotropic turbulence. Phys. Fluids A 1:2019–24 [Google Scholar]
  15. Chevillard L, Roux SG, Levêque E, Mordant N, Pinton JF, Arneodo A. 2003. Lagrangian velocity statistics in turbulent flows: effects of dissipation. Phys. Rev. Lett. 91:214502 [Google Scholar]
  16. Chibbaro S, Marchioli C, Salvetti MV, Soldati A. 2014. Particle tracking in LES flow fields: conditional Lagrangian statistics of filtering error. J. Turbul. 15:22–33 [Google Scholar]
  17. Clark RA, Ferziger JH, Reynolds WC. 1979. Evaluation of sub-grid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91:1–16 [Google Scholar]
  18. Corrsin S. 1959. Progress report on some turbulent diffusion research. Adv. Geophys. 6:161–64 [Google Scholar]
  19. Davies POA, Fisher MJ, Barratt MJ. 1963. The characteristics of the turbulence in the mixing region of a round jet. J. Fluid Mech. 15:337–67 [Google Scholar]
  20. de Kat R, Ganapathisubramani B. 2015. Frequency-wavenumber mapping in turbulent shear flows. J. Fluid Mech. 783:166–90 [Google Scholar]
  21. del Álamo JC, Jiménez J. 2009. Estimation of turbulent convection velocities and corrections to Taylor's approximation. J. Fluid Mech. 640:5–26 [Google Scholar]
  22. Domaradzki JA, Adams NA. 2002. Direct modelling of subgrid scales of turbulence in large eddy simulations. J. Turbul. 3:N24 [Google Scholar]
  23. Dong YH, Sagaut P. 2008. A study of time correlations in lattice Boltzmann-based large-eddy simulation of isotropic turbulence. Phys. Fluids 20:035105 [Google Scholar]
  24. Fadai-Ghotbi A, Friess C, Manceau R, Gatski TB, Borée J. 2010. Temporal filtering: a consistent formalism for seamless hybrid RANS-LES modeling in inhomogeneous turbulence. Int. J. Heat Fluid Flow 31:378–89 [Google Scholar]
  25. Favier B, Godeferd FS, Cambon C. 2010. On space and time correlations of isotropic and rotating turbulence. Phys. Fluids 22:015101 [Google Scholar]
  26. Fede P, Simonin O. 2006. Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles. Phys. Fluids 18:045103 [Google Scholar]
  27. Fede P, Simonin O, Villedieu P, Squires KD. 2006. Stochastic modeling of the turbulent subgrid fluid velocity along inertial particle trajectories. Proc. Summer Program 2006247–58 Stanford, CA: Stanford Univ. Cent. Turbul. Res. [Google Scholar]
  28. Flohr P, Vassilicos JC. 2000. A scalar subgrid model with flow structure for large-eddy simulations of scalar variances. J. Fluid Mech. 407:315–49 [Google Scholar]
  29. Fox RO. 2012. Large-eddy-simulation tools for multiphase flows. Annu. Rev. Fluid Mech. 44:47–76 [Google Scholar]
  30. Frisch U. 1995. Turbulence: The Legacy of A.N. Kolmogorov. Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  31. Fung JCH, Hunt JCR, Malik NA, Perkins RJ. 1992. Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech. 236:281–318 [Google Scholar]
  32. Geng CH, He GW, Wang YS, Xu CX, Lozano-Duran A, Wallace JM. 2015. Taylor's hypothesis in turbulent channel flow considered using a transport equation analysis. Phys. Fluids 27:025111 [Google Scholar]
  33. Ghate AS, Lele SK. 2015. A modeling framework for wind farm analysis: wind turbine wake interactions Presented at AIAA SciTech 2015, Wind Energy Symp., 33rd, Kissimmee, FL, AIAA Pap. 2015-0725 [Google Scholar]
  34. Gotoh T, Rogallo RS, Herring JR, Kraichnan RH. 1993. Lagrangian velocity correlations in homogeneous isotropic turbulence. Phys. Fluids A 5:2846–64 [Google Scholar]
  35. Grossmann S, Lohse D. 2001. Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86:3316–19 [Google Scholar]
  36. Guo L, Li D, Zhang X, He GW. 2012. LES prediction of space-time correlations in turbulent shear flows. Acta Mech. Sin. 28:993–98 [Google Scholar]
  37. He GW, Ansari HP, Jin GD, Mani A. 2012a. A Lagrangian filtering approach for large-eddy simulation of particle-laden turbulence. Proc. Summer Program 2012375–83 Stanford, CA: Stanford Univ. Cent. Turbul. Res. [Google Scholar]
  38. He GW, Jin GD, Zhao X. 2009. Scale-similarity model for Lagrangian velocity correlations in isotropic and stationary turbulence. Phys. Rev. E 80:066313 [Google Scholar]
  39. He GW, Rubinstein R, Wang LP. 2002. Effects of subgrid-scale modeling on time correlations in large eddy simulation. Phys. Fluids 14:2186–93 [Google Scholar]
  40. He GW, Wang M, Lele SK. 2004. On the computation of space-time correlations by large-eddy simulation. Phys. Fluids 16:3859–67 [Google Scholar]
  41. He GW, Zhang JB. 2006. Elliptic model for space-time correlations in turbulent shear flows. Phys. Rev. E 73:055303 [Google Scholar]
  42. He XZ, Bodenschatz E, Ahlers G. 2016. Azimuthal diffusion of the large-scale-circulation plane, and absence of significant non-Boussinesq effects, in turbulent convection near the ultimate-state transition. J. Fluid Mech. 791:R3–13 [Google Scholar]
  43. He XZ, Funfschilling D, Nobach H, Bodenschatz E, Ahlers G. 2012b. Transition to the ultimate state of turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 108:024502 [Google Scholar]
  44. He XZ, He GW, Tong P. 2010. Small-scale turbulent fluctuations beyond Taylor's frozen-flow hypothesis. Phys. Rev. E 81:065303 [Google Scholar]
  45. He XZ, van Gils DPM, Bodenschatz E, Ahlers G. 2014. Logarithmic spatial variations and universal f−1power spectra of temperature fluctuations in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 112:174501 [Google Scholar]
  46. He XZ, van Gils DPM, Bodenschatz E, Ahlers G. 2015. Reynolds numbers and the elliptic approximation near the ultimate state of turbulent Rayleigh-Bénard convection. New J. Phys. 17:063028 [Google Scholar]
  47. Heskestad G. 1965. A generalized Taylor hypothesis with application for high Reynolds number turbulent shear flows. J. Appl. Mech. 32:735–39 [Google Scholar]
  48. Hogg J, Ahlers G. 2013. Reynolds-number measurements for low-Prandtl-number turbulent convection of large-aspect-ratio samples. J. Fluid Mech. 725:664–80 [Google Scholar]
  49. Homann H, Kamps O, Friedrich R, Grauer R. 2009. Bridging from Eulerian to Lagrangian statistics in 3D hydro- and magnetohydrodynamic turbulent flows. New J. Phys. 11:073020 [Google Scholar]
  50. Jin GD, He GW, Wang LP. 2010. Large-eddy simulation of turbulent collision of heavy particles in isotropic turbulence. Phys. Fluids 22:055106 [Google Scholar]
  51. Jung J, Yeo K, Lee C. 2008. Behavior of heavy particles in isotropic turbulence. Phys. Rev. E 77:016307 [Google Scholar]
  52. Kaneda Y. 1981. Renormalized expansions in the theory of turbulence with the use of the Lagrangian position function. J. Fluid Mech. 107:131–45 [Google Scholar]
  53. Kim J, Hussain F. 1993. Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids A 5:695–706 [Google Scholar]
  54. Kraichnan RH. 1959. The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5:497–543 [Google Scholar]
  55. Kraichnan RH. 1962. Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5:1374–89 [Google Scholar]
  56. Kraichnan RH. 1964. Kolmogorov hypotheses and Eulerian turbulence theory. Phys. Fluids 7:1723–34 [Google Scholar]
  57. Kraichnan RH. 1968. Lagrangian-history statistical theory for Burgers equation. Phys. Fluids 11:265–77 [Google Scholar]
  58. Kraichnan RH. 1977. Lagrangian velocity covariance in helical turbulence. J. Fluid Mech. 81:385–98 [Google Scholar]
  59. Kuerten JGM. 2006. Subgrid modeling in particle-laden channel flow. Phys. Fluids 18:025108 [Google Scholar]
  60. Kuerten JGM, Vreman AW. 2005. Can turbophoresis be predicted by large-eddy simulation?. Phys. Fluids 17:011701 [Google Scholar]
  61. LaBryer A, Attar PJ, Vedula P. 2015. A framework for large eddy simulation of Burgers turbulence based upon spatial and temporal statistical information. Phys. Fluids 27:035116 [Google Scholar]
  62. Langford JA, Moser RD. 1999. Optimal LES formulations for isotropic turbulence. J. Fluid Mech. 398:321–46 [Google Scholar]
  63. Lee S, Lele SK, Moin P. 1992. Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow. Phys. Fluids A 4:1521–30 [Google Scholar]
  64. Leib SJ, Goldstein ME. 2011. Hybrid source model for predicting high-speed jet noise. AIAA J. 49:1324–35 [Google Scholar]
  65. Leith CE. 1990. Stochastic backscatter in a subgrid-scale model: plane shear mixing layer. Phys. Fluids A 2:297–99 [Google Scholar]
  66. Li D, Zhang X, He GW. 2013. Temporal decorrelations in compressible isotropic turbulence. Phys. Rev. E 88:021001 [Google Scholar]
  67. Lighthill MJ. 1952. On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211:564–87 [Google Scholar]
  68. Lilley GM. 1994. The radiated noise from isotropic turbulence. Theor. Comput. Fluid Dyn. 6:281–301 [Google Scholar]
  69. Lin CC. 1953. On Taylor's hypothesis and the acceleration terms in the Navier-Stokes equations. Q. Appl. Math. 10:295–306 [Google Scholar]
  70. Lohse D, Xia KQ. 2010. Small-scale properties of turbulent Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 42:335–64 [Google Scholar]
  71. Loucks RB, Wallace JM. 2012. Velocity and velocity gradient based properties of a turbulent plane mixing layer. J. Fluid Mech. 699:280–319 [Google Scholar]
  72. Lumley JL. 1962. The mathematical nature of the problem of relating Langrangian and Eulerian statistical functions in turbulence. Mécanique de la Turbulence17–26 Paris: CNRS [Google Scholar]
  73. Lumley JL. 1965. Interpretation of time spectra measured in high-intensity shear flows. Phys. Fluids 8:1056–62 [Google Scholar]
  74. Marstorp L, Brethouwer G, Johansson AV. 2007. A stochastic subgrid model with application to turbulent flow and scalar mixing. Phys. Fluids 19:035107 [Google Scholar]
  75. Martin MP. 2005. Preliminary study of the SGS time scales for compressible boundary layers using DNS data Presented at AIAA Aerosp. Sci. Meet. Exhib., 43rd, Reno, NV, AIAA Pap. 2005-0665 [Google Scholar]
  76. Mason PJ, Thomson DJ. 1992. Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech. 242:51–78 [Google Scholar]
  77. Mazzitelli IM, Toschi F, Lanotte AS. 2014. An accurate and efficient Lagrangian sub-grid model. Phys. Fluids 26:095101 [Google Scholar]
  78. Meneveau C, Katz J. 2000. Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32:1–32 [Google Scholar]
  79. Moin P. 2009. Revisiting Taylor's hypothesis. J. Fluid Mech. 640:1–4 [Google Scholar]
  80. Morris PJ, Farassat F. 2002. Acoustic analogy and alternative theories for jet noise prediction. AIAA J. 40:671–80 [Google Scholar]
  81. O'Brien J, Urzay J, Ihme M, Moin P, Saghafian A. 2014. Subgrid-scale backscatter in reacting and inert supersonic hydrogen-air turbulent mixing layers. J. Fluid Mech. 743:554–84 [Google Scholar]
  82. Orszag SA. 1977. Lectures on the statistical theory of turbulence. Fluid Dynamics: Lecture Notes of the Les Houches Summer School 1973 R Balian, JL Peube 235–374 New York: Gordon & Breach [Google Scholar]
  83. Park GI, Urzay J, Bassenne M, Moin P. 2015. A dynamic subgrid-scale model based on differential filters for LES of particle-laden turbulent flows. Annu. Res. Briefs 201517–26 Stanford, CA: Stanford Univ. Cent. Turbul. Res. [Google Scholar]
  84. Park N, Yoo JY, Choi H. 2005. Toward improved consistency of a priori tests with a posteriori tests in large eddy simulation. Phys. Fluids 17:015103 [Google Scholar]
  85. Piomelli U, Balint JL, Wallace JM. 1989. On the validity of Taylor's hypothesis for wall-bounded flows. Phys. Fluids A 1:609–11 [Google Scholar]
  86. Piomelli U, Cabot WH, Moin P, Lee SS. 1991. Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids A 3:1766–71 [Google Scholar]
  87. Pozorski J, Apte SV. 2009. Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion. Int. J. Multiphase Flow 35:118–28 [Google Scholar]
  88. Pruett CD, Gatski TB, Grosch CE, Thacker WD. 2003. The temporally filtered Navier-Stokes equations: properties of the residual stress. Phys. Fluids 15:2127–40 [Google Scholar]
  89. Ray B, Collins LR. 2011. Preferential concentration and relative velocity statistics of inertial particles in Navier-Stokes turbulence with and without filtering. J. Fluid Mech. 680:488–510 [Google Scholar]
  90. Ray B, Collins LR. 2013. Investigation of sub-Kolmogorov inertial particle pair dynamics in turbulence using novel satellite particle simulations. J. Fluid Mech. 720:192–211 [Google Scholar]
  91. Ray B, Collins LR. 2014. A subgrid model for clustering of high-inertia particles in large-eddy simulations of turbulence. J. Turbul. 15:366–85 [Google Scholar]
  92. Renard N, Deck S. 2015. On the scale-dependent turbulent convection velocity in a spatially developing flat plate turbulent boundary layer at Reynolds number . J. Fluid Mech. 775:105–48 [Google Scholar]
  93. Rubinstein R, Zhou Y. 1999. Effects of helicity on Lagrangian and Eulerian time correlations in turbulence. Phys. Fluids 11:2288–90 [Google Scholar]
  94. Rubinstein R, Zhou Y. 2000. The frequency spectrum of sound radiated by isotropic turbulence. Phys. Lett. A 267:379–83 [Google Scholar]
  95. Rubinstein R, Zhou Y. 2002. Characterization of sound radiation by unresolved scales of motion in computational aeroacoustics. Eur. J. Mech. B 21:105–11 [Google Scholar]
  96. Seror C, Sagaut P, Bailly C, Juve D. 2000. Subgrid-scale contribution to noise production in decaying isotropic turbulence. AIAA J. 38:1795–803 [Google Scholar]
  97. Shotorban B, Mashayek F. 2006. A stochastic model for particle motion in large-eddy simulation. J. Turbul. 7:N18 [Google Scholar]
  98. Shotorban B, Zhang KKQ, Mashayek F. 2007. Improvement of particle concentration prediction in large-eddy simulation by defiltering. Int. J. Heat Mass Transfer 50:3728–39 [Google Scholar]
  99. Smith FB, Hay JS. 1961. The expansion of clusters of particles in the atmosphere. Q. J. R. Meteorol. Soc. 87:82–101 [Google Scholar]
  100. Smith LM, Woodruff SL. 1998. Renormalization-group analysis of turbulence. Annu. Rev. Fluid Mech. 30:275–310 [Google Scholar]
  101. Smits AJ, McKeon BJ, Marusic I. 2011. High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43:353–75 [Google Scholar]
  102. Squires KD, Eaton JK. 1991. Preferential concentration of particles by turbulence. Phys. Fluids A 3:1169–79 [Google Scholar]
  103. Stolz S, Adams NA. 1999. An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11:1699–701 [Google Scholar]
  104. Tam CKW, Auriault L. 1999. Jet mixing noise from fine-scale turbulence. AIAA J. 37:145–53 [Google Scholar]
  105. Tam CKW, Pastuchenko NN, Viswanathan K. 2005. Fine-scale turbulence noise from hot jets. AIAA J. 43:1675–83 [Google Scholar]
  106. Taylor GI. 1938. The spectrum of turbulence. Proc. R. Soc. Lond. A 164:476–90 [Google Scholar]
  107. Tennekes H. 1975. Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67:561–67 [Google Scholar]
  108. Tsinober A, Vedula P, Yeung PK. 2001. Random Taylor hypothesis and the behavior of local and convective accelerations in isotropic turbulence. Phys. Fluids 13:1974–84 [Google Scholar]
  109. Urzay J, Bassenne M, Park G, Moin P. 2014. Characteristic regimes of subgrid-scale coupling in LES of particle-laden turbulent flows. Annu. Res. Briefs 20143–13 Stanford, CA: Stanford Univ. Cent. Turbul. Res. [Google Scholar]
  110. Viswanathan K, Underbrink JR, Brusniak L. 2011. Space-time correlation measurements in near fields of jets. AIAA J. 49:1577–99 [Google Scholar]
  111. Wallace JM. 2014. Space-time correlations in turbulent flow: a review. Theor. Appl. Mech. Lett. 4:022003 [Google Scholar]
  112. Wang LP, Maxey MR. 1993. Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256:27–68 [Google Scholar]
  113. Wang M, Freund JB, Lele SK. 2006. Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech. 38:483–512 [Google Scholar]
  114. Wang QZ, Squires KD. 1996. Large eddy simulation of particle-laden turbulent channel flow. Phys. Fluids 8:1207–23 [Google Scholar]
  115. Wang W, Guan XL, Jiang N. 2014. TRPIV investigation of space-time correlation in turbulent flows over flat and wavy walls. Acta Mech. Sin. 30:468–79 [Google Scholar]
  116. Wei GX, Vinkovic I, Shao L, Simoëns S. 2006. Scalar dispersion by a large-eddy simulation and a Lagrangian stochastic subgrid model. Phys. Fluids 18:095101 [Google Scholar]
  117. Wilczek M, Narita Y. 2012. Wave-number-frequency spectrum for turbulence from a random sweeping hypothesis with mean flow. Phys. Rev. E 86:066308 [Google Scholar]
  118. Wilczek M, Stevens RJAM, Meneveau C. 2015. Spatio-temporal spectra in the logarithmic layer of wall turbulence: large-eddy simulations and simple models. J. Fluid Mech. 769:R1–12 [Google Scholar]
  119. Wills JAB. 1964. On convection velocities in turbulent shear flows. J. Fluid Mech. 20:417–32 [Google Scholar]
  120. Xu HT, Ouellette NT, Bodenschatz E. 2006. Multifractal dimension of Lagrangian turbulence. Phys. Rev. Lett. 96:114503 [Google Scholar]
  121. Yang Y, He GW, Wang LP. 2008. Effects of subgrid-scale modeling on Lagrangian statistics in large-eddy simulation. J. Turbul. 9:N8 [Google Scholar]
  122. Yao HD, He GW. 2009. A kinematic subgrid scale model for large-eddy simulation of turbulence-generated sound. J. Turbul. 10:N19 [Google Scholar]
  123. Zaman KBMQ, Hussain AKMF. 1981. Taylor hypothesis and large-scale coherent structures. J. Fluid Mech. 112:379–96 [Google Scholar]
  124. Zhao X, He GW. 2009. Space-time correlations of fluctuating velocities in turbulent shear flows. Phys. Rev. E 79:046316 [Google Scholar]
  125. Zhou Q, Li CM, Lu ZM, Liu YL. 2011. Experimental investigation of longitudinal space-time correlations of the velocity field in turbulent Rayleigh-Bénard convection. J. Fluid Mech. 683:94–111 [Google Scholar]
  126. Zhou Y. 2010. Renormalization group theory for fluid and plasma turbulence. Phys. Rep. 488:1–49 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error