1932

Abstract

The field of aero-optics is devoted to the study of the effects of turbulent flow fields on laser beams projected from airborne laser systems. This article reviews the early and present periods of research in aero-optics. Both periods generated impressive amounts of research activity; however, the types and amount of data differ greatly in accuracy, quality, and type owing to the development of new types of instrumentation available to collect and analyze the aberrated wave fronts of otherwise collimated laser beams projected through turbulent compressible flow fields of the type that form over beam directors. This review traces the activities and developments associated with both periods but particularly focuses on the development of modern high-bandwidth wave-front sensors used in the present research period. We describe how these modern wave-front data are collected and analyzed and the fluid mechanic information that can be gleaned from them; the use of these data in the fundamental study of turbulence is emphasized.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010816-060315
2017-01-03
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/fluid/49/1/annurev-fluid-010816-060315.html?itemId=/content/journals/10.1146/annurev-fluid-010816-060315&mimeType=html&fmt=ahah

Literature Cited

  1. Abado S, Gordeyev S, Jumper EJ. 2010. Two-dimensional high-bandwidth Shack-Hartmann wavefront sensor: design guidelines and evaluation testing. Opt. Eng. 49:064403 [Google Scholar]
  2. Baskins LL, Hamilton LE. 1952. Preliminary wind tunnel investigation on the optical transmission characteristics of a supersonic turbulent boundary layer Rep. G.M.-1.27 Northrop Aircr. Co. Hawthorne, CA: [Google Scholar]
  3. Baskins LL, Hamilton LE. 1954. The effect of boundary layer thickness upon the optical transmission characteristics of a supersonic turbulent boundary layer Rep. NAI-54-756 Northrop Aircr. Co. Hawthorne, CA: [Google Scholar]
  4. Berkooz G, Holmes P, Lumley J. 1993. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25:539–75 [Google Scholar]
  5. Born M, Wolf E. 1999. Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light Cambridge, UK: Cambridge Univ. Press, 7th ed.. [Google Scholar]
  6. Burns R, Gordeyev S, Jumper EJ, Gogineni S, Paul M. et al. 2014. Estimation of aero-optical wavefronts using optical and non-optical measurements Presented at AIAA Aerosp. Sci. Meet., 52th, National Harbor, MD, AIAA Pap 2014–0319 [Google Scholar]
  7. Burns R, Jumper EJ, Gordeyev S. 2016. A robust modification of a predictive adaptive-optic control method for aero-optics Presented at AIAA Plasmadyn. Lasers Conf., 47th, Washington, DC, AIAA Pap 2016–3529 [Google Scholar]
  8. Cassady PE, Birch SF, Terry PJ. 1989. Aero-optical analysis of compressible flow over an open cavity. AIAA J. 27:758–62 [Google Scholar]
  9. Cicchiello JM, Jumper EJ. 1997. Far-field optical degradation due to near-field transmission through a turbulent heated jet. Appl. Opt. 36:6441–52 [Google Scholar]
  10. Cicchiello JM, Jumper EJ. 2001. Low-order representation of fluid-optic interactions associated with a shear layer Presented at Aerosp. Sci. Meet., 39th, Reno, NV, AIAA Pap 2001–0952 [Google Scholar]
  11. Cress J, Gordeyev S, Jumper EJ. 2010. Aero-optical measurements in a heated, subsonic, turbulent boundary layer Presented at Aerosp. Sci. Meet., 48th, Orlando, FL, AIAA Pap 2010–0434 [Google Scholar]
  12. De Lucca N, Gordeyev S, Jumper EJ. 2013. In-flight aero-optics of turrets. Opt. Eng. 52:071405 [Google Scholar]
  13. De Lucca N, Gordeyev S, Smith AE, Jumper EJ, Whiteley M. et al. 2014. The removal of tunnel vibration induced corruption in aero-optical measurements Presented at AIAA Plasmadyn. Lasers Conf., 45th, Atlanta, GA, AIAA Pap 2014–2494 [Google Scholar]
  14. Duan L, Beekman I, Martin MP. 2010. Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655:419–45 [Google Scholar]
  15. Duffin DA. 2009. Feed-forward adaptive-optic correction of a weakly-compressible high-subsonic shear layer PhD Thesis Univ. Notre Dame [Google Scholar]
  16. Duffner RW. 1997. Airborne Laser: Bullets of Light New York: Basic [Google Scholar]
  17. Faghihi A, Tesch J, Gibson S. 2013. Identified state-space prediction model for aero-optical wavefronts. Opt. Eng. 52:071419 [Google Scholar]
  18. Fitzgerald EJ, Jumper EJ. 2000. Aperture effects on the aero-optical distortions measured for a compressible shear layer Presented at Aerosp. Sci. Meet., 38th, Reno, NV, AIAA Pap 2000–0991 [Google Scholar]
  19. Fitzgerald EJ, Jumper EJ. 2002. Aperture effects on the aerooptical distortions produced by a compressible shear layer. AIAA J. 40:267–75 [Google Scholar]
  20. Fitzgerald EJ, Jumper EJ. 2004. The optical distortion mechanism in a nearly incompressible free shear layer. J. Fluid Mech. 512:153–89 [Google Scholar]
  21. Gao Q, Jiang Z, Yi S, Xie W, Liao T. 2012a. Correcting the aero-optical aberration of the supersonic mixing layer with adaptive optics: concept validation. Appl. Opt. 51:3922–29 [Google Scholar]
  22. Gao Q, Yi S, Jiang Z, He L, Wang X. 2012b. Optical transfer function of the supersonic mixing layer. J. Opt. Soc. Am. A 29:2628–37 [Google Scholar]
  23. Gaviglio J. 1987. Reynolds analogies and experimental study of heat transfer in the supersonic boundary layer. Int. J. Heat Mass Transf. 30:911–26 [Google Scholar]
  24. Gilbert KG. 1982. KC-135 aero-optical boundary-layer/shear-layer experiments. See Gilbert & Otten 1982 306–24
  25. Gilbert KG. 2013. The challenge of high brightness laser systems: a photon odyssey. Opt. Eng. 52:071412 [Google Scholar]
  26. Gilbert KG, Otten LJ. 1982. Aero-Optical Phenomena Prog. Astronaut. Aeronaut. Vol. 80 New York: AIAA412 [Google Scholar]
  27. Gladstone JH, Dale TP. 1863. Researches on the refraction, dispersion, and sensitiveness of liquids. Philos. Trans. R. Soc. Lond. 153:317–43 [Google Scholar]
  28. Goodman JW. 1996. Introduction to Fourier Optics New York: McGraw-Hill, 2nd ed.. [Google Scholar]
  29. Goorskey DJ, Drye R, Whiteley MR. 2013a. Dynamic modal analysis of transonic Airborne Aero-Optics laboratory conformal window flight-test aero-optics. Opt. Eng. 52:071414 [Google Scholar]
  30. Goorskey DJ, Schmidt J, Whiteley MR. 2013b. Efficacy of predictive wavefront control for compensating aero-optical distortions. Opt. Eng. 52:071418 [Google Scholar]
  31. Gordeyev S, Burns R, Jumper EJ, Gogineni S, Paul M. et al. 2013. Aero-optical mitigation of shocks around turrets at transonic speeds using passive flow control Presented at AIAA Aerosp. Sci. Meet., 51st, Grapevine, TX, AIAA Pap 2013–0717 [Google Scholar]
  32. Gordeyev S, Cress JA, Jumper EJ, Cain AB. 2011. Aero-optical environment around a cylindrical turret with a flat window. AIAA J. 49:308–15 [Google Scholar]
  33. Gordeyev S, Cress JA, Smith AE, Jumper EJ. 2015a. Aero-optical measurements in a subsonic, turbulent boundary layer with non-adiabatic walls. Phys. Fluids 27:045110 [Google Scholar]
  34. Gordeyev S, De Lucca N, Jumper EJ, Hird K, Juliano TJ. et al. 2014a. Comparison of unsteady pressure fields on turrets with different surface features using pressure sensitive paint. Exp. Fluids 55:1661 [Google Scholar]
  35. Gordeyev S, Hayden T, Jumper EJ. 2007a. Aero-optical and flow measurements over a flat-windowed turret. AIAA J. 45:347–57 [Google Scholar]
  36. Gordeyev S, Jumper EJ. 2010. Fluid dynamics and aero-optics of turrets. Prog. Aerosp. Sci. 46:388–400 [Google Scholar]
  37. Gordeyev S, Jumper EJ, Hayden T. 2012. Aero-optical effects of supersonic boundary layers. AIAA J. 50:682–90 [Google Scholar]
  38. Gordeyev S, Jumper EJ, Ng T, Cain A. 2003. Aero-optical characteristics of compressible, subsonic turbulent boundary layer Presented at AIAA Plasmadyn. Lasers Conf., 34th, Orlando, FL, AIAA Pap 2003–3606 [Google Scholar]
  39. Gordeyev S, Jumper EJ, Ng T, Cain A. 2005. The optical environment of a cylindrical turret with a flat window and the impact of passive control devices Presented at AIAA Plasmadyn. Lasers Conf., 36th, Toronto, AIAA Pap 2005–4657 [Google Scholar]
  40. Gordeyev S, Juliano TJ. 2016a. Optical characterization of nozzle-wall Mach-6 boundary layers. Presented at AIAA Aerosp. Sci. Meet., 54th, San Diego, CA, AIAA Pap. 2016–1586 [Google Scholar]
  41. Gordeyev S, Juliano TJ. 2016b. Optical measurements of transitional events in a Mach-6 laminar boundary layer. Presented at AIAA Fluid Dyn. Conf., 46th, Washington, DC, AIAA Pap 2016–3348 [Google Scholar]
  42. Gordeyev S, Post M, MacLaughlin T, Ceniceros J, Jumper EJ. 2007b. Aero-optical environment around a conformal-window turret. AIAA J. 45:1514–24 [Google Scholar]
  43. Gordeyev S, Rennie RM, Cain AB, Hayden T. 2015b. Aero-optical measurements of high-Mach supersonic boundary layers Presented at AIAA Plasmadyn. Lasers Conf., 46th, Dallas, TX, AIAA Pap 2015–3246 [Google Scholar]
  44. Gordeyev S, Smith AE. 2016. Studies of the large-scale structure in turbulent boundary layers using simultaneous velocity-wavefront measurements Presented at AIAA Plasmadyn. Lasers Conf., 47th, Washington, DC, AIAA Pap 2016–3804 [Google Scholar]
  45. Gordeyev S, Smith AE, Cress JA, Jumper EJ. 2014b. Experimental studies of aero-optical properties of subsonic turbulent boundary layers. J. Fluid Mech. 740:214–53 [Google Scholar]
  46. Gordeyev S, Smith AE, Saxton-Fox T, McKeon B. 2015c. Studies of the large-scale structure in adiabatic and moderately-wall-heated subsonic boundary layers Presented at TSFP-9, Melbourne, Pap 7A–3 [Google Scholar]
  47. Greenwood BD, Primmerman CA. 1993. The history of adaptive-optics development and the MIT Lincoln Laboratory. Proc. SPIE 1920:220–34 [Google Scholar]
  48. Guarini SE, Moser RD, Shariff K, Wray A. 2000. Direct numerical simulations of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech. 414:1–33 [Google Scholar]
  49. Hardy JW. 1991. Adaptive optics: a progress review. Proc. SPIE 1542:2–17 [Google Scholar]
  50. Horwitz BA. 1993. Comparison approach for wavefront sensors. Proc. SPIE 1920:186–92 [Google Scholar]
  51. Houpt A, Gordeyev S, Juliano TJ, Leonov S. 2016. Optical measurement of transient plasma impact on corner separation in M = 4.5 airflow Presented at AIAA Aerosp. Sci. Meet., 54th, San Diego, CA, AIAA Pap. 2016–2160 [Google Scholar]
  52. Hugo RJ, Jumper EJ. 1996. Experimental measurement of a time-varying optical path difference by the small-aperture beam technique. Appl. Opt. 35:4436–47 [Google Scholar]
  53. Hugo RJ, Jumper EJ. 2000. Applicability of the aero-optic linking equation to a highly coherent, transitional shear layer. Appl. Opt. 39:4392–401 [Google Scholar]
  54. Hugo RJ, Jumper EJ, Havener G, Stepanek SA. 1997. Time-resolved wavefront measurements through a compressible free shear layer. AIAA J. 35:671–77 [Google Scholar]
  55. Jumper EJ. 2013. Special section on aero-optics and adaptive optics for aero-optics. Opt. Eng. 527, Spec. Issue Bellingham, WA: SPIE [Google Scholar]
  56. Jumper EJ, Gordeyev S, Cavalieri D, Rollins P, Whiteley MR. et al. 2015. Airborne Aero-Optics Laboratory–Transonic (AAOL-T). Presented at AIAA Aerosp. Sci. Meet., 53rd, Kissimmee, FL, AIAA Pap 2015–0675 [Google Scholar]
  57. Jumper EJ, Hugo RJ. 1995. Quantification of aero-optical phase distortion using the small-aperture beam technique. AIAA J. 33:2151–57 [Google Scholar]
  58. Jumper EJ, Fitzgerald EJ. 2001. Recent advances in aero-optics. Prog. Aerosp. Sci. 37:299–339 [Google Scholar]
  59. Jumper EJ, Zenk M, Gordeyev S, Cavalieri D, Whiteley MR. 2013. Airborne Aero-Optics Laboratory. Opt. Eng. 52:071408 [Google Scholar]
  60. Kamel M, Wang K, Wang M. 2016. Predictions of aero-optical distortions using LES with wall modeling Presented at AIAA Aerosp. Sci. Meet., 54th, San Diego, CA, AIAA Pap 2016–1462 [Google Scholar]
  61. Klein HH, Malley MM, Sapp O, Shough D, Sutton GW. et al. 1990. Experimental measurements of the optical path difference of a four-meter dual aerocurtain. Proc. SPIE 1221:404–13 [Google Scholar]
  62. Klein MV, Furtak TE. 1986. Optics New York: Wiley, 2nd ed.. [Google Scholar]
  63. Kyrazis D. 2013. Airborne Laser Laboratory departure from Kirtland Air Force Base and a brief history of aero-optics. Opt. Eng. 52:071403 [Google Scholar]
  64. Lamberson S, Schall HB, Alvarado OL. 2005. Overview of Airborne Laser's Test program Presented at US Air Force T&E Days Conf., Nashville, TN, AIAA Pap 2005–7650 [Google Scholar]
  65. Liepmann HW. 1952. Deflection and diffusion of a light ray passing through a boundary layer Tech. Rep. SM-14397 Douglas Aircr. Co. Santa Monica, CA: [Google Scholar]
  66. Maeder T, Adams NA, Kleiser L. 2001. Direct simulation of turbulent supersonic boundary layers by an extended temporal approach. J. Fluid Mech. 429:187–216 [Google Scholar]
  67. Mahajan VN. 1982. Strehl ratio for primary aberrations: some analytical results for circular and annular pupils. J. Opt. Soc. Am. 72:1258–66 [Google Scholar]
  68. Mahajan VN. 1983. Strehl ratio for primary aberrations in terms of their aberration variance. J. Opt. Soc. Am. 73:860–61 [Google Scholar]
  69. Malley M, Sutton GW, Kincheloe N. 1992. Beam-jitter measurements of turbulent aero-optical path differences. Appl. Opt. 31:4440–43 [Google Scholar]
  70. Masson B, Wissler J, McMackin L. 1994. Aero-optical study of a NC-135 fuselage boundary layer. Presented at Aerosp. Sci. Meet., 32nd, Reno, NV, AIAA Pap 1994–0277 [Google Scholar]
  71. Mathews E, Wang K, Wang M, Jumper EJ. 2016. LES of an aero-optical turret flow at high Reynolds number Presented at AIAA Aerosp. Sci. Meet., 54th, San Diego, CA, AIAA Pap 2016–1461 [Google Scholar]
  72. McMackin L, Hugo RJ, Pierson RE, Truman CR. 1997. High speed optical tomography system for imaging dynamic transparent media. Opt. Express 1:302–11 [Google Scholar]
  73. McMackin L, Masson B, Clark N, Bishop K, Pierson R. et al. 1995. Hartmann wave front sensor studies of dynamic organized structure in flowfields. AIAA J. 33:2058–64 [Google Scholar]
  74. Moler JL, Lamberson S. 2013. The Airborne Laser (ABL): a legacy and a future for high-energy lasers. Proc. SPIE 3268:99–105 [Google Scholar]
  75. Morkovin MV. 1962. Effects of compressibility on turbulent flows. Mechanique de la Turbulence A Favre 367–80 Paris: CNRS [Google Scholar]
  76. Morrida J, Gordeyev S, De Lucca N, Jumper EJ. 2016a. Aero-optical investigation of shock-related effects on hemisphere-on-cylinder turrets at transonic speeds. AIAA J. In press [Google Scholar]
  77. Morrida J, Gordeyev S, Jumper EJ. 2016b. Transonic flow dynamics over a hemisphere in flight. Presented at AIAA Aerosp. Sci. Meet., 54th, San Diego, CA, AIAA Pap 2016–1349 [Google Scholar]
  78. Neal DR, O'Hern TJ, Torczynski JR, Warren ME, Shul R. 1993. Wavefront sensors for optical diagnostics in fluid mechanics: application to heated flow, turbulence and droplet evaporation. Proc. SPIE 2005:194–203 [Google Scholar]
  79. Nightingale AM, Gordeyev S, Jumper EJ. 2009. Optical characterization of a simulated weakly compressible shear layer: unforced and forced. AIAA J. 47:2298–305 [Google Scholar]
  80. Nightingale AM, Goodwine B, Lemmon M, Jumper EJ. 2013. Phase-locked-loop adaptive-optic controller and simulated shear layer correction. AIAA J. 51:2714–26 [Google Scholar]
  81. Nguyen M, Rennie RM, Gordeyev S, Jumper EJ, Cain AB. et al. 2015. Wavefront measurements of a supersonic boundary layer using a laser-induced breakdown spark Presented at AIAA Plasmadyn. Lasers Conf., 46th, Dallas, TX, AIAA Pap 2015–2804 [Google Scholar]
  82. Noll RJ. 1976. Zernike polynomials and atmospheric turbulence.. J. Opt. Soc. Am. 66:207–11 [Google Scholar]
  83. Otten LG, Gilbert KG. 1982. Inviscid flowfield effects: experimental results. See Gilbert & Otten 1982 233–44
  84. Pond J, Sutton G. 2006. Aero-optic performance of an aircraft forward-facing optical turret. J. Aircr. 43:600–7 [Google Scholar]
  85. Ponder ZB, Gordeyev S, Jumper EJ. 2011. Passive mitigation of aero-induced mechanical jitter of flat-windowed turrets Presented at AIAA Plasmadyn. Lasers Conf., 42nd, Honolulu, HI, AIAA Pap 2011–3281 [Google Scholar]
  86. Ponder ZB, Jumper EJ. 2011. High-speed schlieren imaging through a two-dimensional weakly-compressible shear layer Presented at AIAA Aerosp. Sci. Meet., 49th, Orlando, FL, AIAA Pap 2011–42 [Google Scholar]
  87. Ponder ZB, Rennie RM, Abado S, Jumper EJ. 2010. Spanwise wavefront measurements through a two-dimensional weakly-compressible shear layer Presented at AIAA Plasmadyn. Lasers Conf., 41st, Chicago, IL, AIAA Pap 2010–4495 [Google Scholar]
  88. Porter C, Gordeyev S, Jumper EJ. 2013a. Large-aperture approximation for not-so-large apertures. Opt. Eng. 52:071417 [Google Scholar]
  89. Porter C, Gordeyev S, Zenk M, Jumper EJ. 2013b. Flight measurements of the aero-optical environment around a flat-windowed turret. AIAA J. 51:1394–403 [Google Scholar]
  90. Porter C, Rennie M, Jumper EJ. 2013c. Aero-optic effects of a wingtip vortex. AIAA J. 51:1533–41 [Google Scholar]
  91. Ranade P, Duvvuri S, McKeon B, Gordeyev S, Christensen K, Jumper EJ. 2016. Turbulence amplitude modulation in an externally-forced, subsonic turbulent boundary layer. Presented at AIAA Aerosp. Sci. Meet., 54th, San Diego, CA, AIAA Pap.. 2016–1120 [Google Scholar]
  92. Reid JZ, Lynch KP, Thurow BS. 2010. Further development of a high-speed 3-D density measurement technique for aero-optics Presented at Fluid Dyn. Conf., 40th, Chicago, IL, AIAA Pap 2010–4844 [Google Scholar]
  93. Reid JZ, Lynch KP, Thurow BS. 2013. Density measurements of a turbulent wake using acetone planar laser-induced fluorescence. AIAA J. 51:829–39 [Google Scholar]
  94. Rennie RM, Duffin DA, Jumper EJ. 2008. Characterization and aero-optic correction of a forced two-dimensional weakly compressible shear layer. AIAA J. 46:2787–95 [Google Scholar]
  95. Rose WC. 1979. Measurements of aerodynamic parameters affecting optical performance Final Rep. AFWRL-TR-78-191, Air Force Weapons Lab., Kirtland Air Force Base, NM [Google Scholar]
  96. Rose WC, Johnson DA, Otten LJ. 1982. Summary of ALL Cycle II.5 aerodynamic shear- and boundary-layer measurements. See Gilbert & Otten 1982 294–305
  97. Rose WC, Otten LJ. 1982. Airborne measurement of atmospheric turbulence. See Gilbert & Otten 1982 325–40
  98. Ross TS. 2009. Limitations and applicability of the Marechal approximation. Appl. Opt. 48:1812–18 [Google Scholar]
  99. Saxton-Fox T, Gordeyev S, Smith A, McKeon B. 2015. Connections between density, wall-normal velocity, and coherent structure in a heated turbulent boundary layer. Presented at Annu. Meet. APS Div. Fluid Dyn. , 68th. Boston, MA: [Google Scholar]
  100. Saxton-Fox T, McKeon B, Smith A, Gordeyev S. 2014. Simultaneous measurement of aero-optical distortion and turbulent structure in a heated boundary layer. Presented at Annu. Meet. APS Div. Fluid Dyn. , 67th. San Francisco, CA: [Google Scholar]
  101. Schmid PJ. 2010. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656:5–28 [Google Scholar]
  102. Schwiegerling J, Neal DR. 2014. Historical development of the Shack-Hartmann wavefront sensor. Proc. SPIE 9186:91860U [Google Scholar]
  103. Seidel J, Siegel S, McLaughlin T. 2009. Computational investigation of aero-optical distortions in a free shear layer Presented at AIAA Aerosp. Sci. Meet., 47th, Orlando, FL, AIAA Pap 2009–362 [Google Scholar]
  104. Siegel S, Seidel J, McLaughlin T. 2009. Experimental study of aero-optical distortions in a free shear layer Presented at Aerosp. Sci. Meet., 47th, Orlando, FL, AIAA Pap 2009–361 [Google Scholar]
  105. Siegenthaler J, Gordeyev S, Jumper E. 2005. Shear layers and aperture effects for aero-optics. Presented at AIAA Plasmadyn. Lasers Conf., 36th, Toronto, AIAA Pap 2005–4772 [Google Scholar]
  106. Siegenthaler JP, Jumper EJ. 2007. Aperture effects in aero-optics and beam control. J. Dir. Energy 2:4325–46 [Google Scholar]
  107. Small RD, Weihs D. 1976. Boundary layer effects in optical measurements in gas dynamics. Appl. Opt. 15:1591–94 [Google Scholar]
  108. Smith AE. 2015. Evaluation of passive boundary layer flow control techniques for aero-optic mitigation PhD Thesis Univ. Notre Dame [Google Scholar]
  109. Smith AE, Gordeyev S, Ahmed H, Ahmed A, Wittich DJ. et al. 2014a. Shack-Hartmann wavefront measurements of supersonic turbulent boundary layers in the TGF Presented at AIAA Plasmadyn. Lasers Conf., 45th, Atlanta, GA, AIAA Pap 2014–2493 [Google Scholar]
  110. Smith AE, Gordeyev S, Jumper EJ. 2011. Aero optics of subsonic boundary layers over backward steps Presented at AIAA Plasmadyn. Lasers Conf., 42nd, Honolulu, HI, AIAA Pap 2011–3277 [Google Scholar]
  111. Smith AE, Gordeyev S, Saxton-Fox T, McKeon B. 2014b. Subsonic boundary-layer wavefront spectra for a range of Reynolds numbers Presented at AIAA Plasmadyn. Lasers Conf., 45th, Atlanta, GA, AIAA Pap 2014–2491 [Google Scholar]
  112. Smith DR, Smits AJ. 1993. Simultaneous measurement of velocity and temperature fluctuations in the boundary layer of supersonic flow. Exp. Therm. Fluid Sci. 7:221–29 [Google Scholar]
  113. Smits AJ, Dussauge JP. 1996. Turbulent Shear Layers in Supersonic Flow Woodbury, NY: Am. Inst. Phys. [Google Scholar]
  114. Speaker WV, Ailman CM. 1966. Static and fluctuation pressures in regions of separated flow Presented at AIAA Aerosp. Sci. Meet., 4th, New York, AIAA Pap 1966–456 [Google Scholar]
  115. Spina EF, Donovan JF, Smits AJ. 1991. Convection velocity in supersonic turbulent boundary layers. Phys. Fluids A 3:3124–26 [Google Scholar]
  116. Spina EF, Smits AJ, Robinson SK. 1994. The physics of supersonic turbulent boundary layers. Annu. Rev. Fluid Mech. 26:287–319 [Google Scholar]
  117. Steinmetz WJ. 1982. Second moments of optical degradation due to a thin turbulent layer. See Gilbert & Otten 1982 78–100
  118. Stine HA, Winovich W. 1956. Light diffusion through high-speed turbulent boundary layers Res. Memo. A56B21, Natl. Advis. Comm. Aeronaut. Washington, DC: [Google Scholar]
  119. Sutton GW. 1969. Effects of turbulent fluctuations in an optically active fluid medium. AIAA J. 7:1737–43 [Google Scholar]
  120. Sutton GW. 1985. Aero-optical foundations and applications. AIAA J. 23:1525–37 [Google Scholar]
  121. Tatarski VI. 1961. Wave Propagation in a Turbulent Medium New York: McGraw-Hill [Google Scholar]
  122. Thomas FO. 2015. A new scaling for adverse pressure gradient turbulent boundary layers. Presented at Euro. Turbul. Conf., 15th Delft, The Netherlands: [Google Scholar]
  123. Trolinger JD. 1982. Aero-optical characterization of aircraft optical turrets by holography, interferometry and shadowgraph. See Gilbert & Otten 1982 200–17
  124. Tromeur E, Garnier E, Sagaut P, Basdevant C. 2003. Large eddy simulations of aero-optical effects in a turbulent boundary layer. J. Turbul. 4:N5 [Google Scholar]
  125. Tyson RK. 1997. Principles of Adaptive Optics New York: Academic, 2nd ed.. [Google Scholar]
  126. Visbal MR. 2009. Numerical simulation of aero-optical aberration through weakly-compressible shear layers Presented at AIAA Fluid Dyn. Conf., 39th, San Antonio, TX, AIAA Pap 2009–4298 [Google Scholar]
  127. Vorobiev A, Gordeyev S, Jumper EJ, Gogineni S, Marruffo A. et al. 2014. Low-dimensional dynamics and modeling of shock-separation interaction over turrets at transonic speeds Presented at AIAA Plasmadyn. Lasers Conf., 45th, Atlanta, GA, AIAA Pap 2014–2357 [Google Scholar]
  128. Vukasinovic B, Glezer A, Gordeyev S, Jumper EJ, Kibens V. 2008. Active control and optical diagnostics of the flow over a hemispherical turret Presented at Aerosp. Sci. Meet., 46th, Reno, NV, AIAA Pap 2008–0598 [Google Scholar]
  129. Vukasinovic B, Glezer A, Gordeyev S, Jumper EJ, Kibens V. 2011. Hybrid control of a turret wake. AIAA J. 49:1240–55 [Google Scholar]
  130. Wang K, Wang M. 2009. Numerical simulation of aero-optical distortions by a turbulent boundary layer and separated shear layer Presented at AIAA Plasmadyn. Lasers Conf., 40th, San Antonio, TX, AIAA Pap 2009–4223 [Google Scholar]
  131. Wang K, Wang M. 2013. On the accuracy of Malley probe measurements of aero-optical effects: a numerical investigation. Opt. Eng. 52:071407 [Google Scholar]
  132. Wang K, Wang M, Gordeyev S, Jumper EJ. 2010. Computation of aero-optical distortions over a cylindrical turret with passive flow control. Presented at AIAA Plasmadyn. Lasers Conf., 41st, Chicago, IL, AIAA Pap 2010–4498 [Google Scholar]
  133. Wang M, Mani A, Gordeyev S. 2012. Physics and computation of aero-optics. Annu. Rev. Fluid Mech. 44:299–321 [Google Scholar]
  134. Weston CP, Jumper EJ. 2002. Influence of periodic compressible vortices on laser beam intensity. Presented at AIAA Plasmadyn. Lasers Conf., 33rd, Maui, AIAA Pap 2002–2276 [Google Scholar]
  135. Wittich DJ. 2009. Subsonic flow over open and partially-covered, rectangular cavities PhD Thesis Univ. Notre Dame [Google Scholar]
  136. Wittich DJ, Gordeyev S, Jumper EJ. 2007. Revised scaling of optical distortions caused by compressible, subsonic turbulent boundary layers. Presented at AIAA Plasmadyn. Lasers Conf., 38th, Miami, FL, AIAA Pap 2007–4009 [Google Scholar]
  137. Wittich DJ, Paul M, Ahmed H, Ahmed A, Smith AE. et al. 2014. Aero-optic characterization of supersonic boundary layers in the Trisonic Gasdynamic Facility Presented at AIAA Plasmadyn. Lasers Conf., 45th, Atlanta, GA, AIAA Pap 2014–2356 [Google Scholar]
  138. White MD, Visbal MR. 2012. Aero-optics of compressible boundary layers in the transonic regime Presented at AIAA Plasmadyn. Lasers Conf., 43rd, New Orleans, LA, AIAA Pap 2012–2984 [Google Scholar]
  139. White MD, Visbal MR. 2013. Computational investigation of wall cooling and suction on the aberrating structures in a transonic boundary layer Presented at AIAA Aerosp. Sci. Meet., 51st, Grapevine, TX, AIAA Pap 2013–0720 [Google Scholar]
  140. Whiteley MR, Goorskey DJ, Drye R. 2013. Aero-optical jitter estimation using higher-order wavefronts. Opt. Eng. 52:071411 [Google Scholar]
  141. Wolters DJ. 1973. Aerodynamic effects on airborne optical systems Tech. Rep. MDC A2582, McDonnell Douglas Corp., St Louis, MO: [Google Scholar]
  142. Wyckham CM, Smits AJ. 2009. Aero-optic distortion in transonic and hypersonic turbulent boundary layers. AIAA J. 47:2158–68 [Google Scholar]
  143. Zubair FR, Catrakis HJ. 2007. Aero-optical interactions along laser beam propagation paths in compressible turbulence. AIAA J. 45:1663–74 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010816-060315
Loading
/content/journals/10.1146/annurev-fluid-010816-060315
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error