Research activities on inflow turbulence generation methods have been vigorous over the past quarter century, accompanying advances in eddy-resolving computations of spatially developing turbulent flows with direct numerical simulation, large-eddy simulation (LES), and hybrid Reynolds-averaged Navier-Stokes–LES. The weak recycling method, rooted in scaling arguments on the canonical incompressible boundary layer, has been applied to supersonic boundary layer, rough surface boundary layer, and microscale urban canopy LES coupled with mesoscale numerical weather forecasting. Synthetic methods, originating from analytical approximation to homogeneous isotropic turbulence, have branched out into several robust methods, including the synthetic random Fourier method, synthetic digital filtering method, synthetic coherent eddy method, and synthetic volume forcing method. This article reviews major progress in inflow turbulence generation methods with an emphasis on fundamental ideas, key milestones, representative applications, and critical issues. Directions for future research in the field are also highlighted.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abboud AW, Smith ST. 2014. Large eddy simulation of a coaxial jet with a synthetic turbulent inlet. Int. J. Heat Fluid Flow 50:240–53 [Google Scholar]
  2. Aboshosha H, Elshaer A, Bitsuamlak GT, El Damatty A. 2015. Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings. J. Wind Eng. Ind. Aerodyn. 142:198–216 [Google Scholar]
  3. Araya G, Castillo L, Hussain F. 2015. The log behaviour of the Reynolds shear stress in accelerating turbulent boundary layers. J. Fluid Mech. 775:189–200 [Google Scholar]
  4. Araya G, Castillo L, Meneveau C, Jansen K. 2011. A dynamic multi-scale approach for turbulent inflow boundary conditions in spatially developing flows. J. Fluid Mech. 670:581–605 [Google Scholar]
  5. Araya G, Jansen K, Castillo L. 2009. Inlet condition generation for spatially developing turbulent boundary layers via multiscale similarity. J. Turbul. 10:N36 [Google Scholar]
  6. Arolla SK, Durbin PA. 2014. Generating inflow turbulence for eddy simulation of turbomachinery flows Presented at AIAA Aerosp. Sci. Meet., 52nd, National Harbor, MD, AIAA Pap 2014–0593 [Google Scholar]
  7. Bailly C, Juvé D. 1999. A stochastic approach to compute subsonic noise using linearized Euler's equations Presented at AIAA/CEAS Aeroacoust. Conf. Exhib., 5th, AIAA Pap 1999–1872 [Google Scholar]
  8. Batten P, Goldberg U, Chakravarthy S. 2004. Interfacing statistical turbulence closures with large-eddy simulation. AIAA J. 42:485–92 [Google Scholar]
  9. Béchara W, Bailly C, Lafon P, Candel SM. 1994. Stochastic approach to noise modeling for free turbulent flows. AIAA J. 32:455–63 [Google Scholar]
  10. Billson M, Eriksson LE, Davidson L. 2004. Jet noise modeling using synthetic anisotropic turbulence Presented at AIAA/CEAS Aeroacoust. Conf., 10th, Manchester, UK, AIAA Pap 2004–3028 [Google Scholar]
  11. Boles JA, Choi JI, Edwards JR, Baurle RA. 2010. Multi-wall recycling rescaling method for inflow turbulence generation Presented at AIAA Aerosp. Sci. Meet., 48th, Orlando, FL, AIAA Pap 2010–1099 [Google Scholar]
  12. Bradshaw P. 1977. Compressible turbulent shear layers. Annu. Rev. Fluid Mech. 9:33–54 [Google Scholar]
  13. Cardillo J, Chen Y, Araya G, Newman J, Jansen K, Castillo L. 2013. DNS of a turbulent boundary layer with surface roughness. J. Fluid Mech. 729:603–37 [Google Scholar]
  14. Castro HG, Paz RR. 2013. A time and space correlated turbulence synthesis method for Large Eddy Simulations. J. Comput. Phys. 235:742–63 [Google Scholar]
  15. Chung YM, Sung HJ. 1997. Comparative study of inflow conditions for spatially evolving simulation. AIAA J. 35:269–74 [Google Scholar]
  16. Colonius T. 2004. Modeling artificial boundary conditions for compressible flow. Annu. Rev. Fluid Mech. 36:315–45 [Google Scholar]
  17. Davidson L, Billson M. 2006. Hybrid LES-RANS using synthesized turbulent fluctuations for forcing in the interface region. Int. J. Heat Fluid Flow 27:1028–42 [Google Scholar]
  18. De Laage de Meux B, Audebert B, Manceau R, Perrin R. 2015. Anisotropic linear forcing for synthetic turbulence generation in large eddy simulation and hybrid RANS/LES modeling. Phys. Fluids 27:035115 [Google Scholar]
  19. De Prisco G, Piomelli U, Keating A. 2008. Improved turbulence generation technique for hybrid RANS/LES calculations. J. Turbul. 9:N5 [Google Scholar]
  20. Deck S, Weiss , Pamiès M, Garnier E. 2011. Zonal detached eddy simulation of a spatially developing flat plate boundary layer. Comput. Fluids 48:1–15 [Google Scholar]
  21. Dhamankar NS, Blaisdell GA, Lyrintzis AS. 2015. An overview of turbulent inflow boundary conditions for large eddy simulations Presented at AIAA Comput. Fluid Dyn. Conf., 22nd, Dallas, TX, AIAA Pap 2015–3213 [Google Scholar]
  22. di Mare L, Klein M, Jones WP, Janicka J. 2006. Synthetic turbulence inflow conditions for large-eddy simulation. Phys. Fluids 18:025107 [Google Scholar]
  23. Dietzel D, Messig D, Piscaglia F, Montorfano A, Olenik G. et al. 2014. Evaluation of scale resolving turbulence generation methods for large eddy simulation of turbulent flows. Comput. Fluids 93:116–28 [Google Scholar]
  24. Druault P, Lardeau S, Bonnet JP, Coiffet F, Delville J. et al. 2004. Generation of three-dimensional turbulent inlet conditions for large-eddy simulation. AIAA J. 42:447–56 [Google Scholar]
  25. Drummond IT, Duane S, Horgan RR. 1984. Scalar diffusion in simulated helical turbulence with molecular diffusivity. J. Fluid Mech. 138:75–91 [Google Scholar]
  26. Fan CC, Xiao X, Edwards JR, Hassan HA, Baurle RA. 2004. Hybrid large-eddy/Reynolds-averaged Navier-Stokes simulations of shock-separated flows. AIAA J. Spacecr. Rockets 41:897–906 [Google Scholar]
  27. Fathali M, Klein M, Broeckhoven T, Lacor C, Baelmans M. 2008. Generation of turbulent inflow and initial conditions based on multi-correlated random fields. Int. J. Numer. Methods Fluids 57:93–117 [Google Scholar]
  28. Ferrante A, Elghobashi SE. 2004. A robust method for generating inflow conditions for direct simulations of spatially-developing turbulent boundary layers. J. Comput. Phys. 198:372–87 [Google Scholar]
  29. Franko KJ, Lele S. 2014. Effect of adverse pressure gradient on high speed boundary layer transition. Phys. Fluids 26:024106 [Google Scholar]
  30. Freund JB. 1997. Proposed inflow/outflow boundary conditions for direct computation of aerodynamic sound. AIAA J. 35:740–42 [Google Scholar]
  31. García J, Muñoz-Paniagua J, Jiménez A, Migoya E, Crespo A. 2015. Numerical study of the influence of synthetic turbulent inflow conditions on the aerodynamics of a train. J. Fluids Struct. 56:134–51 [Google Scholar]
  32. Garnier E. 2009. Stimulated detached eddy simulation of three-dimensional shock/boundary layer interaction. Shock Waves 19:479–86 [Google Scholar]
  33. Gloerfelt X, Le Garrec T. 2008. Generation of inflow turbulence for aeroacoustic applications Presented at AIAA/CEAS Aeroacoust. Conf., 14th, Vancouver, AIAA Pap 2008–2926 [Google Scholar]
  34. Gopalan H, Gundling C, Brown K, Roget B, Sitaraman J. et al. 2014. A coupled mesoscale-microscale framework for wind resource estimation and farm aerodynamics. J. Wind Eng. Ind. Aerodyn. 132:13–26 [Google Scholar]
  35. Hoshiya M. 1972. Simulation of multi-correlated random process and application to structural vibration problems. Proc. JSCE 204:121–28 [Google Scholar]
  36. Huang SH, Li QS, Wu JR. 2010. A general inflow turbulence generator for large eddy simulation. J. Wind Eng. Ind. Aerodyn. 98:600–17 [Google Scholar]
  37. Jarrin N, Benhamadouche S, Laurence D, Prosser R. 2006. A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int. J. Heat Fluid Flow 27:585–93 [Google Scholar]
  38. Jewkes JW, Chung YM, Carpenter PW. 2011. Modification to a turbulent inflow generation method for boundary layer flows. AIAA J. 49:247–50 [Google Scholar]
  39. Jiang G, Yoshie R, Shirasawa T, Jin X. 2012. Inflow turbulence generation for large eddy simulation in non-isothermal boundary layers. J. Wind Eng. Ind. Aerodyn. 104–6:369–78 [Google Scholar]
  40. Jiménez J. 2004. Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36:173–96 [Google Scholar]
  41. Jiménez J, Hoyas S, Simens MP, Mizuno Y. 2010. Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. 657:335–60 [Google Scholar]
  42. Johansson PS, Andersson HI. 2004. Generation of inflow data for inhomogeneous turbulence. Theor. Comput. Fluid Dyn. 18:371–89 [Google Scholar]
  43. Kalitzin G, Wu X, Durbin PA. 2003. DNS of fully turbulent flow in a LPT passage. Int. J. Heat Fluid Flow 24:636–44 [Google Scholar]
  44. Karweit M, Blanc-Benon P, Juvé D, Comte-Bellot G. 1991. Simulation of the propagation of an acoustic wave through a turbulent velocity field: a study of phase variance. J. Acoust. Soc. Am. 89:52–62 [Google Scholar]
  45. Kataoka H. 2008. Numerical simulations of a wind-induced vibrating square cylinder within turbulent boundary layer. J. Wind Eng. Ind. Aerodyn. 96:1985–97 [Google Scholar]
  46. Keating A, De Prisco G, Piomelli U. 2006. Interface conditions for hybrid RANS/LES calculations. Int. J. Heat Fluid Flow 27:4696–712 [Google Scholar]
  47. Keating A, Piomelli U, Balaras E, Kaltenbach HJ. 2004. A priori and a posteriori tests of inflow conditions for large-eddy simulation. Phys. Fluids 16:2623–39 [Google Scholar]
  48. Keck R-E, Mikkelsen R, Troldborg N, de Maré M, Hansen KS. 2014. Synthetic atmospheric turbulence and wind shear in large eddy simulations of wind turbine wakes. Wind Energy 17:1247–67 [Google Scholar]
  49. Kempf A, Klein M, Janicka J. 2005. Efficient generation of initial- and inflow-conditions for transient turbulent flows in arbitrary geometries. Flow Turbul. Combust. 74:67–84 [Google Scholar]
  50. Kempf A, Wysocki S, Pettit M. 2012. An efficient, parallel low-storage implementation of Klein's turbulence generator for LES and DNS. Comput. Fluids 60:58–60 [Google Scholar]
  51. Khujadze G, Oberlack M. 2004. DNS and scaling laws from new symmetry groups of ZPG turbulent boundary layer flow. Theor. Comput. Fluid Dyn. 18:391–411 [Google Scholar]
  52. Kim JW, Haeri S. 2015. An advanced synthetic eddy method for the computation of aerofoil turbulence interaction noise. J. Comput. Phys. 287:1–17 [Google Scholar]
  53. Kim Y, Castro IP, Xie Z. 2013. Divergence-free turbulent inflow conditions for large eddy simulations with incompressible flow solvers. Comput. Fluids 84:56–68 [Google Scholar]
  54. Klein M, Sadiki A, Janicka J. 2003. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186:652–65 [Google Scholar]
  55. Knight DD. 2006. Inflow boundary conditions for DNS and LES of compressible turbulent boundary layers Presented at AIAA Aerosp. Sci. Meet. Exhib., 44th, Reno, NV, AIAA Pap 2006–498 [Google Scholar]
  56. Kondo K, Murakami S, Mochida A. 1997. Generation of velocity fluctuations for inflow boundary condition of LES. J. Wind Eng. Ind. Aerodyn. 67–68:51–64 [Google Scholar]
  57. Kong H, Choi H, Lee JS. 2000. Direct numerical simulation of turbulent thermal boundary layers. Phys. Fluids 12:2555–68 [Google Scholar]
  58. Kornev N, Hassel E. 2007. Method of random spots for generation of synthetic inhomogeneous turbulent fields with prescribed autocorrelation functions. Commun. Numer. Methods Eng. 23:35–43 [Google Scholar]
  59. Kraichnan RH. 1970. Diffusion by a random velocity field. Phys. Fluids 13:22–31 [Google Scholar]
  60. Lagha M, Kim J, Eldredge JD, Zhong X. 2011. A numerical study of compressible turbulent boundary layers. Phys. Fluids 23:015106 [Google Scholar]
  61. Laraufie R, Deck S, Sagaut P. 2011. A dynamic forcing method for unsteady turbulent inflow conditions. J. Comput. Phys. 230:8647–63 [Google Scholar]
  62. Larsson J. 2009. Blending technique for compressible inflow turbulence: algorithm localization and accuracy assessment. J. Comput. Phys. 228:933–37 [Google Scholar]
  63. Le H, Moin P. 1994. Direct numerical simulation of turbulent flow over a backward-facing step Rep. TF-58, Thermosci. Div., Dep. Mech. Eng., Stanford Univ. Stanford, CA: [Google Scholar]
  64. Le H, Moin P, Kim J. 1997. Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330:349–74 [Google Scholar]
  65. Lee JH, Sung HJ. 2011a. Direct numerical simulation of a turbulent boundary layer up to Reθ = 2500. Int. J. Heat Fluid Flow 32:1–10 [Google Scholar]
  66. Lee JH, Sung HJ. 2011b. Very-large-scale motions in a turbulent boundary layer. J. Fluid Mech. 673:80–120 [Google Scholar]
  67. Lee S, Lele SK, Moin P. 1992. Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow. Phys. Fluids A 4:1521–30 [Google Scholar]
  68. Lee S, Lele SK, Moin P. 1993. Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech. 251:533–62 [Google Scholar]
  69. Lee SH, Sung HJ. 2007. Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall. J. Fluid Mech. 584:125–46 [Google Scholar]
  70. Li Q, Coleman GN. 2004. DNS of an oblique shock wave impinging upon a turbulent boundary layer. Direct and Large-Eddy Simulation V R Friedrich, BJ Geurts, O Métais 387–96 New York: Springer [Google Scholar]
  71. Li YC, Cheng CM, Lo YL, Fang FM, Zheng DQ. 2015. Simulation of turbulent flows around a prism in suburban terrain inflow based on random flow generation method simulation. J. Wind Eng. Ind. Aerodyn. 146:51–58 [Google Scholar]
  72. Liu K, Pletcher RH. 2006. Inflow conditions for the large eddy simulation of turbulent boundary layers: a dynamic recycling procedure. J. Comput. Phys. 219:1–6 [Google Scholar]
  73. Lund T, Moin P. 1996. Large eddy simulation of a concave wall boundary layer. Int. J. Heat Fluid Flow 17:290–95 [Google Scholar]
  74. Lund T, Wu X, Squires KD. 1998. Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140:233–58 [Google Scholar]
  75. Mahesh K, Lele SK, Moin P. 1997. The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech. 334:353–79 [Google Scholar]
  76. Marusic I, Perry AE. 1995. A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support. J. Fluid Mech. 298:389–407 [Google Scholar]
  77. Maruyama T, Rodi W, Maruyama Y, Hiraoka H. 1999. Large eddy simulation of the turbulent boundary layer behind roughness elements using an artificially generated inflow. J. Wind Eng. Ind. Aerodyn. 83:381–92 [Google Scholar]
  78. Maruyama R, Tamura T, Okuda Y, Ohashi M. 2012. LES of turbulent boundary layer for inflow generation using stereo PIV measurement data. J. Wind Eng. Ind. Aerodyn. 104–6:379–88 [Google Scholar]
  79. Maxey MR. 1987. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields.. J. Fluid Mech. 174:441–65 [Google Scholar]
  80. Mayor SD, Spalart PR, Tripoli GJ. 2002. Application of a perturbation recycling method in the large-eddy simulation of a mesoscale convective internal boundary layer. J. Atmos. Sci. 59:2385–95 [Google Scholar]
  81. Mirocha J, Kosović B, Kirkil G. 2014. Resolved turbulence characteristics in large-eddy simulations nested within mesoscale simulations using the Weather Research and Forecasting model. Mon. Weather Rev. 142:806–31 [Google Scholar]
  82. Moin P, Kim J. 1982. Numerical investigation of turbulent channel flow. J. Fluid Mech. 118:341–77 [Google Scholar]
  83. Moin P, Mahesh K. 1998. Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30:539–78 [Google Scholar]
  84. Morgan B, Duraisamy K, Lele SK. 2014. Large eddy simulation of a normal shock train in a constant area isolator. AIAA J. 52:539–58 [Google Scholar]
  85. Morgan B, Larsson J, Kawai S, Lele SK. 2011. Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation. AIAA J. 49:582–97 [Google Scholar]
  86. Mullenix NJ, Gaitonde DV, Visbal MR. 2013. Spatially developing supersonic turbulent boundary layers with a body-force-based method. AIAA J. 51:1805–19 [Google Scholar]
  87. Muñoz-Esparza D, Kosović B, van Beeck J, Mirocha J. 2015. A stochastic perturbation method to generate inflow turbulence in large eddy simulation models: application to neutrally stratified atmospheric boundary layers. Phys. Fluids 27:035102 [Google Scholar]
  88. Munters W, Meneveau C, Meyers J. 2016. Shifted periodic boundary conditions for simulations of wall-bounded turbulent flows. Phys. Fluids 28:025112 [Google Scholar]
  89. Na Y, Moin P. 1998. Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374:379–405 [Google Scholar]
  90. Nakayama H, Takemi T, Nagai H. 2012. Large-eddy simulation of urban boundary-layer flows by generating turbulent inflows from mesoscale meteorological simulations. Atmos. Sci. Lett. 13:180–86 [Google Scholar]
  91. Nikitin N. 2007. Spatial periodicity of spatially evolving turbulent flow caused by inflow boundary condition. Phys. Fluids 19:091703 [Google Scholar]
  92. Nozawa K, Tamura T. 2002. Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer. J. Wind Eng. Ind. Aerodyn. 90:1151–62 [Google Scholar]
  93. Pamiès M, Weiss , Garnier E, Deck S, Sagaut P. 2009. Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows. Phys. Fluids 21:045103 [Google Scholar]
  94. Park SB, Baik JJ, Lee SH. 2015. Impacts of mesoscale wind on turbulent flow and ventilation in a densely build-up urban area. J. Appl. Meteorol. Climatol. 54:811–24 [Google Scholar]
  95. Perret L, Delville J, Manceau R, Bonnet JP. 2006. Generation of turbulent inflow conditions for large-eddy simulation from stereoscopic PIV measurements. Int. J. Heat Fluid Flow 27:576–84 [Google Scholar]
  96. Perret L, Delville J, Manceau R, Bonnet JP. 2008. Turbulent inflow conditions for large-eddy simulation based on low-order empirical model. Phys. Fluids 20:075107 [Google Scholar]
  97. Perry AE, Chong MS. 1982. On the mechanism of wall turbulence. J. Fluid Mech. 119:173–217 [Google Scholar]
  98. Pierce CD, Moin P. 1998. Method for generating equilibrium swirling inflow conditions. AIAA J. 36:1325–27 [Google Scholar]
  99. Pierce CD, Moin P. 2004. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504:73–97 [Google Scholar]
  100. Pirozzoli S, Bernardini M. 2011. Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA J. 49:1307–12 [Google Scholar]
  101. Pirozzoli S, Bernardini M. 2013. Probing high Reynolds number effects in numerical boundary layers. Phys. Fluids 25:021704 [Google Scholar]
  102. Pirozzoli S, Grasso F, Gatski TB. 2004. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25. Phys. Fluids 16:530–45 [Google Scholar]
  103. Poletto R, Craft T, Revell A. 2013. A new divergence free synthetic–eddy method for the reproduction of inlet flow conditions for LES. Flow Turbul. Combust. 91:519–39 [Google Scholar]
  104. Priebe S, Martin MP. 2010. Low frequency unsteadiness in the DNS of a compression ramp shockwave and turbulent boundary layer interaction Presented at AIAA Aerosp. Sci. Meet., 48th, Orlando, FL, AIAA Pap 2010–108 [Google Scholar]
  105. Rai MM, Moin P. 1993. Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer. J. Comput. Phys. 109:169–92 [Google Scholar]
  106. Rai RK, Gopalan H, Naughton JW. 2016. Effects of spatial and temporal resolution of the turbulent inflow on wind turbine performance estimation. Wind Energy. In press. doi:10.1002/we.1888 [Google Scholar]
  107. Rogallo RS. 1981. Numerical experiments in homogeneous turbulence Tech. Memo 81315, NASA Ames Res. Cent., Moffett Field, CA [Google Scholar]
  108. Rogallo RS, Moin P. 1984. Numerical simulation of turbulent flows. Annu. Rev. Fluid Mech. 16:99–137 [Google Scholar]
  109. Roidl B, Meinke M, Schröder W. 2013. A reformulated synthetic turbulence generation method for a zonal RANS-LES method and its application to zero-pressure gradient boundary layers. Int. J. Heat Fluid Flow 44:28–40 [Google Scholar]
  110. Roussel C, Alizard F, Grasso F. 2015. Turbulence generation and sensitivity to mean inflow conditions for a supersonic flow in a rectangular duct at M = 1.61 Presented at AIAA Comput. Fluid Dyn. Conf., 22nd, Dallas, TX, AIAA Pap. 2015–2618 [Google Scholar]
  111. Sagaut P, Garnier E, Tromeur E, Larchevêque L, Labourasse E. 2004. Turbulent inflow conditions for large-eddy simulation of compressible wall-bounded flows. AIAA J. 42:469–77 [Google Scholar]
  112. Saghafian A, Shunn L, Philips DA, Ham F. 2015. Large eddy simulations of the HIFiRE scramjet using a compressible flamelet/progress variable approach. Proc. Combust. Inst. 35:2163–72 [Google Scholar]
  113. Sandham ND, Yao YF, Lawal AA. 2003. Large-eddy simulation of transonic turbulent flow over a bump. Int. J. Heat Fluid Flow 24:584–95 [Google Scholar]
  114. Sayadi T, Hamman CW, Moin P. 2013. Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers. J. Fluid Mech. 724:480–509 [Google Scholar]
  115. Schlatter P, Örlü R. 2010. Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659:116–26 [Google Scholar]
  116. Schlatter P, Örlü R. 2012. Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710:5–34 [Google Scholar]
  117. Schlüter JU, Pitsch H, Moin P. 2004. Large-eddy simulation inflow conditions for coupling with Reynolds-averaged flow solvers. AIAA J. 42:478–84 [Google Scholar]
  118. Schlüter JU, Wu X, Kim S, Shankaran S, Alonso JJ, Pitsch H. 2005. A framework for coupling Reynolds-averaged with large-eddy simulations for gas turbine applications. ASME J. Fluids Eng. 127:806–15 [Google Scholar]
  119. Schmidt S, Breuer M. 2015. Extended synthetic turbulent inflow generator within a hybrid LES URANS methodology for the prediction of non-equilibrium wall bounded flows. Flow Turbul. Combust. 95:669–707 [Google Scholar]
  120. Shur ML, Spalart PR, Strelets MK, Travin AK. 2014. Synthetic turbulence generators for RANS LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems. Flow Turbul. Combust. 93:63–92 [Google Scholar]
  121. Simens MP, Jiménez J, Hoyas S, Mizuno Y. 2009. A high-resolution code for turbulent boundary layers. J. Comput. Phys. 228:4218–31 [Google Scholar]
  122. Smirnov A, Shi S, Celik I. 2001. Random flow generation technique for large eddy simulations and particle-dynamics modeling. ASME J. Fluids Eng. 123:359–71 [Google Scholar]
  123. Smits A, Dussauge J-P. 1996. Turbulent Shear Layers in Supersonic Flow Woodbury, NY: Am. Inst. Phys. [Google Scholar]
  124. Spalart PR. 1988. Direct simulation of a turbulent boundary layer up to Reθ = 1410. J. Fluid Mech. 187:61–98 [Google Scholar]
  125. Spalart PR. 2009. Detached-eddy simulation. Annu. Rev. Fluid Mech. 41:181–202 [Google Scholar]
  126. Spalart PR, Strelets M, Travin A. 2006. Direct numerical simulation of large-eddy-break-up devices in a boundary layer. Int. J. Heat Fluid Flow 27:902–10 [Google Scholar]
  127. Spille-Kohoff A, Kaltenbach HJ. 2001. Generation of turbulent inflow data with a prescribed shear-stress profile Compil. Part Notice ADP013648, Def. Tech. Inf. Cent., Fort Belvoir, VA [Google Scholar]
  128. Stevens RJAM, Meneveau C. 2017. Flow structure and turbulence in wind farms. Annu. Rev. Fluid Mech. 49311–39 [Google Scholar]
  129. Stolz S, Adams NA. 2003. Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique. Phys. Fluids 15:2398–412 [Google Scholar]
  130. Subbareddy P, Peterson D, Candler GV, Marusic I. 2006. A synthetic inflow generation method using the attached eddy hypothesis Presented at AIAA Appl. Aerodyn. Conf., 24th, San Francisco, AIAA Pap 2006–3672 [Google Scholar]
  131. Tabor GR, Baba-Ahmadi MH. 2010. Inlet conditions for large eddy simulation: a review. Comput. Fluids 39:553–67 [Google Scholar]
  132. Tamura T. 2008. Towards practical use of LES in wind engineering. J. Wind Eng. Ind. Aerodyn. 96:1451–71 [Google Scholar]
  133. Tamura T, Okuno A, Sugio Y. 2007. LES analysis of turbulent boundary layer over 3D steep hill covered with vegetation. J. Wind Eng. Ind. Aerodyn. 95:1463–75 [Google Scholar]
  134. Tamura T, Ono Y. 2003. LES analysis on aeroelastic instability of prisms in turbulent flow. J. Wind Eng. Ind. Aerodyn. 91:1827–46 [Google Scholar]
  135. Tomas JM, Pourquie MJBM, Jonker HJJ. 2015. The influence of an obstacle on flow and pollutant dispersion in neutral and stable boundary layers. Atmos. Environ. 113:236–46 [Google Scholar]
  136. Touber E, Sandham ND. 2009. Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23:79–107 [Google Scholar]
  137. Tyacke JC, Tucker PG. 2015. Future use of large eddy simulation in aero-engines. J. Turbomach. 137:081005 [Google Scholar]
  138. Urbin G, Knight D. 2001. Large-eddy simulation of a supersonic boundary layer using an unstructured grid. AIAA J. 39:1288–95 [Google Scholar]
  139. Veloudis I, Yang Z, McGuirk JJ, Page GJ, Spencer A. 2007. Novel implementation and assessment of a digital filter based approach for the generation of LES inlet conditions. Flow Turbul. Combust. 79:1–24 [Google Scholar]
  140. Wallace JM, Vukoslavčević PV. 2010. Measurement of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 42:157–81 [Google Scholar]
  141. Westerweel J, Elsinga GE, Adrian RJ. 2013. Particle image velocimetry for complex turbulent flows. Annu. Rev. Fluid Mech. 45:409–36 [Google Scholar]
  142. Wu X. 2010. Establishing the generality of three phenomena using a boundary layer with freestream passing wakes. J. Fluid Mech. 664:193–219 [Google Scholar]
  143. Wu X, Hickey J-P. 2012. Visualization of continuous stream of grid turbulence past the Langston turbine cascade. AIAA J. 50:215–25 [Google Scholar]
  144. Wu X, Li LT St. Hilaire M. 2009. Migration of a turbulent patch through a high-pressure turbine cascade. Phys. Fluids 21:025110 [Google Scholar]
  145. Wu X, Moin P. 2009. Direct numerical simulation of turbulence in a nominally-zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630:5–41 [Google Scholar]
  146. Wu X, Moin P, Adrian RJ, Baltzer JR. 2015. Osborne Reynolds pipe flow: direct simulation from laminar through gradual transition to fully developed turbulence. PNAS 112:7920–24 [Google Scholar]
  147. Wu X, Moin P, Hickey J-P. 2014. Boundary layer bypass transition. Phys. Fluids 26:091104 [Google Scholar]
  148. Wu X, Schlüter J, Moin P, Pitsch H, Iaccarino G, Ham F. 2006. Computational study on the internal layer in a diffuser. J. Fluid Mech. 550:391–412 [Google Scholar]
  149. Wu X, Squires KD. 1998. Numerical investigation of the turbulent boundary layer over a bump. J. Fluid Mech. 362:229–71 [Google Scholar]
  150. Wu X, Squires KD. 2000. Prediction and investigation of the turbulent flow over a rotating disk. J. Fluid Mech. 418:231–64 [Google Scholar]
  151. Wu X, Squires KD, Lund TS. 1995. Large eddy simulation of a spatially developing turbulent boundary layer. Proc. IEEE/ACM Supercomput. Conf.67 New York: IEEE [Google Scholar]
  152. Xiao X, Edwards JR, Hassan HA, Baurle RA. 2003. Inflow boundary conditions for hybrid large eddy/Reynolds averaged Navier-Stokes simulations. AIAA J. 41:1481–89 [Google Scholar]
  153. Xie ZT, Castro IP. 2008. Efficient generation of inflow conditions for large eddy simulation of street-scale flows. Flow Turbul. Combust. 81:449–70 [Google Scholar]
  154. Xiong Z, Nagarajan S, Lele SK. 2004. Simple method for generating inflow turbulence. AIAA J. 42:2164–66 [Google Scholar]
  155. Xu S, Martin MP. 2004. Assessment of inflow boundary conditions for compressible turbulent boundary layers. Phys. Fluids 16:2623–39 [Google Scholar]
  156. Yan BW, Li QS. 2015. Inflow turbulence generation methods with large eddy simulation for wind effects on tall buildings. Comput. Fluids 116:158–75 [Google Scholar]
  157. Yang XIA, Meneveau C. 2015. Recycling inflow method for simulations of spatially evolving turbulent boundary layers over rough surfaces. J. Turbul. 17:75–93 [Google Scholar]
  158. Yu R, Bai XS. 2014. A fully divergence-free method for generation of inhomogeneous and anisotropic turbulence with large spatial variation. J. Comput. Phys. 256:234–53 [Google Scholar]
  159. Yuan J, Piomelli U. 2015. Numerical simulation of a spatially developing accelerating boundary layer over roughness. J. Fluid Mech. 780:192–214 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error