This article surveys the contributions of Philip Geoffrey Saffman to our knowledge of fluid-dynamical phenomena both in nature and in the laboratory. We begin with Saffman's first work on fluid mechanics in Cambridge, England, in the mid-1950s and then describe the evolution of his ideas and research, over many diverse areas in fluid mechanics until his final paper in 2002. It is argued that Saffman brought a unique perspective to our interpretation of fluid mechanics as a broad scientific discipline that remains with us today.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ashurst W, Kerstein A, Kerr R, Gibson C. 1987. Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys. Fluids 30:2343–53 [Google Scholar]
  2. Baker G, Saffman P, Sheffield J. 1976. Structure of a linear array of hollow vortices of finite cross-section. J. Fluid Mech. 74:469–76 [Google Scholar]
  3. Batchelor G. 1951. Pressure fluctuations in isotropic turbulence. Proc. Camb. Philos. Soc. 47:359–74 [Google Scholar]
  4. Batchelor G. 1956. On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech. 1:177–90 [Google Scholar]
  5. Benjamin T, Feir J. 1967. The disintegration of wave trains on deep water. J. Fluid Mech. 27:417–30 [Google Scholar]
  6. Benney D, Saffman P. 1966. Nonlinear interactions of random waves in a dispersive medium. Proc. R. Soc. Lond. Ser. A 289:301–20 [Google Scholar]
  7. Brown G, Roshko A. 1974. Density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64:775–816 [Google Scholar]
  8. Burgers J. 1948. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1:171–99 [Google Scholar]
  9. Caro C, Saffman P. 1965. Extensibility of blood vessels in isolated rabbit lungs. J. Physiol. 178:193–210 [Google Scholar]
  10. Chen B, Saffman P. 1980. Numerical evidence for the existence of new types of gravity waves of permanent form on deep water. Stud. Appl. Math. 62:1–21 [Google Scholar]
  11. Chernyshenko S. 1988. The asymptotic form of the stationary separated circumfluence of a body at high Reynolds numbers. J. Appl. Math. Mech. 52:746–53 [Google Scholar]
  12. Christiansen J, Zabusky N. 1973. Instability, coalescence and fission of finite-area vortex structures. J. Fluid Mech. 61:219–43 [Google Scholar]
  13. Davidson PA. 2009. The role of angular momentum conservation in homogeneous turbulence. J. Fluid Mech. 32:329–58 [Google Scholar]
  14. Deem G, Zabusky N. 1978. Vortex waves: stationary “V states,” interactions, recurrence, and breaking. Phys. Rev. Lett. 40:859–62 [Google Scholar]
  15. Govindaraju S, Saffman P. 1971. Flow in a turbulent trailing vortex. Phys. Fluids 14:2074–80 [Google Scholar]
  16. Hill D, Saffman P. 2002. Counter-rotating vortex patches in shear: a model of the effect of wind shear on aircraft trailing vortices. Proc. R. Soc. Lond. Ser. A 458:1527–53 [Google Scholar]
  17. Jiménez J, Wray A, Saffman P, Rogallo R. 1993. The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255:65–90 [Google Scholar]
  18. Kelvin L. 1880. Vibrations of a columnar vortex. Philos. Mag. 10:155–68 [Google Scholar]
  19. Kirde K. 1962. Untersuchungen über die zeitliche weiterentwicklung eines wirbels mit vorgegebener anfangsverteilung. Arch. Appl. Mech. 31:385–404 [Google Scholar]
  20. Küchemann D, Weber J. 1965. Vortex motions. Z. Angew. Math. Mech. 45:457–74 [Google Scholar]
  21. Lake B, Yuen H, Rungaldier H, Ferguson W. 1977. Nonlinear deep-water waves: theory and experiment. Part 2. Evolution of a continuous wave train. J. Fluid Mech. 83:49–74 [Google Scholar]
  22. Landman M, Saffman P. 1987. The three-dimensional instability of strained vortices in a viscous fluid. Phys. Fluids 30:2339–42 [Google Scholar]
  23. Lighthill M. 1965. Contributions to the theory of waves in non-linear dispersive systems. IMA J. Appl. Math. 1:269–306 [Google Scholar]
  24. Longuet-Higgins M. 1978. The instabilities of gravity waves of finite amplitude in deep water. I. Superharmonics. Proc. R. Soc. Lond. Ser. A 360:471–88 [Google Scholar]
  25. Longuet-Higgins M, Cokelet E. 1976. The deformation of steep surface waves on water. I. A numerical method of computation. Proc. R. Soc. Lond. Ser. A 350:1–26 [Google Scholar]
  26. Longuet-Higgins M, Cokelet E. 1978. The deformation of steep surface waves on water. II. Growth of normal-mode instabilities. Proc. R. Soc. Lond. Ser. A 364:1–28 [Google Scholar]
  27. Lundgren T. 1982. Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25:2193–203 [Google Scholar]
  28. McLean J, Ma Y, Martin D, Saffman P, Yuen H. 1981. Three-dimensional instability of finite-amplitude water waves. Phys. Rev. Lett. 46:817–20 [Google Scholar]
  29. McLean J, Saffman P. 1981. The effect of surface tension on the shape of fingers in a Hele-Shaw cell. J. Fluid Mech. 102:455–69 [Google Scholar]
  30. Meiron D, Saffman P, Schatzman J. 1984. The linear two-dimensional stability of inviscid vortex streets of finite-cored vortices. J. Fluid Mech. 147:187–212 [Google Scholar]
  31. Meiron D, Saffman P, Yuen H. 1982. Calculation of steady three-dimensional deep-water waves. J. Fluid Mech. 124:109–21 [Google Scholar]
  32. Moore D. 1979. The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc. R. Soc. Lond. Ser. A 365:105–19 [Google Scholar]
  33. Moore D, Saffman P. 1968. The rise of a body through a rotating fluid in a container of finite length. J. Fluid Mech. 31:635–42 [Google Scholar]
  34. Moore D, Saffman P. 1969. The structure of free vertical shear layers in a rotating fluid and the motion produced by a slowly rising body. Philos. Trans. R. Soc. Lond. Ser. A 264:597–634 [Google Scholar]
  35. Moore D, Saffman P. 1972. The motion of a vortex filament with axial flow. Philos. Trans. R. Soc. Lond. Ser. A 272:403–29 [Google Scholar]
  36. Moore D, Saffman P. 1973. Axial flow in laminar trailing vortices. Proc. R. Soc. Lond. Ser. A 333:491–508 [Google Scholar]
  37. Moore D, Saffman P. 1975a. The density of organized vortices in a turbulent mixing layer. J. Fluid Mech. 69:465–73 [Google Scholar]
  38. Moore D, Saffman P. 1975b. The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. Ser. A 346:413–25 [Google Scholar]
  39. Moore D, Saffman P, Maxworthy T. 1969. The flow induced by the transverse motion of a thin disk in its own plane through a contained rapidly rotating viscous liquid. J. Fluid Mech. 39:831–47 [Google Scholar]
  40. Moore D, Saffman P, Tanveer S. 1988. The calculation of some Batchelor flows: the Sadovskii vortex and rotational corner flow. Phys. Fluids 31:978–90 [Google Scholar]
  41. Pelcé P. 1988. Dynamics of Curved Fronts New York: Academic [Google Scholar]
  42. Pullin D, Meiron D. 2011. P.G. Saffman. A Voyage Through Turbulence P Davidson, K Moffatt, Y Kaneda, K Sreenivasan 221–49 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  43. Pullin D, Saffman P. 1993. On the Lundgren-Townsend model of turbulent fine scales. Phys. Fluids A 5:126–45 [Google Scholar]
  44. Pullin D, Saffman P. 1998. Vortex dynamics in turbulence. Annu. Rev. Fluid Mech. 30:31–51 [Google Scholar]
  45. Reinelt D, Saffman P. 1985. The penetration of a finger into a viscous fluid in a channel and tube. SIAM J. Sci. Stat. Comput. 6:542–61 [Google Scholar]
  46. Robinson A, Saffman P. 1984. Stability and structure of stretched vortices. Stud. Appl. Math. 70:163–81 [Google Scholar]
  47. Sadovskii V. 1971. Vortex regions in a potential stream with a jump of Bernoulli's constant at the boundary: Pmm. 35:, no. 5 1971.773–79 J. Appl. Math. Mech. 35:729–35 [Google Scholar]
  48. Saffman P. 1959. A theory of dispersion in a porous medium. J. Fluid Mech. 6:321–49 [Google Scholar]
  49. Saffman P. 1960. On the effect of the molecular diffusivity in turbulent diffusion. J. Fluid Mech. 8:273–83 [Google Scholar]
  50. Saffman P. 1961a. On hydromagnetic waves of finite amplitude in a cold plasma. J. Fluid Mech. 11:552–66 [Google Scholar]
  51. Saffman P. 1961b. Propagation of a solitary wave along a magnetic field in a cold collision-free plasma. J. Fluid Mech. 11:16–20 [Google Scholar]
  52. Saffman P. 1962a. On the stability of laminar flow of a dusty gas. J. Fluid Mech. 13:120–28 [Google Scholar]
  53. Saffman P. 1962b. The structure of a hydromagnetic front in a cold collision-free plasma. J. Fluid Mech. 12:81–87 [Google Scholar]
  54. Saffman P. 1965. The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22:385–400 [Google Scholar]
  55. Saffman P. 1967a. Note on decay of homogeneous turbulence. Phys. Fluids 10:1349 [Google Scholar]
  56. Saffman P. 1967b. The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27:581–93 [Google Scholar]
  57. Saffman P. 1967c. The self-propulsion of a deformable body in a perfect fluid. J. Fluid Mech. 28:385–89 [Google Scholar]
  58. Saffman P. 1968. Lectures on homogeneous turbulence. Topics in Nonlinear Physics NJ Zabusky 485–614 New York: Springer [Google Scholar]
  59. Saffman P. 1973. Structure of turbulent line vortices. Phys. Fluids 16:1181–88 [Google Scholar]
  60. Saffman P. 1978. Problems and progress in the theory of turbulence. Structure and Mechanisms of Turbulence II H Fieldler 273–306 Berlin: Springer-Verlag [Google Scholar]
  61. Saffman P. 1981. Dynamics of vorticity. J. Fluid Mech. 106:49–58 [Google Scholar]
  62. Saffman P. 1986. Viscous fingering in Hele-Shaw cells. J. Fluid Mech. 173:73–94 [Google Scholar]
  63. Saffman P. 1990. A model of vortex reconnection. J. Fluid Mech. 212:395–402 [Google Scholar]
  64. Saffman P. 1992. Vortex Dynamics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  65. Saffman P. 1997. Vortex models of isotropic turbulence. Philos. Trans. R. Soc. Lond. Ser. A 355:1949–56 [Google Scholar]
  66. Saffman P, Baker G. 1979. Vortex interactions. Annu. Rev. Fluid Mech. 11:95–121 [Google Scholar]
  67. Saffman P, Delbrück M. 1975. Brownian motion in biological membranes. Proc. Natl. Acad. Sci. USA 72:3111–13 [Google Scholar]
  68. Saffman P, Schatzman J. 1981. Properties of a vortex street of finite vortices. SIAM J. Sci. Stat. Comput. 2:285–95 [Google Scholar]
  69. Saffman P, Schatzman J. 1982. Stability of a vortex street of finite vortices. J. Fluid Mech. 117:171–85 [Google Scholar]
  70. Saffman P, Szeto R. 1980. Equilibrium shapes of a pair of equal uniform vortices. Phys. Fluids 23:2339–42 [Google Scholar]
  71. Saffman P, Tanveer S. 1982. Touching pair of equal and opposite uniform vortices. Phys. Fluids 25:1929–30 [Google Scholar]
  72. Saffman P, Tanveer S. 1984. Prandtl-Batchelor flow past a flat plate with a forward-facing flap. J. Fluid Mech. 143:351–65 [Google Scholar]
  73. Saffman P, Taylor G. 1958. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. Ser. A 245:312–29 [Google Scholar]
  74. Saffman P, Turner J. 1956. On the collision of drops in turbulent clouds. J. Fluid Mech. 1:16–30 [Google Scholar]
  75. Saffman P, Yuen H. 1980. New type of three-dimensional deep-water wave of permanent form. J. Fluid Mech. 101:797–808 [Google Scholar]
  76. Sproull W. 1961. Viscosity of dusty gases. Nature 190:976–78 [Google Scholar]
  77. Stone H. 2000. Philip Saffman and viscous flow theory. J. Fluid Mech. 409:165–83 [Google Scholar]
  78. Tanveer S. 2000. Surprises in viscous fingering. J. Fluid Mech. 409:273–308 [Google Scholar]
  79. Taylor G. 1935. Statistical theory of turbulence. Proc. R. Soc. Lond. Ser. A 151:421–44 [Google Scholar]
  80. Taylor GI. 1950. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. Lond. Ser. A 201:192–96 [Google Scholar]
  81. Townsend A. 1951. On the fine-scale structure of turbulence. Proc. R. Soc. Lond. Ser. A 208:534–42 [Google Scholar]
  82. Vincent A, Meneguzzi M. 1991. The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225:1–20 [Google Scholar]
  83. Whitham G. 1967. Non-linear dispersion of water waves. J. Fluid Mech. 27:399–412 [Google Scholar]
  84. Widnall S, Bliss D, Tsai C. 1974. The instability of short waves on a vortex ring. J. Fluid Mech. 66:35–47 [Google Scholar]
  85. Winant C, Browand F. 1974. Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63:237–55 [Google Scholar]
  86. Yuen H, Lake B. 1980. Instabilities of waves on deep water. Annu. Rev. Fluid Mech. 12:303–34 [Google Scholar]
  87. Zakharov V. 1968. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9:190–94 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error