1932

Abstract

The last decade has seen a significant increase in the number of studies devoted to wave turbulence. Many deal with water waves, as modeling of ocean waves has historically motivated the development of weak turbulence theory, which addresses the dynamics of a random ensemble of weakly nonlinear waves in interaction. Recent advances in experiments have shown that this theoretical picture is too idealized to capture experimental observations. While gravity dominates much of the oceanic spectrum, waves observed in the laboratory are in fact gravity–capillary waves, due to the restricted size of wave basins. This richer physics induces many interleaved physical effects far beyond the theoretical framework, notably in the vicinity of the gravity–capillary crossover. These include dissipation, finite–system size effects, and finite nonlinearity effects. Simultaneous space-and-time-resolved techniques, now available, open the way for a much more advanced analysis of these effects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-021021-102043
2022-01-05
2024-09-09
Loading full text...

Full text loading...

/deliver/fulltext/fluid/54/1/annurev-fluid-021021-102043.html?itemId=/content/journals/10.1146/annurev-fluid-021021-102043&mimeType=html&fmt=ahah

Literature Cited

  1. Abdurakhimov LV, Arefin M, Kolmakov GV, Levchenko AA, L'Vov YV, Remizov IA. 2015. Bidirectional energy cascade in surface capillary waves. Phys. Rev. E 91:023021
    [Google Scholar]
  2. Abella AP, Soriano MN. 2019. Detection and visualization of water surface three-wave resonance via synthetic Schlieren method. Phys. Scr. 94:034006
    [Google Scholar]
  3. Annenkov SY, Shrira VI. 2006. Direct numerical simulation of downshift and inverse cascade for water wave turbulence. Phys. Rev. Lett. 96:204501
    [Google Scholar]
  4. Aubourg Q, Campagne A, Peureux C, Ardhuin F, Sommeria J et al. 2017. Three-wave and four-wave interactions in gravity wave turbulence. Phys. Rev. Fluids 2:114802
    [Google Scholar]
  5. Aubourg Q, Mordant N. 2015. Nonlocal resonances in weak turbulence of gravity-capillary waves. Phys. Rev. Lett. 114:144501
    [Google Scholar]
  6. Aubourg Q, Mordant N. 2016. Investigation of resonances in gravity-capillary wave turbulence. Phys. Rev. Fluids 1:023701
    [Google Scholar]
  7. Balkovsky E, Falkovich G, Lebedev V, Shapiro IY 1995. Large-scale properties of wave turbulence. Phys. Rev. E 52:4537
    [Google Scholar]
  8. Bedard R, Lukaschuk S, Nazarenko S 2013. Non-stationary regimes of surface gravity wave turbulence. JETP Lett. 97:8459–65
    [Google Scholar]
  9. Benetazzo A. 2006. Measurements of short water waves using stereo matched image sequences. Coast. Eng. 53:121013–32
    [Google Scholar]
  10. Berhanu M, Falcon E. 2013. Space-time resolved capillary wave turbulence. Phys. Rev. E 87:033003
    [Google Scholar]
  11. Berhanu M, Falcon E, Deike L. 2018. Turbulence of capillary waves forced by steep gravity waves. J. Fluid Mech. 850:803–43
    [Google Scholar]
  12. Berhanu M, Falcon E, Michel G, Gissinger C, Fauve S. 2019. Capillary wave turbulence experiments in microgravity. Europhys. Lett. 128:34001
    [Google Scholar]
  13. Bonnefoy F, Haudin F, Michel G, Semin B, Humbert T et al. 2016. Observation of resonant interactions among surface gravity waves. J. Fluid Mech. 805:R3
    [Google Scholar]
  14. Bonnefoy F, Haudin F, Michel G, Semin B, Humbert T et al. 2017. Observation expérimentale en bassin à vagues des interactions résonantes à quatre ondes [Experimental observation of four-wave resonant interactions in a wave basin]. Houille Blanche 5:56–63
    [Google Scholar]
  15. Boyer F, Falcon E. 2008. Wave turbulence on the surface of a ferrofluid in a magnetic field. Phys. Rev. Lett. 101:244502
    [Google Scholar]
  16. Brazhnikov MY, Kolmakov GV, Levchenko AA, Mezhov-Deglin LP. 2002. Observation of capillary turbulence on the water surface in a wide range of frequencies. Europhys. Lett. 58:510
    [Google Scholar]
  17. Cabrera F, Cobelli PJ. 2021. Design, construction and validation of an instrumented particle for the Lagrangian characterization of flows: application to gravity wave turbulence. Exp. Fluids 62:19
    [Google Scholar]
  18. Campagne A, Hassaini R, Redor I, Sommeria J, Mordant N 2019a. The energy cascade of surface wave turbulence: toward identifying the active wave coupling. Turbulent Cascades II M Gorokhovski, FS Godeferd 239–46 Cham, Switz: Springer Int.
    [Google Scholar]
  19. Campagne A, Hassaini R, Redor I, Sommeria J, Valran T et al. 2018. Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves. Phys. Rev. Fluids 3:044801
    [Google Scholar]
  20. Campagne A, Hassaini R, Redor I, Valran T, Viboud S et al. 2019b. Identifying four-wave-resonant interactions in a surface gravity wave turbulence experiment. Phys. Rev. Fluids 7:074801
    [Google Scholar]
  21. Cazaubiel A, Haudin F, Falcon E, Berhanu M. 2019a. Forced three-wave interactions of gravity-capillary surface waves. Phys. Rev. Fluids 4:074803
    [Google Scholar]
  22. Cazaubiel A, Mawet S, Darras A, Grojean G, van Loon JJWA et al. 2019b. Wave turbulence on the surface of a fluid in a high-gravity environment. Phys. Rev. Lett. 123:244501
    [Google Scholar]
  23. Cazaubiel A, Michel G, Lepot S, Semin B, Aumaître S et al. 2018. Coexistence of solitons and extreme events in deep water surface waves. Phys. Rev. Fluids 3:11114802
    [Google Scholar]
  24. Cobelli P, Maurel A, Pagneux V, Petitjeans P. 2009a. Global measurement of water waves by Fourier transform profilometry. Exp. Fluids 46:1037
    [Google Scholar]
  25. Cobelli P, Petitjeans P, Maurel A, Pagneux V, Mordant N. 2009b. Space-time resolved wave turbulence in a vibrating plate. Phys. Rev. Lett. 103:20204301
    [Google Scholar]
  26. Cobelli P, Przadka A, Petitjeans P, Lagubeau G, Pagneux V, Maurel A 2011. Different regimes for water wave turbulence. Phys. Rev. Lett. 107:214503
    [Google Scholar]
  27. Connaughton C, Nazarenko S, Newell AC 2003. Dimensional analysis and weak turbulence. Physica D 184:86–97
    [Google Scholar]
  28. Crapper GD. 1957. An exact solution for progressive capillary waves of arbitrary amplitude. J. Fluids Mech. 2:532–40
    [Google Scholar]
  29. Dalziel SB, Hughes GO, Sutherland BR. 2000. Whole-field density measurements by ‘synthetic schlieren. Exp. Fluids 28:4322–35
    [Google Scholar]
  30. Davis G, Jamin T, Deleuze J, Joubaud S, Dauxois T 2020. Succession of resonances to achieve internal wave turbulence. Phys. Rev. Lett. 124:20204502
    [Google Scholar]
  31. Deike L, Bacri JC, Falcon E. 2013. Nonlinear waves on the surface of a fluid covered by an elastic sheet. J. Fluid Mech. 733:394–413
    [Google Scholar]
  32. Deike L, Berhanu M, Falcon E. 2012. Decay of capillary wave turbulence. Phys. Rev. E 85:066311
    [Google Scholar]
  33. Deike L, Berhanu M, Falcon E. 2014a. Energy flux measurement from the dissipated energy in capillary wave turbulence. Phys. Rev. E 89:023003
    [Google Scholar]
  34. Deike L, Fuster D, Berhanu M, Falcon E. 2014b. Direct numerical simulations of capillary wave turbulence. Phys. Rev. Lett. 112:234501
    [Google Scholar]
  35. Deike L, Laroche C, Falcon E. 2011. Experimental study of the inverse cascade in gravity wave turbulence. Europhys. Lett. 96:34004
    [Google Scholar]
  36. Deike L, Miquel B, Gutiérrez P, Jamin T, Semin B et al. 2015. Role of the basin boundary conditions in gravity wave turbulence. J. Fluid Mech. 781:196–225
    [Google Scholar]
  37. Del Grosso NF, Cappelletti LM, Sujovolsky NE, Mininni PD, Cobelli PJ. 2019. Statistics of single and multiple floaters in experiments of surface wave turbulence. Phys. Rev. Fluids 4:7074805
    [Google Scholar]
  38. Denissenko P, Lukaschuk S, Nazarenko S 2007. Gravity wave turbulence in a laboratory flume. Phys. Rev. Lett. 99:014501
    [Google Scholar]
  39. Dorbolo S, Falcon E. 2011. Wave turbulence on the surface of a ferrofluid in a horizontal magnetic field. Phys. Rev. E 83:046303
    [Google Scholar]
  40. Düring G, Falcón C. 2009. Symmetry induced four-wave capillary wave turbulence. Phys. Rev. Lett. 103:17174503
    [Google Scholar]
  41. Dyachenko AI, Korotkevich AO, Zakharov VE. 2003. Weak turbulence of gravity waves. JETP Lett. 77:546–50
    [Google Scholar]
  42. Dyachenko AI, Korotkevich AO, Zakharov VE. 2004. Weak turbulent Kolmogorov spectrum for surface gravity waves. Phys. Rev. Lett. 92:134501
    [Google Scholar]
  43. Fadaeiazar E, Alberello A, Onorato M, Leontini J, Frascoli F et al. 2018. Wave turbulence and intermittency in directional wave fields. Wave Mot. 83:94–101
    [Google Scholar]
  44. Falcón C, Falcon E, Bortolozzo U, Fauve S. 2009. Capillary wave turbulence on a spherical fluid surface in low gravity. Europhys. Lett. 86:14002
    [Google Scholar]
  45. Falcon E. 2010. Laboratory experiments on wave turbulence. Discrete Contin. Dyn. Syst. B 13:819–40
    [Google Scholar]
  46. Falcon E 2019. Wave turbulence: a set of stochastic nonlinear waves in interaction. Proceedings of the 5th International Conference on Applications in Nonlinear Dynamics V In, P Longhini, A Palacios 259–66 New York: Springer
    [Google Scholar]
  47. Falcon E, Aumaître S, Falcón C, Laroche C, Fauve S. 2008. Fluctuations of energy flux in wave turbulence. Phys. Rev. Lett. 100:064503
    [Google Scholar]
  48. Falcon E, Fauve S, Laroche C 2007a. Observation of intermittency in wave turbulence. Phys. Rev. Lett. 98:154501
    [Google Scholar]
  49. Falcon E, Laroche C. 2011. Observation of depth-induced properties in wave turbulence on the surface of a fluid. Europhys. Lett. 94:34003
    [Google Scholar]
  50. Falcon E, Laroche C, Fauve S. 2003. Observation of Sommerfeld precursors on a fluid surface. Phys. Rev. Lett. 91:6064502
    [Google Scholar]
  51. Falcon E, Laroche C, Fauve S. 2007b. Observation of gravity-capillary wave turbulence. Phys. Rev. Lett. 98:094503
    [Google Scholar]
  52. Falcon E, Michel G, Prabhudesai G, Cazaubiel A, Berhanu M et al. 2020. Saturation of the inverse cascade in surface gravity-wave turbulence. Phys. Rev. Lett. 125:134501
    [Google Scholar]
  53. Falcon E, Roux SG Audit B. 2010a. Revealing intermittency in experimental data with steep power spectra. Europhys. Lett. 90:50007
    [Google Scholar]
  54. Falcon E, Roux SG, Laroche C. 2010b. On the origin of intermittency in wave turbulence. Europhys. Lett. 90:34005
    [Google Scholar]
  55. Fedorov AV, Melville WK, Rozenberg A. 1998. An experimental and numerical study of parasitic capillary waves. Phys. Fluids 10:61315–23
    [Google Scholar]
  56. Galtier S. 2021. Wave turbulence: the case of capillary waves. Geophys. Astrophys. Fluid Dyn. 115:323457
    [Google Scholar]
  57. Hassaini R, Mordant N. 2017. Transition from weak wave turbulence to soliton gas. Phys. Rev. Fluids 2:094803
    [Google Scholar]
  58. Hassaini R, Mordant N. 2018. Confinement effects on gravity-capillary wave turbulence. Phys. Rev. Fluids 3:094805
    [Google Scholar]
  59. Hasselmann K. 1962. On the non-linear energy transfer in a gravity-wave spectrum. Part I. General theory. J. Fluid Mech. 12:481–500
    [Google Scholar]
  60. Haudin F, Cazaubiel A, Deike L, Jamin T, Falcon E, Berhanu M. 2016. Experimental study of three-wave interactions among capillary-gravity surface waves. Phys. Rev. E 93:043110
    [Google Scholar]
  61. Henderson DM, Hammack JL. 1987. Experiments on ripple instabilities. Part 1. Resonant triads. J. Fluid Mech. 184:15–41
    [Google Scholar]
  62. Henderson DM, Miles JW. 1990. Single-mode Faraday waves in small cylinders. J. Fluid Mech. 213:95–109
    [Google Scholar]
  63. Henry E, Alstrom P, Levinsen MT 2000. Prevalence of weak turbulence in strongly driven surface ripples. Europhys. Lett. 52:27
    [Google Scholar]
  64. Herbert E, Mordant N, Falcon E 2010. Observation of the nonlinear dispersion relation and spatial statistics of wave turbulence on the surface of a fluid. Phys. Rev. Lett. 105:144502
    [Google Scholar]
  65. Holt RG, Trinh EH. 1996. Faraday wave turbulence on a spherical liquid shell. Phys. Rev. Lett. 77:1274–77
    [Google Scholar]
  66. Hrabski A, Pan Y. 2020. Effect of discrete resonant manifold structure on discrete wave turbulence. Phys. Rev. E 102:4041101
    [Google Scholar]
  67. Huang NE, Long SR, Tung CC, Yuen Y, Bliven LF. 1981. A unified two-parameter wave spectral model for a general sea state. J. Fluid Mech. 112:203–24
    [Google Scholar]
  68. Humbert T, Cadot O, Düring G, Josserand C, Rica S, Touzé C 2013. Wave turbulence in vibrating plates: the effect of damping. Europhys. Lett. 102:30002
    [Google Scholar]
  69. Issenmann B, Falcon E. 2013. Gravity wave turbulence revealed by horizontal vibrations of the container. Phys. Rev. E 87:011001(R)
    [Google Scholar]
  70. Issenmann B, Laroche C, Falcon E. 2016. Wave turbulence in a two-layer fluid: coupling between free surface and interface waves. Europhys. Lett. 116:64005
    [Google Scholar]
  71. Kartashova E, Nazarenko S, Rudenko O 2008. Resonant interactions of nonlinear water waves in a finite basin. Phys. Rev. E 78:016304
    [Google Scholar]
  72. Kityk AV, Knorr K, Müller HW, Wagner C. 2004. Spatio-temporal fourier analysis of Faraday surface wave patterns on a two-liquid interface. Europhys. Lett. 65:6857–63
    [Google Scholar]
  73. Kochurin E, Ricard G, Zubarev N, Falcon E 2020. Numerical simulation of collinear capillary-wave turbulence. JETP Lett. 112:757–63
    [Google Scholar]
  74. Kolmakov GV, Brazhnikov MY, Levchenko AA, Abdurakhimov LV, McClintock PVE, Mezhov-Deglin LP 2009. Capillary turbulence on the surfaces of quantum fluids. Progress in Low Temperature Physics: Quantum Turbulence M Tsubota, WP Halperin 305–49 Amsterdam: Elsevier
    [Google Scholar]
  75. Korotkevitch AO. 2008. Simultaneous numerical simulation of direct and inverse cascades in wave turbulence. Phys. Rev. Lett. 101:074501
    [Google Scholar]
  76. Korotkevich AO. 2012. Influence of the condensate and inverse cascade on the direct cascade in wave turbulence. Math. Comput. Simul. 82:1228–38
    [Google Scholar]
  77. Kraichnan R. 1965. Inertial range spectrum of hydro-magnetic turbulence. Phys. Fluids 8:1385–87
    [Google Scholar]
  78. Kurata J, Grattan KTV, Uchiyama H, Tanaka T. 1990. Water surface measurement in a shallow channel using the transmitted image of a grating. Rev. Sci. Instr. 61:2736–39
    [Google Scholar]
  79. Kuznetsov EA. 2004. Turbulence spectra generated by singularities. JETP Lett. 80:83–89
    [Google Scholar]
  80. Lamb H. 1932. Hydrodynamics. Berlin Springer-Verlag
    [Google Scholar]
  81. Leckler F, Ardhuin F, Peureux C, Benetazzo A, Bergamasco F, Dulov V. 2015. Analysis and interpretation of frequency–wavenumber spectra of young wind waves. J. Phys. Ocean. 45:102484–96
    [Google Scholar]
  82. Lommer M, Levinsen MT. 2002. Using laser-induced fluorescence in the study of surface wave turbulence. J. Fluoresc. 12:45–50
    [Google Scholar]
  83. Longuet-Higgins MS. 1962. Resonant interactions between two trains of gravity waves. J. Fluid Mech. 12:321–32
    [Google Scholar]
  84. Longuet-Higgins MS. 1963. The generation of capillary waves by steep gravity waves. J. Fluid Mech. 16:1138–59
    [Google Scholar]
  85. Longuet-Higgins MS, Smith ND 1966. An experiment on third-order resonant wave interactions. J. Fluid Mech. 25:417–35
    [Google Scholar]
  86. Lukaschuk S, Nazarenko S, McLelland S, Denissenko P 2009. Gravity wave turbulence in wave tanks: space and time statistics. Phys. Rev. Lett. 103:4044501
    [Google Scholar]
  87. L'vov VS, Nazarenko S 2010. Discrete and mesoscopic regimes of finite-size wave turbulence. Phys. Rev. E 82:5056322
    [Google Scholar]
  88. Lvov YV, He A, Kolmakov GV. 2015. Formation of the bi-directional energy cascade in low-frequency damped wave-turbulent systems. Europhys. Lett. 112:224004
    [Google Scholar]
  89. McGoldrick LF. 1965. Resonant interactions among capillary-gravity waves. J. Fluid Mech. 21:305–31
    [Google Scholar]
  90. McGoldrick LF. 1970. An experiment on second-order capillary gravity resonant wave interactions. J. Fluid Mech. 40:251–71
    [Google Scholar]
  91. McGoldrick LF, Phillips O, Huang NE, Hodgson TH. 1966. Measurements of third-order resonant wave interactions. J. Fluid Mech. 25:437–56
    [Google Scholar]
  92. Michel G. 2019. Three-wave interactions among surface gravity waves in a cylindrical container. Phys. Rev. Fluids 4:012801(R)
    [Google Scholar]
  93. Michel G, Pétrélis F, Fauve S 2017. Observation of thermal equilibrium in capillary wave turbulence. Phys. Rev. Lett. 118:144502
    [Google Scholar]
  94. Michel G, Semin B, Cazaubiel A, Haudin F, Humbert T et al. 2018. Self-similar gravity wave spectra resulting from the modulation of bound waves. Phys. Rev. Fluids 3:054801
    [Google Scholar]
  95. Miles JW. 1967. Surface-wave damping in closed basins. Proc. R. Soc. A 297:1451459–75
    [Google Scholar]
  96. Miquel B, Alexakis A, Josserand C, Mordant N. 2013. Transition from wave turbulence to dynamical crumpling in vibrated elastic plates. Phys. Rev. Lett. 111:5054302
    [Google Scholar]
  97. Miquel B, Alexakis A, Mordant N 2014. Role of dissipation in flexural wave turbulence: from experimental spectrum to Kolmogorov-Zakharov spectrum. Phys. Rev. E 89:062925
    [Google Scholar]
  98. Moisy F, Rabaud M, Salsac K 2009. A synthetic Schlieren method for the measurement of the topography of a liquid interface. Exp. Fluids 46:1021–36
    [Google Scholar]
  99. Monsalve E, Brunet M, Gallet B, Cortet PP. 2020. Quantitative experimental observation of weak inertial-wave turbulence. Phys. Rev. Lett. 125:25254502
    [Google Scholar]
  100. Nazarenko S. 2006. Sandpile behaviour in discrete water-wave turbulence. J. Stat. Mech. 2006:L02002
    [Google Scholar]
  101. Nazarenko S. 2011. Wave Turbulence Berlin: Springer-Verlag
    [Google Scholar]
  102. Nazarenko S, Lukaschuk S. 2016. Wave turbulence on water surface. Annu. Rev. Cond. Mat. Phys. 7:61–81
    [Google Scholar]
  103. Nazarenko S, Lukaschuk S, McLelland S, Denissenko P 2010. Statistics of surface gravity wave turbulence in the space and time domains. J. Fluid Mech. 642:395–420
    [Google Scholar]
  104. Newell AC, Nazarenko S, Biven L 2001. Wave turbulence and intermittency. Physica D 152–153 520–50
    [Google Scholar]
  105. Newell AC, Rumpf B. 2011. Wave turbulence. Annu. Rev. Fluid Mech. 43:59–78
    [Google Scholar]
  106. Newell AC, Zakharov VE. 1992. Rough sea foam. Phys. Rev. Lett. 69:114951
    [Google Scholar]
  107. Pan Y, Yue DKP. 2014. Direct numerical investigation of turbulence of capillary waves. Phys. Rev. Lett. 113:094501
    [Google Scholar]
  108. Pan Y, Yue DKP. 2015. Decaying capillary wave turbulence under broad-scale dissipation. J. Fluid Mech. 780:R1
    [Google Scholar]
  109. Pan Y, Yue DKP. 2017. Understanding discrete capillary-wave turbulence using a quasi-resonant kinetic equation. J. Fluid Mech. 816:R1
    [Google Scholar]
  110. Peters F. 1985. Schlieren interferometry applied to a gravity wave in a density-stratified liquid. Exp. Fluids 3:5261–69
    [Google Scholar]
  111. Phillips OM. 1958. The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech. 4:426–33
    [Google Scholar]
  112. Phillips OM. 1960. On the dynamics of unsteady gravity waves of finite amplitude. Part 1. The elementary interactions. J. Fluid Mech. 9:193–217
    [Google Scholar]
  113. Prasad AK. 2000. Stereoscopic particle image velocimetry. Exp. Fluids 29:2103–16
    [Google Scholar]
  114. Przadka A, Cabane B, Pagneux V, Maurel A, Petitjeans P. 2012. Fourier transform profilometry for water waves: how to achieve clean water attenuation with diffusive reflection at the water surface?. Exp. Fluids 52:2519–27
    [Google Scholar]
  115. Punzmann H, Shats MG, Xia H. 2009. Phase randomization of three-wave interactions in capillary waves. Phys. Rev. Lett. 103:064502
    [Google Scholar]
  116. Pushkarev AN, Zakharov VE. 1996. Turbulence of capillary waves. Phys. Rev. Lett. 76:3320
    [Google Scholar]
  117. Pushkarev AN, Zakharov VE. 2000. Turbulence of capillary waves—theory and numerical simulation. Physica D 135:98–116
    [Google Scholar]
  118. Redor I, Barthélemy E, Michallet H, Onorato M, Mordant N. 2019. Experimental evidence of a hydrodynamic soliton gas. Phys. Rev. Lett. 122:21214502
    [Google Scholar]
  119. Redor I, Barthélemy E, Mordant N, Michallet H 2020. Analysis of soliton gas with large-scale video-based wave measurements. Exp. Fluids 61:10216
    [Google Scholar]
  120. Ricard G, Falcon E 2021. Experimental quasi-1D capillary-wave turbulence. Europhys. Lett In press
    [Google Scholar]
  121. Savaro C, Campagne A, Linares MC, Augier P, Sommeria J et al. 2020. Generation of weakly nonlinear turbulence of internal gravity waves in the Coriolis facility. Phys. Rev. Fluids 5:7073801
    [Google Scholar]
  122. Simmons WF. 1969. A variational method for week resonant wave interactions. Proc. R. Soc. A 309:551–75
    [Google Scholar]
  123. Snouck D, Westra MT, van de Water W. 2009. Turbulent parametric surface waves. Phys. Fluids 21:025102
    [Google Scholar]
  124. Suret P, Tikan A, Bonnefoy F, Copie F, Ducrozet G et al. 2020. Nonlinear spectral synthesis of soliton gas in deep-water surface gravity waves. Phys. Rev. Lett. 125:26264101
    [Google Scholar]
  125. Takeda M, Mutoh K. 1983. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl. Opt. 22:3977–82
    [Google Scholar]
  126. Tomita H. 1989. Theoretical and experimental investigations of interaction among deep-water gravity waves. Rep. Ship Res. Inst. 26:251–350
    [Google Scholar]
  127. Turney DE, Anderer A, Banerjee S 2009. A method for three-dimensional interfacial particle image velocimetry (3D-IPIV) of an airwater interface. Meas. Sci. Technol. 20:4045403
    [Google Scholar]
  128. van Dorn WG. 1966. Boundary dissipation of oscillatory waves. J. Fluids Mech. 24:76979
    [Google Scholar]
  129. Vedenov AA 1967. Theory of a weakly turbulent plasma. Reviews of Plasma Physics, Vol. 3 MA Leontovich 229–76 Boston: Springer
    [Google Scholar]
  130. Whitham GB. 1999. Linear and Nonlinear Waves Hoboken, NJ: Wiley
    [Google Scholar]
  131. Wright WB, Budakian R, Pine DJ, Putterman SJ. 1997. Imaging of intermittency in ripple-wave turbulence. Science 278:1609–12
    [Google Scholar]
  132. Wright WB, Budakian R, Putterman SJ. 1996. Diffusing light photography of fully developed isotropic ripple turbulence. Phys. Rev. Lett. 76:4528–31
    [Google Scholar]
  133. Xia H, Shats M, Punzmann H. 2010. Modulation instability and capillary wave turbulence. Europhys. Lett. 91:114002
    [Google Scholar]
  134. Zakharov VE. 1971. Kinetic equation for solitons. JETP 33:538–41
    [Google Scholar]
  135. Zakharov VE. 2010. Energy balance in a wind-driven sea. Phys. Scr. T142:014052
    [Google Scholar]
  136. Zakharov VE, Badulin SI, Geogjaev VV, Pushkarev AN. 2019. Weak-turbulent theory of wind-driven sea. Earth Space Sci. 6:4540–56
    [Google Scholar]
  137. Zakharov VE, Filonenko NN. 1967a. Energy spectrum for stochastic oscillations of the surface of a liquid. Sov. Phys. Dokl. 11:881–84
    [Google Scholar]
  138. Zakharov VE, Filonenko NN. 1967b. Weak turbulence of capillary waves. J. Appl. Mech. Tech. Phys. 8:37–40
    [Google Scholar]
  139. Zakharov VE, Filonenko NN. 1968. Stability of periodic waves of finite amplitude on a surface of a deep fluid. J. Appl. Mech. Tech. Phys. 2:190–98
    [Google Scholar]
  140. Zakharov VE, Korotkevich A, Pushkarev AN, Dyachenko AI. 2005. Mesoscopic wave turbulence. JETP Lett. 82:487–91
    [Google Scholar]
  141. Zakharov VE, L'vov V, Falkovich G 1992. Kolmogorov Spectra of Turbulence Berlin: Springer-Verlag
    [Google Scholar]
  142. Zakharov VE, Zaslavskii MM. 1982. The kinetic equation and Kolmogorov spectra in the weak turbulence theory of wind waves. Izv. Atm. Ocean Phys. 18:747–53
    [Google Scholar]
  143. Zavadsky A, Benetazzo A, Shemer L. 2017. On the two-dimensional structure of short gravity waves in a wind wave tank. Phys. Fluids 29:1016601
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-021021-102043
Loading
/content/journals/10.1146/annurev-fluid-021021-102043
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error