1932

Abstract

Inkjet printing is the most widespread technological application of microfluidics. It is characterized by its high drop productivity, small volumes, and extreme reproducibility. This review gives a synopsis of the fluid dynamics of inkjet printing and discusses the main challenges for present and future research. These lie both on the printhead side—namely, the detailed flow inside the printhead, entrained bubbles, the meniscus dynamics, wetting phenomena at the nozzle plate, and jet formation—and on the receiving substrate side—namely, droplet impact, merging, wetting of the substrate, droplet evaporation, and drying. In most cases the droplets are multicomponent, displaying rich physicochemical hydrodynamic phenomena. The challenges on the printhead side and on the receiving substrate side are interwoven, as optimizing the process and the materials with respect to either side alone is not enough: As the same ink (or other jetted liquid) is used and as droplet frequency and size matter on both sides, the process must be optimized as a whole.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-022321-114001
2022-01-05
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/fluid/54/1/annurev-fluid-022321-114001.html?itemId=/content/journals/10.1146/annurev-fluid-022321-114001&mimeType=html&fmt=ahah

Literature Cited

  1. Agbaglah G, Deegan RD. 2014. Growth and instability of the liquid rim in the crown splash regime. J. Fluid Mech. 752:485–96
    [Google Scholar]
  2. Agbaglah G, Josserand C, Zaleski S 2013. Longitudinal instability of a liquid rim. Phys. Fluids 25:2022103
    [Google Scholar]
  3. Agbaglah G, Thoraval MJ, Thoroddsen ST, Zhang LV, Fezzaa K, Deegan RD 2015. Drop impact into a deep pool: vortex shedding and jet formation. J. Fluid Mech. 764:R1
    [Google Scholar]
  4. Aidun CK, Clausen JR. 2010. Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42:439–72
    [Google Scholar]
  5. Ambravaneswaran B, Wilkes ED, Basaran OA. 2002. Drop formation from a capillary tube: comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops. Phys. Fluids 14:82606–21
    [Google Scholar]
  6. Anthony CR, Harris MT, Basaran OA. 2020. Initial regime of drop coalescence. Phys. Rev. Fluids 5:3033608
    [Google Scholar]
  7. Anthony CR, Kamat PM, Harris MT, Basaran OA 2019. Dynamics of contracting filaments. Phys. Rev. Fluids 4:9093601
    [Google Scholar]
  8. Antobe BV, Wallace DB. 2002. Acoustic phenomena in a demand mode piezoelectric ink jet printer. J. Imaging Sci. Technol. 46:409–14
    [Google Scholar]
  9. Antonopoulou E, Harlen O, Walkley M, Kapur N. 2020. Jetting behavior in drop-on-demand printing: laboratory experiments and numerical simulations. Phys. Rev. Fluids 5:4043603
    [Google Scholar]
  10. Ardekani A, Sharma V, McKinley G. 2010. Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets. J. Fluid Mech. 665:46–56
    [Google Scholar]
  11. Basaran OA. 1992. Nonlinear oscillations of viscous liquid drops. J. Fluid Mech. 241:169–98
    [Google Scholar]
  12. Basaran OA. 2002. Small-scale free surface flows with breakup: drop formation and emerging applications. AIChE J. 48:91842–48
    [Google Scholar]
  13. Basaran OA, Gao H, Bhat PP. 2013. Nonstandard inkjets. Annu. Rev. Fluid Mech. 45:85–113
    [Google Scholar]
  14. Bennacer R, Sefiane K. 2014. Vortices, dissipation and flow transition in volatile binary drops. J. Fluid Mech. 749:649–65
    [Google Scholar]
  15. Beulen B, de Jong J, Reinten H, van den Berg M, Wijshoff H, van Dongen R. 2007. Flows on the nozzle plate of an inkjet printhead. Exp. Fluids 42:217–24
    [Google Scholar]
  16. Bhat PP, Appathurai S, Harris MT, Pasquali M, McKinley GH, Basaran OA. 2010. Formation of beads-on-a-string structures during break-up of viscoelastic filaments. Nat. Phys. 6:8625–31
    [Google Scholar]
  17. Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E. 2009. Wetting and spreading. Rev. Mod. Phys. 81:2739–805
    [Google Scholar]
  18. Boulogne F, Ingremeau F, Dervaux J, Limat L, Stone HA 2015. Homogeneous deposition of particles by absorption on hydrogels. EPL 112:448004
    [Google Scholar]
  19. Bouwhuis W, van der Veen RCA, Tran T, Keij DL, Winkels KG et al. 2012. Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109:26264501
    [Google Scholar]
  20. Brennen CE. 1995. Cavitation and Bubble Dynamics Oxford: Oxford Univ. Press
  21. Brenner MP, Hilgenfeldt S, Lohse D. 2002. Single bubble sonoluminescence. Rev. Mod. Phys. 74:425–84
    [Google Scholar]
  22. Brenner MP, Lister JR, Stone HA. 1996. Pinching threads, singularities and the number 0.0304…. Phys. Fluids 8:112827–36
    [Google Scholar]
  23. Brenner MP, Shi XD, Nagel SR. 1994. Iterated instabilities during droplet fission. Phys. Rev. Lett. 73:253391–94
    [Google Scholar]
  24. Brünahl J, Grishin AM. 2002. Piezoelectric shear mode drop-on-demand inkjet actuator. Sens. Actuators A 101:3371–82
    [Google Scholar]
  25. Bruning MA, Costalonga M, Karpitschka S, Snoeijer JH 2018. Delayed coalescence of surfactant containing sessile droplets. Phys. Rev. Fluids 3:7073605
    [Google Scholar]
  26. Brutin D, Starov V. 2018. Recent advances in droplet wetting and evaporation. Chem. Soc. Rev. 47:2558–85
    [Google Scholar]
  27. Cai Y, Zhang-Newby BM. 2008. Marangoni flow-induced self-assembly of hexagonal and stripelike nanoparticle patterns. J. Am. Chem. Soc. 130:196076–77
    [Google Scholar]
  28. Castrejon-Pita JR, Baxter W, Morgan J, Temple S, Martin G, Hutchings I 2013. Future, opportunities and challenges of inkjet technologies. At. Sprays 23:6541–65
    [Google Scholar]
  29. Castrejón-Pita JR, Castrejón-Pita AA, Hinch EJ, Lister JR, Hutchings IM. 2012. Self-similar breakup of near-inviscid liquids. Phys. Rev. E 86:1015301
    [Google Scholar]
  30. Castrejón-Pita JR, Castrejón-Pita AA, Thete SS, Sambath K, Hutchings IM et al. 2015. Plethora of transitions during breakup of liquid filaments. PNAS 112:154582–87
    [Google Scholar]
  31. Castrejón-Pita JR, Morrison N, Harlen O, Martin G, Hutchings I 2011. Experiments and Lagrangian simulations on the formation of droplets in drop-on-demand mode. Phys. Rev. E 83:3036306
    [Google Scholar]
  32. Cazabat AM, Guéna G. 2010. Evaporation of macroscopic sessile droplets. Soft Matter 6:2591–612
    [Google Scholar]
  33. Christy JR, Hamamoto Y, Sefiane K. 2011. Flow transition within an evaporating binary mixture sessile drop. Phys. Rev. Lett. 106:20205701
    [Google Scholar]
  34. Cira NJ, Benusiglio A, Prakash M. 2015. Vapour-mediated sensing and motility in two-component droplets. Nature 519:7544446–50
    [Google Scholar]
  35. Clasen C, Phillips PM, Palangetic L, Vermant J 2012. Dispensing of rheologically complex fluids: the map of misery. AIChE J. 58:103242–55
    [Google Scholar]
  36. Craster RV, Matar OK. 2009. Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81:31131–98
    [Google Scholar]
  37. Daly RF, Harrington TS, Martin GD, Hutchings IM 2015. Inkjet printing for pharmaceutics–a review of research and manufacturing. Int. J. Pharm. 494:2554–67
    [Google Scholar]
  38. Day RF, Hinch EJ, Lister JR. 1998. Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett. 80:704–7
    [Google Scholar]
  39. de Gans B, Duineveld PC, Schubert U. 2004. Ink jet printing of polymers: state of the art and future developments. Adv. Mater. 16:203–13
    [Google Scholar]
  40. de Gennes PG. 1985. Wetting: statics and dynamics. Rev. Mod. Phys. 57:827–63
    [Google Scholar]
  41. de Goede TC, de Bruin KG, Shahidzadeh N, Bonn D 2019. Predicting the maximum spreading of a liquid drop impacting on a solid surface: effect of surface tension and entrapped air layer. Phys. Rev. Fluids 4:5053602
    [Google Scholar]
  42. de Jong J, Jeurissen R, Borel H, van den Berg M, Wijshoff H et al. 2006a. Entrapped air bubbles in piezo-driven inkjet printing: their effect on the droplet velocity. Phys. Fluids 18:121511
    [Google Scholar]
  43. de Jong J, Reinten H, van den Berg M, Wijshoff H, Versluis M et al. 2006b. Air entrapment in piezo-driven inkjet nozzles. J. Acoust. Soc. Am. 120:1257–65
    [Google Scholar]
  44. de Jong J, Reinten H, Wijshoff H, van den Berg M, Delescen K et al. 2007. Marangoni flow on an inkjet nozzle plate. Appl. Phys. Lett. 91:204102
    [Google Scholar]
  45. de Ruiter R, Colinet P, Brunet P, Snoeijer JH, Gelderblom H. 2017. Contact line arrest in solidifying spreading drops. Phys. Rev. Fluids 2:4043602
    [Google Scholar]
  46. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. 1997. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:6653827–29
    [Google Scholar]
  47. Derby B. 2010. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40:395–414
    [Google Scholar]
  48. Diddens C. 2017. Detailed finite element method modeling of evaporating multi-component droplets. J. Comput. Phys. 340:670–87
    [Google Scholar]
  49. Diddens C, Kuerten J, van der Geld C, Wijshoff H. 2017a. Modeling the evaporation of sessile multi-component droplets. J. Colloid Inferface Sci. 487:426–36
    [Google Scholar]
  50. Diddens C, Tan H, Lv P, Versluis M, Kuerten JGM et al. 2017b. Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking. J. Fluid Mech. 823:470–97
    [Google Scholar]
  51. Dijksman JF. 1984. Hydrodynamics of small tubular pumps. J. Fluid Mech. 139:173–91
    [Google Scholar]
  52. Dijksman JF. 1999. Hydro-acoustics of piezoelectrically driven ink-jet print heads. Flow Turbul. Combust. 61:211–37
    [Google Scholar]
  53. Dijksman JF. 2019. Design of Piezo Inkjet Print Heads: From Acoustics to Applications Weinheim, Ger: Wiley-VCH
  54. Dijksman JF, Duineveld PC, Hack MJJ, Pierik A, Rensen JM et al. 2007. Precision ink jet printing of polymer light emitting displays. J. Mater. Chem. 17:511–22
    [Google Scholar]
  55. Dong H, Carr WW, Morris JF. 2006. An experimental study of drop-on-demand drop formation. Phys. Fluids 18:7072102
    [Google Scholar]
  56. Dou R, Derby B. 2012. Formation of coffee stains on porous surfaces. Langmuir 28:125331–38
    [Google Scholar]
  57. Driessen T, Jeurissen R. 2016. Drop formation in inkjet printing. Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets SD Hoath 93–115 Weinheim, Ger: Wiley-VCH
    [Google Scholar]
  58. Driessen T, Jeurissen R, Wijshoff H, Toschi F, Lohse D 2013. Stability of viscous long liquid filaments. Phys. Fluids 25:062109
    [Google Scholar]
  59. Driessen T, Sleutel P, Dijksman F, Jeurissen R, Lohse D 2014. Control of jet breakup by a superposition of two Rayleigh-Plateau unstable modes. J. Fluid Mech. 749:275–96
    [Google Scholar]
  60. Driscoll MM, Nagel SR. 2011. Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107:15154502
    [Google Scholar]
  61. Driscoll MM, Stevens CS, Nagel SR. 2010. Thin film formation during splashing of viscous liquids. Phys. Rev. E 82:3036302
    [Google Scholar]
  62. Duchemin L, Eggers J, Josserand C. 2003. Inviscid coalescence of drops. J. Fluid Mech. 487:167–78
    [Google Scholar]
  63. Duineveld PC. 2003. The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate. J. Fluid Mech. 477:175–200
    [Google Scholar]
  64. Eddi A, Winkels KG, Snoeijer JH 2013. Influence of droplet geometry on the coalescence of low viscosity drops. Phys. Rev. Lett. 111:144502
    [Google Scholar]
  65. Edwards A, Atkinson P, Cheung C, Liang H, Fairhurst D, Ouali F 2018. Density-driven flows in evaporating binary liquid droplets. Phys. Rev. Lett. 121:18184501
    [Google Scholar]
  66. Eggers J. 1993. Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 71:213458–60
    [Google Scholar]
  67. Eggers J. 1997. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69:3865–928
    [Google Scholar]
  68. Eggers J. 2005. Drop formation—an overview. Z. Angew. Math. Mech. 85:6400–10
    [Google Scholar]
  69. Eggers J, Fontelos MA, Josserand C, Zaleski S 2010. Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22:6062101
    [Google Scholar]
  70. Eggers J, Lister JR, Stone HA. 1999. Coalescence of liquid drops. J. Fluid Mech. 401:293–310
    [Google Scholar]
  71. Eggers J, Villermaux E. 2008. Physics of liquid jets. Rep. Prog. Phys. 71:036601
    [Google Scholar]
  72. Erbil HY. 2012. Evaporation of pure liquid sessile and spherical suspended drops: a review. Adv. Colloid Interface Sci. 170:1–267–86
    [Google Scholar]
  73. Feng JQ. 2002. A general fluid dynamic analysis of drop ejection in drop-on-demand ink jet devices. J. Imaging Sci. Technol. 46:398–408
    [Google Scholar]
  74. Fraters A, Jeurissen R, van den Berg M, Reinten H, Wijshoff H et al. 2020. Secondary tail formation and breakup in piezo-acoustic inkjet printing: femtoliter droplets captured in flight. Phys. Rev. Appl. 13:024075
    [Google Scholar]
  75. Fraters A, Segers T, van den Berg M, Reinten H, Wijshoff H et al. 2019a. Shortwave infrared imaging setup to study entrained air bubble dynamics in a MEMS-based piezo-acoustic inkjet printhead. Exp. Fluids 60:8123
    [Google Scholar]
  76. Fraters A, van den Berg M, de Loore Y, Reinten H, Wijshoff H et al. 2019b. Inkjet nozzle failure by heterogeneous nucleation: bubble entrainment, cavitation, and diffusive growth. Phys. Rev. Appl. 12:6064019
    [Google Scholar]
  77. Funakubo H, Dekkers M, Sambri A, Gariglio S, Shklyarevskiy I, Rijnders G 2012. Epitaxial PZT films for MEMS printing applications. MRS Bull. 37:111030–38
    [Google Scholar]
  78. Gambaryan-Roisman T. 2014. Liquids on porous layers: wetting, imbibition and transport processes. Curr. Opin. Colloid Interface Sci. 19:4320–35
    [Google Scholar]
  79. Garcia-Sucerquia J, Xu W, Jericho S, Klages P, Jericho M, Kreuzer H. 2006. Digital in-line holographic microscopy. Appl. Opt. 45:5836–50
    [Google Scholar]
  80. Gaver DP, Grotberg JB. 1992. Droplet spreading on a thin viscous film. J. Fluid Mech. 235:399–414
    [Google Scholar]
  81. Giorgiutti-Dauphiné F, Pauchard L. 2018. Drying drops. Eur. Phys. J. E 41:332
    [Google Scholar]
  82. Gomez H, Hughes T, Nogueira X, Calo V 2010. Isogeometric analysis of the isothermal Navier–Stokes–Korteweg equations. Comput. Methods Appl. Mech. Eng. 199:1828–40
    [Google Scholar]
  83. Gordillo JM, Riboux G, Quintero ES 2019. A theory on the spreading of impacting droplets. J. Fluid Mech. 866:298–315
    [Google Scholar]
  84. Hack M, Costalonga M, Segers T, Karpitschka S, Wijshoff H, Snoeijer J. 2018. Printing wet-on-wet: attraction and repulsion of drops on a viscous film. Appl. Phys. Lett. 113:18183701
    [Google Scholar]
  85. Han W, Lin Z. 2012. Learning from coffee rings: ordered structures enabled by controlled evaporative self-assembly. Angew. Chem. Int. Ed. 51:71534–46
    [Google Scholar]
  86. Harting J, Frijters S, Ramaioli M, Robinson M, Wolf DE, Luding S 2014. Recent advances in the simulation of particle-laden flows. Eur. Phys. J. Spec. Top. 223:2253–67
    [Google Scholar]
  87. Heil M, Hazel AL 2006. oomph-lib—an object-oriented multi-physics finite-element library. Fluid-Structure Interaction H-J Bungartz, M Schäfer 19–49 Berlin: Springer
    [Google Scholar]
  88. Heil M, Hazel AL. 2011. Fluid-structure interaction in internal physiological flows. Annu. Rev. Fluid Mech. 43:141–62
    [Google Scholar]
  89. Hell SW. 2009. Microscopy and its focal switch. Nat. Methods 6:124–32
    [Google Scholar]
  90. Hernandez-Sanchez JF, Lubbers LA, Eddi A, Snoeijer JH 2012. Symmetric and asymmetric coalescence of drops on a substrate. Phys. Rev. Lett. 109:184502
    [Google Scholar]
  91. Hessling D, Xie Q, Harting J. 2017. Diffusion dominated evaporation in multicomponent Lattice-Boltzmann simulations. J. Chem. Phys. 146:5054111
    [Google Scholar]
  92. Hicks PD, Purvis R. 2010. Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech. 649:135–63
    [Google Scholar]
  93. Hicks PD, Purvis R. 2011. Air cushioning in droplet impacts with liquid layers and other droplets. Phys. Fluids 23:6062104
    [Google Scholar]
  94. Hoath SD 2016. Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets Weinheim, Ger: Wiley-VCH
  95. Hoath SD, Harlen OG, Hutchings IM. 2012. Jetting behavior of polymer solutions in drop-on-demand inkjet printing. J. Rheol. 56:51109–27
    [Google Scholar]
  96. Hu H, Larson RG. 2005. Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21:93972–80
    [Google Scholar]
  97. Hutchings I, Martin G, Hoath S 2007. High speed imaging and analysis of jet and drop formation. J. Imaging Sci. Technol. 51:5438–44
    [Google Scholar]
  98. Jacqmin D. 1999. Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys. 155:196–127
    [Google Scholar]
  99. Jacqmin D. 2000. Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402:57–88
    [Google Scholar]
  100. Jalaal M, Seyfert C, Stoeber B, Balmforth N. 2018. Gel-controlled droplet spreading. J. Fluid Mech. 837:115–28
    [Google Scholar]
  101. Jehannin M, Charton S, Karpitschka S, Zemb T, Moehwald H, Riegler H. 2015. Periodic precipitation patterns during coalescence of reacting sessile droplets. Langmuir 31:4211484–90
    [Google Scholar]
  102. Jeurissen R, de Jong J, Reinten H, van den Berg M, Wijshoff H et al. 2008. Effect of an entrained air bubble on the acoustics of an ink channel. J. Acoust. Soc. Am. 123:52496–505
    [Google Scholar]
  103. Jeurissen R, van der Bos A, Reinten H, van den Berg M, Wijshoff H et al. 2009. Acoustic measurement of bubble size in an inkjet printhead. J. Acoust. Soc. Am. 126:52184–90
    [Google Scholar]
  104. Josserand C, Popinet S, Zaleski S 2009. Numerical simulation of droplets, bubbles and waves: state of the art. Fluid Dyn. Res. 41:065001
    [Google Scholar]
  105. Josserand C, Thoroddsen S. 2016. Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48:365–91
    [Google Scholar]
  106. Kamat PM, Wagoner BW, Castrejón-Pita AA, Castrejón-Pita JR, Anthony CR, Basaran OA 2020. Surfactant-driven escape from endpinching during contraction of nearly inviscid filaments. J. Fluid Mech 899:A28
    [Google Scholar]
  107. Kamat PM, Wagoner BW, Thete SS, Basaran OA. 2018. Role of Marangoni stress during breakup of surfactant-covered liquid threads: reduced rates of thinning and microthread cascades. Phys. Rev. Fluids 3:4043602
    [Google Scholar]
  108. Kant P, Hazel AL, Dowling M, Thompson AB, Juel A. 2017. Controlling droplet spreading with topography. Phys. Rev. Fluids 2:9094002
    [Google Scholar]
  109. Kant P, Koldeweij RB, Harth K, van Limbeek MA, Lohse D. 2020. Fast-freezing kinetics inside a droplet impacting on a cold surface. PNAS 117:62788–94
    [Google Scholar]
  110. Kaplan CN, Mahadevan L. 2015. Evaporation-driven ring and film deposition from colloidal droplets. J. Fluid Mech. 781:R2
    [Google Scholar]
  111. Kapur N, Gaskell PH. 2007. Morphology and dynamics of droplet coalescence on a surface. Phys. Rev. E 75:056315
    [Google Scholar]
  112. Karpitschka S. 2018. The value of a fading tracer. J. Fluid Mech. 856:1–4
    [Google Scholar]
  113. Karpitschka S, Liebig F, Riegler H. 2017. Marangoni contraction of evaporating sessile droplets of binary mixtures. Langmuir 33:194682–87
    [Google Scholar]
  114. Karpitschka S, Riegler H. 2010. Quantitative experimental study on the transition between fast and delayed coalescence of sessile droplets with different but completely miscible liquids. Langmuir 26:1411823–29
    [Google Scholar]
  115. Karpitschka S, Riegler H. 2012. Noncoalescence of sessile drops from different but miscible liquids: hydrodynamic analysis of the twin drop contour as a self-stabilizing traveling wave. Phys. Rev. Lett. 109:6066103
    [Google Scholar]
  116. Karpitschka S, Riegler H. 2014. Sharp transition between coalescence and non-coalescence of sessile drops. J. Fluid Mech. 743:R1
    [Google Scholar]
  117. Kateri EP, William SW, Steven ER, Robert AS 2003. Additive jet printing of polymer thin-film transistors. Appl. Phys. Lett. 83:2070–72
    [Google Scholar]
  118. Keshavarz B, Sharma V, Houze EC, Koerner MR, Moore JR et al. 2015. Studying the effects of elongational properties on atomization of weakly viscoelastic solutions using Rayleigh Ohnesorge Jetting Extensional Rheometry (ROJER). J. Non-Newton. Fluid Mech. 222:171–89
    [Google Scholar]
  119. Kim H, Boulogne F, Um E, Jacobi I, Button E, Stone HA. 2016. Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules. Phys. Rev. Lett. 116:12124501
    [Google Scholar]
  120. Kim H, Muller K, Shardt O, Afkhami S, Stone HA 2017. Solutal Marangoni flows of miscible liquids drive transport without surface contamination. Nat. Phys. 13:111105–10
    [Google Scholar]
  121. Kim H, Stone HA 2018. Direct measurement of selective evaporation of binary mixture droplets by dissolving materials. J. Fluid Mech. 850:769–83
    [Google Scholar]
  122. Kim J, Kang K, Lowengrub J. 2004. Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193:511–43
    [Google Scholar]
  123. Kim P, Wong TS, Alvarenga J, Kreder MJ, Adorno-Martinez WE, Aizenberg J. 2012. Liquid-infused nano-structured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6:86569–77
    [Google Scholar]
  124. Kolinski JM, Rubinstein SM, Mandre S, Brenner MP, Weitz DA, Mahadevan L. 2012. Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108:7074503
    [Google Scholar]
  125. Kuang M, Wang L, Song Y 2014. Controllable printing droplets for high-resolution patterns. Adv. Mater. 26:406950–58
    [Google Scholar]
  126. Laan N, de Bruin KG, Bartolo D, Josserand C, Bonn D 2014. Maximum diameter of impacting liquid droplets. Phys. Rev. Appl. 2:4044018
    [Google Scholar]
  127. Lamb H. 1932. Hydrodynamics. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  128. Le HP. 1998. Progress and trends in ink-jet printing technology. J. Imaging Sci. Technol. 42:49–62
    [Google Scholar]
  129. Lee J, Laan N, de Bruin KG, Skantzaris G, Shahidzadeh N et al. 2016. Universal rescaling of drop impact on smooth and rough surfaces. J. Fluid Mech. 786:R4
    [Google Scholar]
  130. Lee M, Kang DK, Yoon SS, Yarin AL. 2012. Coalescence of two drops on partially wettable substrates. Langmuir 28:3791–98
    [Google Scholar]
  131. Li Y, Diddens C, Lv P, Wijshoff H, Versluis M, Lohse D. 2019a. Gravitational effect in evaporating binary microdroplets. Phys. Rev. Lett. 122:11114501
    [Google Scholar]
  132. Li Y, Diddens C, Prosperetti A, Chong KL, Zhang X, Lohse D. 2019b. Bouncing oil droplet in a stratified liquid and its sudden death. Phys. Rev. Lett. 122:15154502
    [Google Scholar]
  133. Li Y, Diddens C, Segers T, Wijshoff H, Versluis M, Lohse D. 2020a. Evaporating droplets on oil-wetted surfaces: suppression of the coffee-stain effect. PNAS 117:2916756–63
    [Google Scholar]
  134. Li Y, Lv P, Diddens C, Tan H, Wijshoff H et al. 2018. Evaporation-triggered segregation of sessile binary droplets. Phys. Rev. Lett. 120:224501
    [Google Scholar]
  135. Li Y, Salvator V, Wijshoff H, Versluis M, Lohse D. 2020b. Evaporation-induced crystallization of surfactants in sessile multicomponent droplets. Langmuir 36:267545–52
    [Google Scholar]
  136. Lin S, Zhao B, Zou S, Guo J, Wei Z, Chen L 2018. Impact of viscous droplets on different wettable surfaces: impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation. J. Colloid Interface Sci. 516:86–97
    [Google Scholar]
  137. Lin SP, Reitz RD. 1998. Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30:85–105
    [Google Scholar]
  138. Liu J, Gomez H, Evans J, Hughes T, Landis C. 2013. Functional entropy variables: a new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier–Stokes–Korteweg equations. J. Comput. Phys. 248:47–86
    [Google Scholar]
  139. Liu Y, Derby B. 2019. Experimental study of the parameters for stable drop-on-demand inkjet performance. Phys. Fluids 31:3032004
    [Google Scholar]
  140. Lohse D. 2018. Bubble puzzles: from fundamentals to applications. Phys. Rev. Fluids 3:10110504
    [Google Scholar]
  141. Lohse D, Zhang X. 2015. Surface nanobubble and surface nanodroplets. Rev. Mod. Phys. 87:981–1035
    [Google Scholar]
  142. Lohse D, Zhang X. 2020. Physicochemical hydrodynamics of droplets out of equilibrium. Nat. Rev. Phys. 2:426–43
    [Google Scholar]
  143. Louvet N, Bonn D, Kellay H. 2014. Nonuniversality in the pinch-off of yield stress fluids: role of nonlocal rheology. Phys. Rev. Lett. 113:21218302
    [Google Scholar]
  144. Magen E, Gottlieb M 2004. The importance of liquid compressibility in calculations of fluid dynamics inside a DOD piezoelectric ink jet nozzle. J. Imaging Sci. Technol. 48:335–41
    [Google Scholar]
  145. Mandre S, Brenner MP. 2012. The mechanism of a splash on a dry solid surface. J. Fluid Mech. 690:148–72
    [Google Scholar]
  146. Mandre S, Mani M, Brenner MP. 2009. Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102:13134502
    [Google Scholar]
  147. Mani M, Mandre S, Brenner MP 2010. Events before droplet splashing on a solid surface. J. Fluid Mech. 647:163–85
    [Google Scholar]
  148. Manikantan H, Squires TM. 2020. Surfactant dynamics: hidden variables controlling fluid flows. J. Fluid Mech. 892:P1
    [Google Scholar]
  149. Marin A, Karpitschka S, Noguera-Marn D, Cabrerizo-Vlchez MA, Rossi M et al. 2019. Solutal Marangoni flow as the cause of ring stains from drying salty colloidal drops. Phys. Rev. Fluids 4:4041601
    [Google Scholar]
  150. Marin AG, Gelderblom H, Lohse D, Snoeijer JH 2011. Order-to-disorder transition in ring-shaped colloidal stains. Phys. Rev. Lett. 107:085502
    [Google Scholar]
  151. Marin AG, Liepelt R, Rossi M, Kähler CJ. 2016. Surfactant-driven flow transitions in evaporating droplets. Soft Matter 12:51593–600
    [Google Scholar]
  152. Martin GD, Hoath SD, Hutchings IM. 2008. Inkjet printing-the physics of manipulating liquid jets and drops. J. Phys. Conf. Ser 105:012001
    [Google Scholar]
  153. McIlroy C, Harlen OG. 2019. Effects of drive amplitude on continuous jet break-up. Phys. Fluids 31:6064104
    [Google Scholar]
  154. McKinley GH, Renardy M. 2011. Wolfgang von Ohnesorge. Phys. Fluids 23:12127101
    [Google Scholar]
  155. Meacham JM, Varady MJ, Degertekin FL, Fedorov AG. 2005. Droplet formation and ejection from a micromachined ultrasonic droplet generator: Visualization and scaling. Phys. Fluids 17:100605
    [Google Scholar]
  156. Motaghian M, Shirsavar R, Erfanifam M, Sabouhi M, van der Linden E et al. 2019. Rapid spreading of a droplet on a thin soap film. Langmuir 35:4614855–60
    [Google Scholar]
  157. Mundo C, Sommerfeld M, Tropea C. 1995. Droplet-wall collisions: experimental studies of the deformation and breakup process. Int. J. Multiph. Flow 21:2151–73
    [Google Scholar]
  158. Notz PK, Basaran OA. 2004. Dynamics and breakup of a contracting liquid filament. J. Fluid Mech. 512:223–56
    [Google Scholar]
  159. Oron A, Davis SH, Bankoff SG. 1997. Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69:3931–81
    [Google Scholar]
  160. Pack M, Hu H, Kim DO, Yang X, Sun Y 2015. Colloidal drop deposition on porous substrates: competition among particle motion, evaporation, and infiltration. Langmuir 31:297953–61
    [Google Scholar]
  161. Pack M, Hu H, Kim DO, Zheng Z, Stone H, Sun Y. 2017. Failure mechanisms of air entrainment in drop impact on lubricated surfaces. Soft Matter 13:122402–9
    [Google Scholar]
  162. Papageorgiou DT. 1995. On the breakup of viscous liquid threads. Phys. Fluids 7:71529–44
    [Google Scholar]
  163. Paulsen JD, Burton JC, Nagel SR. 2011. Viscous to inertial crossover in liquid drop coalescence. Phys. Rev. Lett. 106:114501
    [Google Scholar]
  164. Pham T, Kumar S. 2019. Imbibition and evaporation of droplets of colloidal suspensions on permeable substrates. Phys. Rev. Fluids 4:3034004
    [Google Scholar]
  165. Picknett RG, Bexon R. 1977. The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 61:336–50
    [Google Scholar]
  166. Popinet S. 2018. Numerical models of surface tension. Annu. Rev. Fluid Mech. 50:49–75
    [Google Scholar]
  167. Qian J, Law CK. 1997. Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331:59–80
    [Google Scholar]
  168. Quéré D. 2008. Wetting and roughness. Annu. Rev. Mater. Sci. 38:71–99
    [Google Scholar]
  169. Quéré D. 2013. Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45:197–215
    [Google Scholar]
  170. Riboux G, Gordillo JM. 2014. Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113:2024507
    [Google Scholar]
  171. Ristenpart WD, Kim PG, Domingues C, Wan J, Stone HA 2007. Influence of substrate conductivity on circulation reversal in evaporating drops. Phys. Rev. Lett. 99:23234502
    [Google Scholar]
  172. Ristenpart WD, McCalla PM, Roy RV, Stone HA 2006. Coalescence of spreading droplets on a wettable substrate. Phys. Rev. Lett. 97:064501
    [Google Scholar]
  173. Sambath K, Garg V, Thete SS, Subramani HJ, Basaran OA. 2019. Inertial impedance of coalescence during collision of liquid drops. J. Fluid Mech. 876:449–80
    [Google Scholar]
  174. Schäfle C, Bechinger C, Rinn B, David C, Leiderer P 1999. Cooperative evaporation in ordered arrays of volatile droplets. Phys. Rev. Lett. 82:5302–5
    [Google Scholar]
  175. Schofield F, Wilson S, Pritchard D, Sefiane K. 2018. The lifetimes of evaporating sessile droplets are significantly extended by strong thermal effects. J. Fluid Mech. 851:231–44
    [Google Scholar]
  176. Schulkes R. 1996. The contraction of liquid filaments. J. Fluid Mech. 309:277–300
    [Google Scholar]
  177. Scriven L, Sternling C. 1960. The Marangoni effects. Nature 187:4733186–88
    [Google Scholar]
  178. Sefiane K. 2014. Patterns from drying drops. Adv. Colloid Interface Sci. 206:372–81
    [Google Scholar]
  179. Seppecher P. 1996. Moving contact lines in the Cahn-Hilliard theory. Int. J. Eng. Sci. 34:977–92
    [Google Scholar]
  180. Shi XD, Brenner MP, Nagel SR. 1994. A cascade of structure in a drop falling from a faucet. Science 265:5169219–22
    [Google Scholar]
  181. Shin DY, Grassia P, Derby B 2003. Oscillatory limited compressible fluid flow induced by the radial motion of a thick-walled piezoelectric tube. J. Acoust. Soc. Am. 114:1314–21
    [Google Scholar]
  182. Shirota M, van Limbeek MA, Sun C, Prosperetti A, Lohse D. 2016. Dynamic Leidenfrost effect: relevant time and length scales. Phys. Rev. Lett. 116:6064501
    [Google Scholar]
  183. Sirringhaus H, Kawase T, Friend R, Shimoda T, Inbasekaran M et al. 2000. High-resolution inkjet printing of all-polymer transistor circuits. Science 290:54992123–26
    [Google Scholar]
  184. Snoeijer JH, Andreotti B. 2013. Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45:269–92
    [Google Scholar]
  185. Staat HJ, van der Bos A, van den Berg M, Reinten H, Wijshoff H et al. 2017. Ultrafast imaging method to measure surface tension and viscosity of inkjet-printed droplets in flight. Exp. Fluids 58:2
    [Google Scholar]
  186. Stauber JM, Wilson SK, Duffy BR, Sefiane K 2014. On the lifetimes of evaporating droplets. J. Fluid Mech. 744:R2
    [Google Scholar]
  187. Stone HA. 1994. Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26:65–102
    [Google Scholar]
  188. Sui Y, Maglio M, Spelt PDM, Legendre D, Ding H 2013. Inertial coalescence of droplets on a partially wetting substrate. Phys. Fluids 25:10101701
    [Google Scholar]
  189. Sykes TC, Castrejón-Pita AA, Castrejón-Pita JR, Harbottle D, Khatir Z et al. 2020. Surface jets and internal mixing during the coalescence of impacting and sessile droplets. Phys. Rev. Fluids 5:2023602
    [Google Scholar]
  190. Talbot E, Berson A, Brown P, Bain C. 2012. Evaporation of picoliter droplets on surfaces with a range of wettabilities and thermal conductivities. Phys. Rev. E 85:6061604
    [Google Scholar]
  191. Tan H, Diddens C, Lv P, Kuerten JGM, Zhang X, Lohse D. 2016. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating ouzo drop. PNAS 113:8642–47
    [Google Scholar]
  192. Tang X, Saha A, Law CK, Sun C. 2019. Bouncing drop on liquid film: dynamics of interfacial gas layer. Phys. Fluids 31:013304
    [Google Scholar]
  193. Tanner L. 1979. The spreading of silicone oil drops on horizontal surfaces. J. Phys. D 12:1473–84
    [Google Scholar]
  194. Thoroddsen ST, Etoh TG, Takehara K. 2003. Air entrapment under an impacting drop. J. Fluid Mech. 478:125–34
    [Google Scholar]
  195. Thoroddsen ST, Etoh TG, Takehara K. 2008. High-speed imaging of drops and bubbles. Annu. Rev. Fluid Mech. 40:257–85
    [Google Scholar]
  196. Thoroddsen ST, Etoh TG, Takehara K, Ootsuka N, Hatsuki A. 2005. The air bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545:203–12
    [Google Scholar]
  197. Tijdeman H. 1975. On the propagation of sound waves in cylindrical tubes. J. Sound Vibr. 39:1–33
    [Google Scholar]
  198. Tirtaatmadja V, McKinley GH, Cooper-White JJ. 2006. Drop formation and breakup of low viscosity elastic fluids: effects of molecular weight and concentration. Phys. Fluids 18:4043101
    [Google Scholar]
  199. Tran T, Staat HJJ, Prosperetti A, Sun C, Lohse D. 2012. Drop impact on superheated surfaces. Phys. Rev. Lett. 108:3036101
    [Google Scholar]
  200. Tsai P, Hendrix MHW, Dijkstra RM, Shui L, Lohse D. 2011. Microscopic structure influencing macroscopic splash at high Weber number. Soft Matter 7:2411325–33
    [Google Scholar]
  201. Tsai P, van der Veen RCA, van de Raa M, Lohse D. 2010. How micropatterns and air pressure affect splashing on surfaces. Langmuir 26:16090–95
    [Google Scholar]
  202. van Brummelen E, Shokrpour-Roudbari M, Van Zwieten G 2016. Elasto-capillarity simulations based on the Navier–Stokes–Cahn–Hilliard equations. Advances in Computational Fluid-Structure Interaction and Flow Simulation Y Bazilevs, K Takizawa 451–62 Berlin: Springer
    [Google Scholar]
  203. van Dam DB, Clerc CL. 2004. Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys. Fluids 16:93403–14
    [Google Scholar]
  204. van der Bos A, Segers T, Jeurissen R, van den Berg M, Reinten H et al. 2011a. Infrared imaging and acoustic sizing of a bubble inside a micro-electro-mechanical system piezo ink channel. J. Appl. Phys. 110:034503
    [Google Scholar]
  205. van der Bos A, van der Meulen MJ, Driessen T, van den Berg M, Reinten H et al. 2014. Velocity profile inside piezoacoustic inkjet droplets in flight: comparison between experiment and numerical simulation. Phys. Rev. Appl. 1:014004
    [Google Scholar]
  206. van der Bos A, Zijlstra A, Gelderblom E, Versluis M 2011b. iLIF: illumination by laser-induced fluorescence for single flash imaging on a nanoseconds timescale. Exp. Fluids 51:51283–89
    [Google Scholar]
  207. van der Meulen MJ, Reinten H, Wijshoff H, Versluis M, Lohse D, Steen P 2020. Nonaxisymmetric effects in drop-on-demand piezoacoustic inkjet printing. Phys. Rev. Appl. 13:5054071
    [Google Scholar]
  208. van der Veen RCA, Tran T, Lohse D, Sun C 2012. Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys. Rev. E 85:026315
    [Google Scholar]
  209. van Gaalen R, Diddens C, Wijshoff H, Kuerten J. 2021. Marangoni circulation in evaporating droplets in the presence of soluble surfactants. J. Colloid Interface Sci. 584:622–33
    [Google Scholar]
  210. van Hoeve W, Gekle S, Snoeijer J, Versluis M, Brenner MP, Lohse D. 2010. Breakup of diminutive Rayleigh jets. Phys. Fluids 22:122003
    [Google Scholar]
  211. Vazquez G, Alvarez E, Navaza JM 1995. Surface tension of alcohol water + water from 20 to 50 °C. J. Chem. Eng. Data 40:3611–14
    [Google Scholar]
  212. Versluis M. 2013. High-speed imaging in fluids. Exp. Fluids 54:1458
    [Google Scholar]
  213. Visser CW, Frommhold PE, Wildeman S, Mettin R, Lohse D, Sun C 2015. Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matter 11:91708–22
    [Google Scholar]
  214. Visser CW, Kamperman T, Karbaat LP, Lohse D, Karperien M 2018. In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials. Sci. Adv. 4:1eaao1175
    [Google Scholar]
  215. Wang S, Zhong Y, Fang H. 2019. Deformation characteristics of a single droplet driven by a piezoelectric nozzle of the drop-on-demand inkjet system. J. Fluid Mech. 869:634–45
    [Google Scholar]
  216. Wang Z, Karapetsas G, Valluri P, Sefiane K, Williams A et al. 2021. Dynamics of hygroscopic aqueous solution droplets undergoing evaporation vapour absorption. J. Fluid Mech. 912:A2
    [Google Scholar]
  217. Wee H, Wagoner BW, Kamat PM, Basaran OA. 2020. Effects of surface viscosity on breakup of viscous threads. Phys. Rev. Lett. 124:20204501
    [Google Scholar]
  218. Wijshoff H. 2010. The dynamics of the piezo inkjet printhead operation. Phys. Rep. 491:4–577–177
    [Google Scholar]
  219. Wijshoff H. 2018. Drop dynamics in the inkjet printing process. Cur. Opin. Colloid Interface Sci. 36:20–27
    [Google Scholar]
  220. Wildeman S, Visser CW, Sun C, Lohse D 2016. On the spreading of impacting drops. J. Fluid Mech. 805:636–55
    [Google Scholar]
  221. Williams AGL, Karapetsas G, Mamalis D, Sefiane K, Matar OK, Valluri P. 2021. Spreading and retraction dynamics of sessile evaporating droplets comprising volatile binary mixtures. J. Fluid Mech. 907:A22
    [Google Scholar]
  222. Williams C. 2006. Ink-jet printers go beyond paper. Phys. World 19:124–29
    [Google Scholar]
  223. Wray AW, Duffy BR, Wilson SK 2020. Competitive evaporation of multiple sessile droplets. J. Fluid Mech. 884:A45
    [Google Scholar]
  224. Xu L. 2007. Liquid drop splashing on smooth, rough, and textured surfaces. Phys. Rev. E 75:5056316
    [Google Scholar]
  225. Xu L, Barcos L, Nagel SR. 2007. Splashing of liquids: interplay of surface roughness with surrounding gas. Phys. Rev. E 76:6066311
    [Google Scholar]
  226. Xu L, Shi T, An L. 2007. Nonsolvent-induced dewetting of thin polymer films. Langmuir 23:189282–86
    [Google Scholar]
  227. Xu L, Zhang WW, Nagel SR. 2005. Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94:18184505
    [Google Scholar]
  228. Xu Q, Basaran OA. 2007. Computational analysis of drop-on-demand drop formation. Phys. Fluids 19:10102111
    [Google Scholar]
  229. Yarin AL. 2006. Drop impact dynamics: splashing, spreading, receding, bouncing.…. Annu. Rev. Fluid Mech. 38:159–92
    [Google Scholar]
  230. Yarin AL, Roisman IV, Tropea C. 2017. Collision Phenomena in Liquids and Solids Cambridge, UK: Cambridge Univ. Press
  231. Zang D, Tarafdar S, Tarasevich YY, Choudhury MD, Dutta T. 2019. Evaporation of a droplet: from physics to applications. Phys. Rep. 804:1–56
    [Google Scholar]
  232. Zapka W 2017. Handbook of Industrial Inkjet Printing: A Full System Approach Weinhein, Ger: Wiley-VCH
  233. Zhang LV, Brunet P, Eggers J, Deegan RD 2010. Wavelength selection in the crown splash. Phys. Fluids 22:12122105
    [Google Scholar]
  234. Zhang X, Basaran OA. 1997. Dynamic surface tension effects in impact of a drop with a solid surface. J. Colloid Interface Sci. 187:1166–78
    [Google Scholar]
  235. Zhang XH, Wang J, Bao L, Dietrich E, van der Veen RCA et al. 2015. Mixed mode of dissolving immersed nanodroplets at a solid-water interface. Soft Matter 11:1889–900
    [Google Scholar]
  236. Zhong Y, Fang H, Ma Q, Dong X 2018. Analysis of droplet stability after ejection from an inkjet nozzle. J. Fluid Mech. 845:378–91
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-022321-114001
Loading
/content/journals/10.1146/annurev-fluid-022321-114001
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error