1932

Abstract

Dynamic mode decomposition (DMD) is a factorization and dimensionality reduction technique for data sequences. In its most common form, it processes high-dimensional sequential measurements, extracts coherent structures, isolates dynamic behavior, and reduces complex evolution processes to their dominant features and essential components. The decomposition is intimately related to Koopman analysis and, since its introduction, has spawned various extensions, generalizations, and improvements. It has been applied to numerical and experimental data sequences taken from simple to complex fluid systems and has also had an impact beyond fluid dynamics in, for example, video surveillance, epidemiology, neurobiology, and financial engineering. This review focuses on the practical aspects of DMD and its variants, as well as on its usage and characteristics as a quantitative tool for the analysis of complex fluid processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-030121-015835
2022-01-05
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/fluid/54/1/annurev-fluid-030121-015835.html?itemId=/content/journals/10.1146/annurev-fluid-030121-015835&mimeType=html&fmt=ahah

Literature Cited

  1. Adrian RJ, Moin P 1988. Stochastic estimation of organized turbulent structure: homogeneous shear flow. J. Fluid Mech. 190:531–59
    [Google Scholar]
  2. Alfredsson PH, Johansson AV. 1984. On the detection of turbulence-generating events. J. Fluid Mech. 139:325–345
    [Google Scholar]
  3. Arbabi H, Mezić I. 2017. Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator. SIAM J. Appl. Dyn. Sys. 16:2096–126
    [Google Scholar]
  4. Bagheri S. 2013. Koopman-mode decomposition of the cylinder wake. J. Fluid Mech. 726:596–623
    [Google Scholar]
  5. Bagheri S. 2014. Effects of weak noise on oscillating flows: linking quality factor, Floquet modes, and Koopman spectrum. Phys. Fluids 26:094104
    [Google Scholar]
  6. Berkooz G, Holmes P, Lumley JL. 1993. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25:539–75
    [Google Scholar]
  7. Bollt EM, Santitissadeekorn N. 2013. Applied and Computational Measurable Dynamics. Philadelphia: SIAM:
    [Google Scholar]
  8. Boyd S, Vandenberghe L. 2004. Convex Optimization Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  9. Brand M 2002. Incremental singular value decomposition of uncertain data with missing values. Proceedings of the 7th European Conference on Computer Vision A Heyden, G Sparr, M Nielsen, P Johansen 707–20 Berlin: Springer-Verlag
    [Google Scholar]
  10. Brunton SL, Brunton BW, Proctor JL, Kaiser E, Kutz JN 2017. Chaos as an intermittently forced linear system. Nat. Commun. 8:19
    [Google Scholar]
  11. Brunton SL, Brunton BW, Proctor JL, Kutz JN. 2016. Koopman observable sub-spaces and finite linear representations of nonlinear dynamical systems for control. PLOS ONE 11:e0150171
    [Google Scholar]
  12. Brunton SL, Proctor JL, Tu JH, Kutz JN. 2015. Compressed sensing and dynamic mode decomposition. J. Comput. Dyn. 2:165–91
    [Google Scholar]
  13. Budišić M, Mohr R, Mezić I. 2012. Applied Koopmanism. Chaos 22:047510
    [Google Scholar]
  14. Candès EJ, Li X, Ma Y, Wright J. 2011. Robust principal component analysis?. J. ACM 58:11
    [Google Scholar]
  15. Candès EJ, Romberg J, Tao T. 2006. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52:489–509
    [Google Scholar]
  16. Carleman T. 1932. Application de la théorie des équations intégrales linéaires aux systèmes d'équations différentielles nonlinéaires. Acta Math. 59:63–87
    [Google Scholar]
  17. Chorin AJ, Hald OH, Kupferman R. 2000. Optimal prediction and the Mori–Zwanzig representation of irreversible processes. PNAS 97:2968–73
    [Google Scholar]
  18. Dawson S, Hemati MS, Williams MO, Rowley CW 2016. Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition. Exp. Fluids 57:42
    [Google Scholar]
  19. Demmel J, Grigori L, Hoemmen M, Langou J. 2012. Communication-optimal parallel and sequential QR and LU factorizations. SIAM J. Sci. Comput. 34:206–39
    [Google Scholar]
  20. Drmač Z, Mezić I, Mohr R. 2017. Data driven model decompositions: analysis and enhancements Tech. Rep. 201708 AIMDyn Inc. Santa Barbara, CA:
    [Google Scholar]
  21. Duke D, Soria J, Honnery D. 2012. An error analysis of the dynamic mode decomposition. Exp. Fluids 52:529–42
    [Google Scholar]
  22. Erichson NB, Mathelin L, Kutz JN, Brunton SL. 2019. Randomized dynamic mode decomposition. SIAM J. Appl. Dyn. Sys. 18:1867–91
    [Google Scholar]
  23. Froyland G, Junge O, Koltai P 2013. Estimating long-term behavior of flows without trajectory integration: the infinitesimal generator approach. SIAM J. Numer. Anal. 51:223–47
    [Google Scholar]
  24. Froyland G, Padberg K. 2009. Almost-invariant sets and invariant manifolds—connecting probabilistic and geometric descriptions of coherent structures in flow. Physica D 238:1507–23
    [Google Scholar]
  25. Golyandina N, Nekrutin V, Zhigljavsky A. 2001. Analysis of Time Series Structure: SSA and Related Techniques Boca Raton, FL: Chapman & Hall/CRC
    [Google Scholar]
  26. Gopalakrishnan Meena M, Nair AG, Taira K 2018. Network community-based model reduction for vortical flows. Phys. Rev. E 97:063103
    [Google Scholar]
  27. Halko N, Martinsson PG, Tropp JA. 2011. Finding structure in randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53:217–88
    [Google Scholar]
  28. Haller G. 2015. Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47:137–62
    [Google Scholar]
  29. Hemati MS, Rowley CW, Deem EA, Cattafesta LN. 2017. De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets. Theor. Comput. Fluid Dyn. 31:349–68
    [Google Scholar]
  30. Hemati MS, Williams MO, Rowley CW 2014. Dynamic mode decomposition for large and streaming datasets. Phys. Fluids 26:111701
    [Google Scholar]
  31. Holmes P, Lumley J, Berkooz G, Rowley CW. 2012. Turbulence, Coherent Structures, Dynamical Systems and Symmetry Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  32. Hyvärinen A. 2013. Independent component analysis: recent advances. Philos. Trans. R. Soc. A 371:20110534
    [Google Scholar]
  33. Jovanović MR, Schmid PJ, Nichols JW. 2014. Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26:024103
    [Google Scholar]
  34. Junge O, Koltai P. 2009. Discretization of the Frobenius–Perron operator using a sparse Haar tensor basis: the sparse Ulam method. SIAM J. Num. Anal. 47:3464–85
    [Google Scholar]
  35. Kaiser E, Noack B, Cordier L, Spohn A, Segond M et al. 2014. Cluster-based reduced-order modelling of a mixing layer. J. Fluid Mech. 754:365–414
    [Google Scholar]
  36. Kamb M, Kaiser E, Brunton SL, Kutz JN 2020. Time-delay observables for Koopman: theory and applications. SIAM J. Appl. Dyn. Sys. 19:886–917
    [Google Scholar]
  37. Klus S, Koltai P, Schütte C. 2016. On the numerical approximation of the Perron-Frobenius and Koopman operator. J. Comput. Dyn. 3:51–79
    [Google Scholar]
  38. Klus S, Nüske F, Koltai P, Wu H, Kevrekidis IG, Schütte C, Noé F. 2018. Data-driven model reduction and transfer operator approximation. J. Nonlinear Sci. 28:985–1010
    [Google Scholar]
  39. Klus S, Nüske F, Peitz S, Niemann JH, Clementi C, Schütte C 2020. Data-driven approximation of the Koopman generator: model reduction, system identification and control. Physica D 406:132416
    [Google Scholar]
  40. Koopman BO. 1931. Hamiltonian systems and transformations in Hilbert space. PNAS 17:315–18
    [Google Scholar]
  41. Korda M, Mezić I. 2018. On convergence of extended dynamic mode decomposition to the Koopman operator. J. Nonlinear Sci. 28:687–710
    [Google Scholar]
  42. Kutz JN, Brunton SL, Brunton BW, Proctor JL. 2016a. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems Philadelphia: SIAM:
    [Google Scholar]
  43. Kutz JN, Fu X, Brunton SL. 2016b. Multiresolution dynamic mode decomposition. SIAM J. Appl. Dyn. Sys. 15:713–35
    [Google Scholar]
  44. Lasota A, Mackey CM. 1994. Chaos, Fractals and Noise: Stochastic Aspects of Dynamics New York: Springer-Verlag
    [Google Scholar]
  45. LeClainche S, Vega JM. 2017. Higher order dynamic mode decomposition. SIAM J. Appl. Dyn. Sys. 16:882–925
    [Google Scholar]
  46. Li Q, Dietrich F, Bollt EM, Kevrekidis IG. 2017. Extended dynamic mode decomposition with dictionary learning: a data-driven adaptive spectral decomposition of the Koopman operator. Chaos 27:103111
    [Google Scholar]
  47. Lumley JL. 1971. Stochastic Tools in Turbulence New York: Academic
    [Google Scholar]
  48. Lusch B, Kutz JN, Brunton SL. 2018. Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9:4950
    [Google Scholar]
  49. Mezić I. 2005. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41:309–25
    [Google Scholar]
  50. Mezić I. 2013. Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45:357–78
    [Google Scholar]
  51. Noack BR, Stankiewicz W, Morzyński M, Schmid PJ 2016. Recursive dynamic mode decomposition of transient and post-transient wake flows. J. Fluid Mech. 809:843–72
    [Google Scholar]
  52. Otto SE, Rowley CW. 2019. Linearly recurrent autoencoder networks for learning dynamics. SIAM J. Appl. Dyn. Sys. 18:558–93
    [Google Scholar]
  53. Pan S, Duraisamy K. 2020a. On the structure of time-delay embedding in linear models of non-linear dynamical systems. Chaos 30:073135
    [Google Scholar]
  54. Pan S, Duraisamy K. 2020b. Physics-informed probabilistic learning of linear embeddings of nonlinear dynamics with guaranteed stability. SIAM J. Appl. Dyn. Sys. 19:480–509
    [Google Scholar]
  55. Perry AE, Chong MS. 1987. A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19:125–55
    [Google Scholar]
  56. Proctor JL, Brunton SL, Kutz JN. 2016. Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Sys. 15:142–61
    [Google Scholar]
  57. Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson DS. 2009. Spectral analysis of nonlinear flows. J. Fluid Mech. 641:115–27
    [Google Scholar]
  58. Sayadi T, Schmid PJ. 2016. Parallel data-driven decomposition algorithm for large-scale data sets: with application to transitional boundary layers. Theor. Comput. Fluid Dyn. 30:415–28
    [Google Scholar]
  59. Sayadi T, Schmid PJ, Nichols JW, Moin P. 2014. Reduced-order representation of near-wall structures in the late transitional boundary layer. J. Fluid Mech. 748:278–301
    [Google Scholar]
  60. Scherl I, Strom B, Shang JK, Williams O, Polagye BL, Brunton SL. 2020. Robust principal component analysis for modal decomposition of corrupt fluid flows. Phys. Rev. Fluids 5:054401
    [Google Scholar]
  61. Schmid PJ. 2010. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656:5–28
    [Google Scholar]
  62. Schmid PJ 2021. Data-driven and operator-based tools for the analysis of turbulent flows. Advanced Approaches in Turbulence P Durbin 243–306 Amsterdam: Elsevier
    [Google Scholar]
  63. Schmid PJ, Li L, Juniper MP, Pust O. 2011. Applications of the dynamic mode decomposition. Theor. Comput. Fluid Dyn. 25:249–59
    [Google Scholar]
  64. Schmid PJ, Schmidt OT, Towne A, Hack MJP 2018. Analysis and prediction of rare events in turbulent flows. Proceedings of the Summer Program 2018139–48 Stanford, CA: Cent. Turbul. Res.
    [Google Scholar]
  65. Schmid PJ, Sesterhenn JL. 2008. Dynamic mode decomposition of numerical and experimental data Paper presented at 61st Annual Meeting of the APS Division of Fluid Dynamics Nov. 25 San Antonio, TX:
    [Google Scholar]
  66. Sesterhenn JL, Shahirpour A. 2019. A characteristic dynamic mode decomposition. Theor. Comput. Fluid Dyn. 33:281–305
    [Google Scholar]
  67. Sirovich L. 1987. Turbulence and the dynamics of coherent structures. Q. J. Appl. Math. 45:561–90
    [Google Scholar]
  68. Takens F 1981. Detecting strange attractors in turbulence. Dynamical Systems and Turbulence: Proceedings of a Symposium Held at the University of Warwick 1979/80 D Rand, L-S Young 366–81 Berlin: Springer-Verlag
    [Google Scholar]
  69. Tu JH, Rowley CW, Kutz JN, Shang JK. 2014a. Spectral analysis of fluid flows using sub-Nyquist rate PIV data. Exp. Fluids 55:1805
    [Google Scholar]
  70. Tu JH, Rowley CW, Luchtenberg DM, Brunton SL, Kutz JN. 2014b. On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1:391–421
    [Google Scholar]
  71. Ulam SM. 1960. A Collection of Mathematical Problems New York: InterScience
    [Google Scholar]
  72. Van Overschee P, De Moor BL. 2012. Subspace Identification for Linear Systems: Theory—Implementation—Applications Boston: Kluwer Academic
    [Google Scholar]
  73. Wallace JM. 2016. Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech. 48:131–58
    [Google Scholar]
  74. Williams MO, Kevrekidis IG, Rowley CW. 2015. A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25:1307–46
    [Google Scholar]
  75. Williams MO, Rowley CW, Kevrekidis IG. 2014. A kernel approach to data-driven Koopman spectral analysis. J. Comput. Dyn. 2:247–65
    [Google Scholar]
  76. Wynn A, Pearson DS, Ganapathisubramani B, Goulart PJ. 2013. Optimal mode decomposition for unsteady flows. J. Fluid Mech. 733:473–503
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-030121-015835
Loading
/content/journals/10.1146/annurev-fluid-030121-015835
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error