1932

Abstract

Global differences of temperature and buoyancy flux at the ocean surface are responsible for small-scale convection at high latitudes, global overturning, and the top-to-bottom density difference in the oceans. With planetary rotation the convection also contributes to the large-scale horizontal, geostrophic circulation, and it crucially involves a 3D linkage between the geostrophic circulation and vertical overturning. The governing dynamics of such a surface-forced convective flow are fundamentally different from Rayleigh–Bénard convection, and the role of buoyancy forcing in the oceans is poorly understood. Geostrophic balance adds to the constraints on transport in horizontal convection, as illustrated by experiments, theoretical scaling, and turbulence-resolving simulations for closed (mid-latitude) basins and an annulus or reentrant zonal (circumpolar) channel. In these geometries, buoyancy drives either horizontal mid-latitude gyre recirculations or a strong Antarctic Circumpolar Current, respectively, in addition to overturning. At large Rayleigh numbers the release of available potential energy by convection leads to turbulent mixing with a mixing efficiency approaching unity. Turbulence-resolving models are also revealing the relative roles of wind stress and buoyancy when there is mixed forcing, and in future work they need to include the effects of turbulent mixing due to energy input from tides.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-030121-115729
2022-01-05
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/fluid/54/1/annurev-fluid-030121-115729.html?itemId=/content/journals/10.1146/annurev-fluid-030121-115729&mimeType=html&fmt=ahah

Literature Cited

  1. Barkan R, Winters KB, Llewellyn Smith SG. 2013. Rotating horizontal convection. J. Fluid Mech. 723:556–86
    [Google Scholar]
  2. Barkan R, Winters KB, Llewellyn Smith SG. 2015. Energy cascades and loss of balance in a reentrant channel forced by wind stress and buoyancy fluxes. J. Phys. Oceanogr. 45:1272–93
    [Google Scholar]
  3. Boubnov BM, Golitsyn GS. 1986. Experimental study of convective structures in rotating fluids. J. Fluid Mech. 167:503–31
    [Google Scholar]
  4. Boubnov BM, Golitsyn GS. 1990. Temperature and velocity field regimes of convective motions in a rotating plane fluid layer. J. Fluid Mech. 219:215–39
    [Google Scholar]
  5. Buckley MW, Marshall J. 2016. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review. Rev. Geophys. 54:15–63
    [Google Scholar]
  6. Caesar L, McCarthy G, Thornalley D, Rahmstorf S 2021. Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nat. Geosci. 14:118–20
    [Google Scholar]
  7. Cerovečki I, Talley LD, Mazloff MR. 2011. A comparison of Southern Ocean air–sea buoyancy flux from an ocean state estimate with five other products. J. Clim. 24:246283–306
    [Google Scholar]
  8. Daniels PG. 1976. Thermal convection in a differentially heated rotating fluid annulus. Geophys. Fluid Dyn. 7:297–330
    [Google Scholar]
  9. de Verdière CA. 1988. Buoyancy driven planetary flows. J. Mar. Res. 46:215–65
    [Google Scholar]
  10. Donohue KA, Tracey KL, Watts DR, Chidichimo MP, Chereskin TK. 2016. Mean Antarctic Circumpolar Current transport measured in Drake Passage. Geophys. Res. Lett. 43:2211760–67
    [Google Scholar]
  11. Ezer T. 2015. Detecting changes in the transport of the Gulf Stream and the Atlantic overturning circulation from coastal sea level data: the extreme decline in 2009–2010 and estimated variations for 1935–2012. Glob. Planet. Change 129:23–36
    [Google Scholar]
  12. Ganachaud A, Wunsch C. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–57
    [Google Scholar]
  13. Gayen B, Griffiths RW, Hughes GO. 2014. Stability transitions and turbulence in horizontal convection. J. Fluid Mech. 751:698–724
    [Google Scholar]
  14. Gayen B, Griffiths RW, Hughes GO, Saenz JA. 2013a. Energetics of horizontal convection. J. Fluid Mech. 716:R10
    [Google Scholar]
  15. Gayen B, Hughes GO, Griffiths RW. 2013b. Completing the mechanical energy pathways in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 111:12124301
    [Google Scholar]
  16. Gjermundsen A, LaCasce JH, Denstad L. 2018. The thermally driven ocean circulation with realistic bathymetry. J. Phys. Oceanogr. 48:3647–65
    [Google Scholar]
  17. Gnanadesikan A, Hallberg RW. 2000. On the relationship of the Circumpolar Current to Southern Hemisphere winds in coarse-resolution ocean models. J. Phys. Oceanogr. 30:82013–34
    [Google Scholar]
  18. Griffiths RW, Gayen B. 2015. Turbulent convection insights from small-scale thermal forcing with zero net heat flux at a horizontal boundary. Phys. Rev. Lett. 115:20204301
    [Google Scholar]
  19. Griffiths RW, Hughes GO, Gayen B. 2013. Horizontal convection dynamics: insights from transient adjustment. J. Fluid Mech. 726:559–95
    [Google Scholar]
  20. Hazewinkel J, Paparella F, Young WR. 2012. Stressed horizontal convection. J. Fluid Mech. 692:317–31
    [Google Scholar]
  21. Hignett P, Ibbetson A, Killworth PD. 1981. On rotating thermal convection driven by non-uniform heating from below. J. Fluid Mech. 109:161–87
    [Google Scholar]
  22. Hogg AM. 2010. An Antarctic Circumpolar Current driven by surface buoyancy forcing. Geophys. Res. Lett. 37:23L23601
    [Google Scholar]
  23. Hogg AM, Gayen B. 2020. Ocean gyres driven by surface buoyancy forcing. Geophys. Res. Lett. 47:16e2020GL088539
    [Google Scholar]
  24. Hogg NG, Johns WE. 1995. Western boundary currents. Rev. Geophys. 33:S21311–34
    [Google Scholar]
  25. Hughes GO, Griffiths RW. 2006. A simple convective model of the global overturning circulation, including effects of entrainment into sinking regions. Ocean Model. 12:46–79
    [Google Scholar]
  26. Hughes GO, Griffiths RW. 2008. Horizontal convection. Annu. Rev. Fluid Mech. 40:185–208
    [Google Scholar]
  27. Hughes GO, Griffiths RW, Mullarney JC, Peterson WH. 2007. A theoretical model for horizontal convection at high Rayleigh number. J. Fluid Mech. 581:251–76
    [Google Scholar]
  28. Hughes GO, Hogg AM, Griffiths RW. 2009. Available potential energy and irreversible mixing in the meridional overturning circulation. J. Phys. Oceanogr. 39:3130–46
    [Google Scholar]
  29. Julien K, Aurnou JM, Calkins MA, Knobloch E, Marti P et al. 2016. A nonlinear model for rotationally constrained convection with Ekman pumping. J. Fluid Mech. 798:50–87
    [Google Scholar]
  30. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S. 2007. On the driving processes of the Atlantic Meridional Overturning Circulation. Rev. Geophys. 45:2RG2001
    [Google Scholar]
  31. Lagerloef G. 2012. Satellite mission monitors ocean surface salinity. Eos 93:25233–34
    [Google Scholar]
  32. Leetmaa A, Bunker AF. 1978. Updated charts of the mean annual wind stress, convergences in the Ekman layers and Sverdrup transports in the North Atlantic. J. Mar. Res. 36:311–22
    [Google Scholar]
  33. Lumpkin R, Speer K. 2007. Global ocean meridional overturning. J. Phys. Oceanogr. 37:102550–62
    [Google Scholar]
  34. Marotzke J, Scott J. 1999. Convective mixing and the thermohaline circulation. J. Phys. Oceanogr. 29:2962–70
    [Google Scholar]
  35. Marshall J, Radko T 2003. Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr. 33:112341–54
    [Google Scholar]
  36. Marshall J, Schott F 1999. Open-ocean convection: observations, theory, and models. Rev. Geophys. 37:11–64
    [Google Scholar]
  37. Maxworthy T, Narimousa S. 1994. Unsteady, turbulent convection into a homogeneous, rotating fluid, with oceanographic applications. J. Phys. Oceanogr. 24:5865–87
    [Google Scholar]
  38. McCarthy G, Smeed D, Johns W, Frajka-Williams E, Moat B et al. 2015. Measuring the Atlantic Meridional Overturning Circulation at 26°N. Prog. Oceanogr. 130:91–111
    [Google Scholar]
  39. Meredith MP, Hogg AM. 2006. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett. 33:16L16608
    [Google Scholar]
  40. Miller TL, Reynolds ND. 1991. A study of baroclinic instability in a cylindrical annulus with the temperature gradient imposed on the lower surface. J. Fluid Mech. 233:495–518
    [Google Scholar]
  41. Morrison AK, Hogg AM. 2013. On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr. 43:1140–48
    [Google Scholar]
  42. Moum J, Smyth W 2019. Upper ocean mixing. Encyclopedia of Ocean Sciences JK Cochran, HJ Bokuniewicz, PL Yager 71–79 Oxford: Academic. , 3rd ed..
    [Google Scholar]
  43. Mullarney JC, Griffiths RW, Hughes GO. 2004. Convection driven by differential heating at a horizontal boundary. J. Fluid Mech. 516:181–209
    [Google Scholar]
  44. Munk WH. 1950. On the wind-driven ocean circulation. J. Atmos. Sci. 7:280–93
    [Google Scholar]
  45. Nikurashin M, Vallis G. 2012. A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr. 42:101652–67
    [Google Scholar]
  46. Nurser AJG, Lee MM. 2004. Isopycnal averaging at constant height. Part I: the formulation and a case study. J. Phys. Oceanogr. 34:122721–39
    [Google Scholar]
  47. Nycander J, Nilsson J, Döös K, Broström G 2007. Thermodynamic analysis of ocean circulation. J. Phys. Oceanogr. 37:82038–52
    [Google Scholar]
  48. Olbers D, Borowski D, Völker C, Wolff JO. 2004. The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarctic Sci. 16:4439–70
    [Google Scholar]
  49. Olbers D, Visbeck M. 2005. A model of the zonally averaged stratification and overturning in the Southern Ocean. J. Phys. Oceanogr. 35:71190–205
    [Google Scholar]
  50. OSPO (Off. Satell. Prod. Oper.) 2015. OSPO L4 SST analysis (GDS2) Data Set, Phys. Oceanogr. Distr. Active Arch. Cent. Pasadena, CA: accessed 15 Feb. 2021. https://doi.org/10.5067/GHGPB-4FO02
    [Crossref] [Google Scholar]
  51. Paparella F, Young WR. 2002. Horizontal convection is non-turbulent. J. Fluid Mech. 466:205–14
    [Google Scholar]
  52. Park YG, Bryan K. 2000. Comparison of thermally driven circulation from a depth-coordinate model and an isopycnal model. Part I: scaling law sensitivity to vertical diffusion. J. Phys. Oceanogr. 30:590–605
    [Google Scholar]
  53. Park YG, Whitehead JA. 1999. Rotating convection driven by differential bottom heating. J. Phys. Oceanogr. 29:1208–20
    [Google Scholar]
  54. Peltier WR, Caulfield CP. 2003. Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech. 35:135–67
    [Google Scholar]
  55. Pierce DW, Rhines PB. 1996. Convective building of a pycnocline: laboratory experiments. J. Phys. Oceanogr. 26:176–90
    [Google Scholar]
  56. Plumley M, Julien K, Marti P, Stellmach S 2016. The effects of Ekman pumping on quasi-geostrophic Rayleigh-Bénard convection. J. Fluid Mech. 803:51–71
    [Google Scholar]
  57. Quon C. 1987. Nonlinear response of a rotating fluid to differential heating from below. J. Fluid Mech. 181:233–63
    [Google Scholar]
  58. Rahmstorf S 2006. Thermohaline ocean circulation. Encyclopedia of Quaternary Sciences SA Elias, CJ Mock 739–50 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  59. Rahmstorf S, Box JE, Feulner G, Mann ME, Robinson A et al. 2015. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5:5475–80
    [Google Scholar]
  60. Rintoul SR, Sokolov S, Church J 2002. A 6 year record of baroclinic transport variability of the Antarctic Circumpolar Current at 140°E derived from expendable bathythermograph and altimeter measurements. J. Geophys. Res. 107:C103155
    [Google Scholar]
  61. Robinson AR. 1960. The general thermal circulation in equatorial regions. Deep Sea Res. 6:311–17
    [Google Scholar]
  62. Robinson AR, Stommel H. 1959. The oceanic thermocline and the associated thermohaline circulation. Tellus 11:3295–308
    [Google Scholar]
  63. Roquet F, Wunsch C, Madec G. 2011. On the patterns of wind-power input to the ocean circulation. J. Phys. Oceanogr. 41:122328–42
    [Google Scholar]
  64. Rosevear MG, Gayen B, Griffiths RW. 2017. Turbulent horizontal convection under spatially periodic forcing: a regime governed by interior inertia. J. Fluid Mech. 831:491–523
    [Google Scholar]
  65. Rossby HT. 1965. On thermal convection driven by non-uniform heating from below: an experimental study. Deep-Sea Res. 12:9–16
    [Google Scholar]
  66. Rossby HT. 1998. Numerical experiments with a fluid non-uniformly heated from below. Tellus 50:242–57
    [Google Scholar]
  67. Saenz JA, Hogg AM, Hughes GO, Griffiths RW. 2012. Mechanical power input from buoyancy and wind to the circulation in an ocean model. Geophys. Res. Lett. 39:13L13605
    [Google Scholar]
  68. Samelson RM, Vallis GK. 1997. Large-scale circulation with small diapycnal diffusion: the two-thermocline limit. J. Mar. Res. 55:2223–75
    [Google Scholar]
  69. Scotti A, White B 2011. Is horizontal convection really “non-turbulent?. Geophys. Res. Lett. 38:21L21609
    [Google Scholar]
  70. Sheard GJ, Hussam WK, Tsai T. 2016. Linear stability and energetics of rotating radial horizontal convection. J. Fluid Mech. 795:1–35
    [Google Scholar]
  71. Shishkina O, Grossmann S, Lohse D 2016. Heat and momentum transport scalings in horizontal convection. Geophys. Res. Lett. 43:31219–25
    [Google Scholar]
  72. Sohail T, Gayen B, Hogg AM. 2018. Convection enhances mixing in the Southern Ocean. Geophys. Res. Lett. 45:94198–207
    [Google Scholar]
  73. Sohail T, Gayen B, Hogg AM. 2020. The dynamics of mixed layer deepening during open-ocean convection. J. Phys. Oceanogr 50:61625–41
    [Google Scholar]
  74. Sohail T, Vreugdenhil CA, Gayen B, Hogg AM. 2019. The impact of turbulence and convection on transport in the Southern Ocean. J. Geophys. Res. 124:64208–21
    [Google Scholar]
  75. Spall MA, Pickart RS. 2001. Where does dense water sink? A subpolar gyre example. J. Phys. Oceanogr. 31:810–26
    [Google Scholar]
  76. Speer KG, Whitehead JA. 1988. A gyre in a non-uniformly heated rotating fluid. Deep-Sea Res. 35:1069–77
    [Google Scholar]
  77. Srokosz MA, Bryden HL. 2015. Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises. Science 348:62411255575
    [Google Scholar]
  78. Stern M. 1975. Ocean Circulation Physics New York: Academic
    [Google Scholar]
  79. Stewart KD, Hughes GO, Griffiths RW. 2011. When do marginal seas and topographic sills modify the ocean density structure?. J. Geophys. Res. Oceans 116:C8C08021
    [Google Scholar]
  80. Stewart KD, Hughes GO, Griffiths RW. 2012. The role of turbulent mixing in an overturning circulation maintained by surface buoyancy forcing. J. Phys. Oceanogr. 42:111907–22
    [Google Scholar]
  81. Talley LD. 2013. Closure of the Global Overturning Circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26:180–97
    [Google Scholar]
  82. Talley LD, Reid JL, Robbins PE 2003. Data-based meridional overturning streamfunctions for the global ocean. J. Climate 16:193213–26
    [Google Scholar]
  83. Tsai T, Hussam WK, Fouras A, Sheard GJ 2016. The origin of instability in enclosed horizontally driven convection. Int. J. Heat Mass Transf. 94:509–15
    [Google Scholar]
  84. Vreugdenhil CA, Gayen B, Griffiths RW. 2016. Mixing and dissipation in a geostrophic buoyancy-driven circulation. J. Geophys. Res. 121:86076–91
    [Google Scholar]
  85. Vreugdenhil CA, Gayen B, Griffiths RW. 2019. Transport by deep convection in basin-scale geostrophic circulation: turbulence-resolving simulations. J. Fluid Mech. 865:681–719
    [Google Scholar]
  86. Vreugdenhil CA, Griffiths RW, Gayen B. 2017. Geostrophic and chimney regimes in rotating horizontal convection with imposed heat flux. J. Fluid Mech. 823:57–99
    [Google Scholar]
  87. Welander P 1986. Thermohaline effects in the ocean circulation and related simple models. Large-Scale Transport Processes in Oceans and Atmosphere J Willebrand, DLT Anderson 163–200 Dordrecht, Neth: Springer
    [Google Scholar]
  88. Welander P, Deacon GER. 1971. A discussion on ocean currents and their dynamics—the thermocline problem. Philos. Trans. R. Soc. Lond. A 270: 1206.415–21
    [Google Scholar]
  89. Whitehead JA, Wang W. 2008. A laboratory model of vertical ocean circulation driven by mixing. J. Phys. Oceanogr. 38:51091–106
    [Google Scholar]
  90. Winters KB, Lombard PN, Riley JJ, D'Asaro EA. 1995. Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289:115–28
    [Google Scholar]
  91. Winton M. 1996. The role of horizontal boundaries in parameter sensitivity and decadal-scale variability of coarse-resolution ocean general circulation models. J. Phys. Oceanogr. 26:289–304
    [Google Scholar]
  92. Wunsch C, Ferrari R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36:281–314
    [Google Scholar]
  93. Zemskova VE, White BL, Scotti A. 2015. Available potential energy and the general circulation: partitioning wind, buoyancy forcing, and diapycnal mixing. J. Phys. Oceanogr. 45:61510–31
    [Google Scholar]
  94. Zemskova VE, White BL, Scotti A. 2020. Energetics of a rotating wind-forced horizontal convection model of a reentrant channel. J. Phys. Oceanogr. 51:72271–90
    [Google Scholar]
  95. Zhang Y, Chen C, Zhang Z, Wang W. 2016. Rotating horizontal convection and the potential vorticity constraint. J. Fluid Mech. 803:72–93
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-030121-115729
Loading
/content/journals/10.1146/annurev-fluid-030121-115729
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error