1932

Abstract

We review studies of levitating droplets over liquid–gas interfaces and dry solid surfaces with a focus on the physical mechanisms of levitation under different conditions. A fascinating physical phenomenon of self-organization of levitating droplets into large arrays is described and explanations for this unusual behavior are reviewed. Closely related topics of nonisothermal flotation and levitation of evaporating droplets over a pool of nonvolatile liquid, as well as recent advances in the study of the Leidenfrost effect, are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-030620-094158
2021-01-05
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/fluid/53/1/annurev-fluid-030620-094158.html?itemId=/content/journals/10.1146/annurev-fluid-030620-094158&mimeType=html&fmt=ahah

Literature Cited

  1. Abdelaziz R, Disci-Zayed D, Hedayati MK, Pöhls JH, Zillohu AU et al. 2013. Green chemistry and nanofabrication in a levitated Leidenfrost drop. Nat. Commun. 4:2400
    [Google Scholar]
  2. Adda-Bedia M, Kumar S, Lechenault F, Moulinet S, Schillaci M, Vella D 2016. Inverse Leidenfrost effect: levitating drops on liquid nitrogen. Langmuir 32:4179–88
    [Google Scholar]
  3. Biance A-L, Clanet C, Quéré D 2003. Leidenfrost drops. Phys. Fluids 15:1632–37
    [Google Scholar]
  4. Bormashenko E, Fedorets AA, Frenkel M, Dombrovsky LA, Nosonovsky M 2020. Clustering and self-organization in small-scale natural and artificial systems. Philos. Trans. R. Soc. A 378:20190443
    [Google Scholar]
  5. Bouillant A, Mouterde T, Bourrianne P, Lagarde A, Clanet C, Quéré D 2018. Leidenfrost wheels. Nature Phys 14:1188–92
    [Google Scholar]
  6. Bourrianne P, Lv C, Quéré D 2019. The cold Leidenfrost regime. Sci. Adv. 5:eeaw0304
    [Google Scholar]
  7. Carle F, Semenov S, Medale M, Brutin D 2016. Contribution of convective transport to evaporation of sessile droplets: empirical model. Int. J. Therm. Sci. 101:35–47
    [Google Scholar]
  8. Celestini F, Frisch T, Pomeau Y 2012. Take off of small Leidenfrost droplets. Phys. Rev. Lett. 109:034501
    [Google Scholar]
  9. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten T 2000. Contact line deposits in an evaporating drop. Phys. Rev. E 62:756–65
    [Google Scholar]
  10. Dell'Aversana P, Banavar JR, Koplik J 1996. Suppression of coalescence by shear and temperature gradients. Phys. Fluids 8:15–28
    [Google Scholar]
  11. Eddi A, Decelle A, Fort E, Couder Y 2009. Archimedean lattices in the bound states of wave interacting particles. Europhys. Lett. 87:56002
    [Google Scholar]
  12. Ershov D, Sprakel J, Appel J, Cohen Stuart MA, van der Gucht J 2013. Capillarity-induced ordering of spherical colloids on an interface with anisotropic curvature. PNAS 110:9220–24
    [Google Scholar]
  13. Fedorets AA. 2004. Droplet cluster. JETP Lett 79:372–74
    [Google Scholar]
  14. Fedorets AA. 2005. On the mechanism of noncoalescence in a droplet cluster. JETP Lett 81:437–41
    [Google Scholar]
  15. Fedorets AA, Dombrovsky LA, Medvedev DN 2015a. Effect of infrared irradiation on the suppression of the condensation growth of water droplets in a levitating droplet cluster. JETP Lett 102:452–54
    [Google Scholar]
  16. Fedorets AA, Frenkel M, Shulzinger E, Dombrovsky LA, Bormashenko E, Nosonovsky M 2017. Self-assembled levitating clusters of water droplets: pattern-formation and stability. Sci. Rep. 7:1888
    [Google Scholar]
  17. Fedorets AA, Marchuk IV, Kabov OA 2011. Role of vapor flow in the mechanism of levitation of a droplet cluster dissipative structure. Tech. Phys. Lett. 37:116–18
    [Google Scholar]
  18. Fedorets AA, Marchuk IV, Kabov OA 2013. Coalescence of a droplet cluster suspended over a locally heated liquid layer. Interfacial Phenom. Heat Transf. 1:51–62
    [Google Scholar]
  19. Fedorets AA, Marchuk IV, Kabov OA 2014. On the role of capillary waves in the mechanism of coalescence of a droplet cluster. JETP Lett 99:266–69
    [Google Scholar]
  20. Fedorets AA, Marchuk IV, Stryzhak PA, Kabov OA 2015b. Capillary waves at microdroplet coalescence with a liquid layer. Thermophys. Aeromech. 22:515–18
    [Google Scholar]
  21. Fisher LS, Golovin AA. 2007. Motion of a droplet near an evaporating liquid-gas interface. Phys. Fluids 19:032101
    [Google Scholar]
  22. Fortov VE, Khrapak AG, Khrapak SA, Molotkov VI, Petrov OF 2004. Dusty plasmas. Phys.-Uspekhi 47:447–92
    [Google Scholar]
  23. Gauthier A, Bird JC, Clanet C, Quéré D 2016. Aerodynamic Leidenfrost effect. Phys. Rev. Fluids 1:084002
    [Google Scholar]
  24. Gauthier A, Diddens C, Proville R, Lohse D, van der Meer D 2019. Self-propulsion of inverse Leidenfrost drops on a cryogenic bath. PNAS 116:1174–79
    [Google Scholar]
  25. Geri M, Keshavarz B, McKinley GH, Bush JWM 2017. Thermal delay of drop coalescence. J. Fluid Mech. 833:R3
    [Google Scholar]
  26. Hall RS, Board SJ, Clare AJ, Duffey RB, Playle TS, Poole DH 1969. Inverse Leidenfrost phenomenon. Nature 224:266–67
    [Google Scholar]
  27. Kabov OA, Zaitsev DV, Kirichenko DP, Ajaev VS 2017. Interaction of levitating microdroplets with moist air flow in the contact line region. Nanoscale Microscale Thermophys. Eng. 21:60–69
    [Google Scholar]
  28. Karpitschka S, Pandey A, Lubbers LA, Weijs JH, Botto L et al. 2016. Liquid drops attract or repel by the inverted Cheerios effect. PNAS 113:7403–7
    [Google Scholar]
  29. Kavehpour HP. 2015. Coalescence of drops. Annu. Rev. Fluid Mech. 47:245–68
    [Google Scholar]
  30. Kim I, Elghobashi S, Sirignano W 1993. Three-dimensional flow over two spheres placed side by side. J. Fluid Mech. 246:465–88
    [Google Scholar]
  31. Kim J. 2007. Spray cooling heat transfer: the state of the art. Int. J. Heat Fluid Flow 28:753–67
    [Google Scholar]
  32. Kleinstreuer C, Zhang Z. 2010. Air flow and particle transport in the human respiratory system. Annu. Rev. Fluid Mech. 42:301–34
    [Google Scholar]
  33. Leidenfrost JG. 1756. De Aquae Communis Nonnullis Qualitatibus Tractatus Duisburg, Ger: Ovenius
  34. Linke H, Alemán BJ, Melling LD, Taormina MJ, Francis MJ et al. 2006. Self-propelled Leidenfrost droplets. Phys. Rev. Lett. 96:154502
    [Google Scholar]
  35. Lyu S, Mathai V, Wang Y, Sobac B, Colinet P et al. 2019. Final fate of a Leidenfrost droplet: explosion or takeoff. Sci. Adv. 5:eeav8081
    [Google Scholar]
  36. Lyulin YV, Spesivtsev SE, Marchuk IV, Kabov OA 2017. Study of dynamics of thin liquid layer breakdown under conditions of spot heating and formation of a droplet cluster. Thermophys. Aeromech. 24:949–52
    [Google Scholar]
  37. Maquet L, Sobac B, Darbois-Texier B, Duchesne A, Brandenbourger M et al. 2016. Leidenfrost drops on a heated liquid pool. Phys. Rev. Fluids 1:053902
    [Google Scholar]
  38. Monti R, Savino R, Lappa M, Tempesta S 1998. Behavior of drops in contact with pool surfaces of different liquids. Phys. Fluids 10:2786–96
    [Google Scholar]
  39. Moreau F, Colinet P, Dorbolo S 2019. Explosive Leidenfrost droplets. Phys. Rev. Fluids 4:013602
    [Google Scholar]
  40. Nagy PT, Neitzel GP. 2008. Optical levitation and transport of microdroplets: proof of concept. Phys. Fluids 20:101703
    [Google Scholar]
  41. Nam I, Lee JK, Nam HG, Zare RN 2017. Abiotic production of sugar phosphates and uridine ribonucleoside in aqueous microdroplets. PNAS 114:12396–400
    [Google Scholar]
  42. Neitzel GP, Dell'Aversana P. 2002. Noncoalescence and nonwetting behavior of liquids. Annu. Rev. Fluid Mech. 34:267–89
    [Google Scholar]
  43. Oron A, Davis SH, Bankoff SG 1997. Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69:931–80
    [Google Scholar]
  44. Petrov OF, Vasiliev MM, Vaulina OS, Stacenko KB, Vasilieva EV et al. 2015. Solid-hexatic-liquid transition in a two-dimensional system of charged dust particles. Europhys. Lett. 111:45002
    [Google Scholar]
  45. Protière S, Boudaoud A, Couder Y 2006. Particle–wave association on a fluid interface. J. Fluid Mech. 554:85–108
    [Google Scholar]
  46. Quéré D. 2013. Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45:197–215
    [Google Scholar]
  47. Reynolds O. 1881. On the floating of drops on the surface of water depending only on the purity of the surface. Proc. Manch. Lit. Philos. Soc. 21:1–2
    [Google Scholar]
  48. Savino R, Paterna D, Lappa M 2003. Marangoni flotation of liquid droplets. J. Fluid Mech. 479:307–26
    [Google Scholar]
  49. Sazhin S. 2014. Droplets and Sprays New York: Springer
  50. Schaefer VJ. 1971. Observations of an early morning cup of coffee. Am. Sci. 59:534–35
    [Google Scholar]
  51. Shirota M, van Limbeek MAJ, Sun C, Prosperetti A, Lohse D 2016. Dynamic Leidenfrost effect: relevant time and length scales. Phys. Rev. Lett. 116:064501
    [Google Scholar]
  52. Sobac B, Rednikov A, Dorbolo S, Colinet P 2014. Leidenfrost effect: accurate drop shape modeling and refined scaling laws. Phys. Rev. E 90:053011
    [Google Scholar]
  53. Srinivasarao M, Collings D, Philips A, Patel S 2001. Three-dimensionally ordered array of air bubbles in a polymer film. Science 292:79–83
    [Google Scholar]
  54. Umeki T, Ohata M, Nakanishi H, Ichikawa M 2015. Dynamics of microdroplets over the surface of hot water. Sci. Rep. 5:8046
    [Google Scholar]
  55. Vakarelski IU, Patankar NA, Marston JO, Chan DYC, Thoroddsen ST 2012. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489:274–77
    [Google Scholar]
  56. Van Limbeek MAJ, Klein Schaarsberg MH, Sobac B, Rednikov A, Sun C et al. 2017. Leidenfrost drops cooling surfaces: theory and interferometric measurement. J. Fluid Mech. 827:614–39
    [Google Scholar]
  57. Van Limbeek MAJ, Sobac B, Rednikov A, Colinet P, Snoeijer J 2019. Asymptotic theory for a Leidenfrost drop on a liquid pool. J. Fluid Mech. 863:1157–89
    [Google Scholar]
  58. Vella D, Mahadevan L. 2005. The “Cheerios effect.”. Am. J. Phys. 73:817–25
    [Google Scholar]
  59. Waitukaitis S, Zuiderwijk A, Souslov A, Coulais C, van Hecke M 2017. Coupling the Leidenfrost effect and elastic deformations to power sustained bouncing. Nat. Phys. 13:1095–99
    [Google Scholar]
  60. Zaitsev DV, Kirichenko DP, Ajaev VS, Kabov OA 2017. Levitation and self-organization of liquid microdroplets over dry heated substrates. Phys. Rev. Lett. 119:094503
    [Google Scholar]
  61. Zaitsev DV, Kirichenko DP, Ajaev VS, Kabov OA 2018. Levitation of ordered arrays of liquid microdroplets over solid-gas and liquid-gas interfaces. Proceedings of the 16th International Heat Transfer Conference1471–78 Danbury, CT: Begell House
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-030620-094158
Loading
/content/journals/10.1146/annurev-fluid-030620-094158
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error