1932

Abstract

Fluid mechanics lies at the heart of many of the physical processes associated with the nascent deep-sea mining industry. The evolution and fate of sediment plumes that would be produced by seabed mining activities, which are central to the assessment of the environmental impact, are entirely determined by transport processes. These processes, which include advection, turbulent mixing, buoyancy, differential particle settling, and flocculation, operate at a multitude of spatiotemporal scales. A combination of historical and recent efforts that combine theory, numerical modeling, laboratory experiments, and field trials has yielded significant progress, including assessing the role of environmental and operational parameters in setting the extent of sediment plumes, but more fundamental and applied fluid mechanics research is needed before models can accurately predict commercial-scale scenarios. Furthermore, fluid mechanics underpins the design and operation of proposed mining technologies, for which there are currently no established best practices.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-031822-010257
2023-01-19
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/fluid/55/1/annurev-fluid-031822-010257.html?itemId=/content/journals/10.1146/annurev-fluid-031822-010257&mimeType=html&fmt=ahah

Literature Cited

  1. Aleynik D, Inall ME, Dale A, Vink A. 2017. Impact of remotely generated eddies on plume dispersion at abyssal mining sites in the Pacific. Sci. Rep. 7:116959
    [Google Scholar]
  2. Alford MH, MacKinnon JA, Simmons HL, Nash JD. 2016. Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci. 8:95–123
    [Google Scholar]
  3. Baker ET, Massoth GJ. 1986. Hydrothermal plume measurements: a regional perspective. Science 234:4779980–82
    [Google Scholar]
  4. Becker HJ, Grupe B, Oebius HU, Liu F. 2001. The behaviour of deep-sea sediments under the impact of nodule mining processes. Deep Sea Res. Part II Top. Stud. Oceanogr. 48:17–183609–27
    [Google Scholar]
  5. Blanchette F, Strauss M, Meiburg E, Kneller B, Glinsky ME. 2005. High-resolution numerical simulations of resuspending gravity currents: conditions for self-sustainment. J. Geophys. Res. 110:C12C12022
    [Google Scholar]
  6. Bonnecaze RT, Lister JR. 1999. Particle-driven gravity currents down planar slopes. J. Fluid Mech. 390:75–91
    [Google Scholar]
  7. Burns RE. 1980. Assessment of environmental effects of deep ocean mining of manganese nodules. Helgol. Meeresunters. 33:1–4433–42
    [Google Scholar]
  8. Cherkashov G 2017. Seafloor massive sulfide deposits: distribution and prospecting. Deep-Sea Mining R Sharma 143–64 Cham, Switz: Springer Int.
    [Google Scholar]
  9. Chowdhury MR, Testik FY. 2015. Axisymmetric underflows from impinging buoyant jets of dense cohesive particle-laden fluids. J. Hydraul. Eng. 141:304014079
    [Google Scholar]
  10. Cilliers J. 2000. Particle size separation. Hydrocyclones for particle size separation. Encyclopedia of Separation Science1819–25 San Diego, CA: Academic Press
    [Google Scholar]
  11. Clement CP, Pacheco-Martinez HA, Swift MR, King PJ. 2010. The water-enhanced Brazil nut effect. Europhys. Lett. 91:554001
    [Google Scholar]
  12. Concha AF. 2014. Particle aggregation by coagulation and flocculation. Solid–Liquid Separation in the Mining Industry143–72 Cham, Switz: Springer
    [Google Scholar]
  13. Cyriac A, Phillips HE, Bindoff NL, Mao H, Feng M. 2021. Observational estimates of turbulent mixing in the southeast Indian Ocean. J. Phys. Oceanogr. 51:72103–28
    [Google Scholar]
  14. Dai Y, Zhang Y, Li X 2021. Numerical and experimental investigations on pipeline internal solid-liquid mixed fluid for deep ocean mining. Ocean Eng. 220:108411
    [Google Scholar]
  15. Derakhshandeh JF, Alam MM. 2019. A review of bluff body wakes. Ocean Eng. 182:475–88
    [Google Scholar]
  16. Derjaguin BV, Churaev NV, Muller VM 1987. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory of stability of lyophobic colloids. Surface Forces NV Churaev, BV Derjaguin, VM Muller 293–310 Boston, MA: Springer
    [Google Scholar]
  17. Devenish BJ, Rooney GG, Webster HN, Thomson DJ. 2010. The entrainment rate for buoyant plumes in a crossflow. Bound.-Layer Meteorol. 134:3411–39
    [Google Scholar]
  18. Devkota BH, Imberger J. 2009. Lagrangian modeling of advection-diffusion transport in open channel flow. Water Resour. Res. 45:12W12406
    [Google Scholar]
  19. Dorrell RM, Hogg AJ, Pritchard D. 2013. Polydisperse suspensions: erosion, deposition, and flow capacity. J. Geophys. Res. Earth Surf. 118:31939–55
    [Google Scholar]
  20. Dorrell RM, Hogg AJ, Sumner EJ, Talling PJ. 2011. The structure of the deposit produced by sedimentation of polydisperse suspensions. J. Geophys. Res. Earth Surf. 116:F01024
    [Google Scholar]
  21. Dorrell RM, Peakall J, Darby SE, Parsons DR, Johnson J et al. 2019. Self-sharpening induces jet-like structure in seafloor gravity currents. Nat. Commun. 10:1381
    [Google Scholar]
  22. Dutkiewicz A, Judge A, Müller RD. 2020. Environmental predictors of deep-sea polymetallic nodule occurrence in the global ocean. Geology 48:3293–97
    [Google Scholar]
  23. Elerian M, Alhaddad S, Helmons R, van Rhee C 2021. Near-field analysis of turbidity flows generated by polymetallic nodule mining tools. Mining 1:3251–78
    [Google Scholar]
  24. Ernst GGJ, Sparks RSJ, Carey SN, Bursik MI. 1996. Sedimentation from turbulent jets and plumes. J. Geophys. Res. 101:B35575–89
    [Google Scholar]
  25. Fan W, Bao W, Cai Y, Xiao C, Zhang Z et al. 2020. Experimental study on the effects of a vertical jet impinging on soft bottom sediments. Sustainability 12:93775
    [Google Scholar]
  26. Gardner WD, Richardson MJ, Mishonov AV, Biscaye PE. 2018. Global comparison of benthic nepheloid layers based on 52 years of nephelometer and transmissometer measurements. Prog. Oceanogr. 168:100–11
    [Google Scholar]
  27. Gillard B, Harbour RP, Nowald N, Thomsen L, Iversen MH. 2022. Vertical distribution of particulate matter in the Clarion Clipperton Zone (German sector)—potential impacts from deep-sea mining discharge in the water column. Front. Mar. Sci. 9:820947
    [Google Scholar]
  28. Gillard B, Purkiani K, Chatzievangelou D, Vink A, Iversen MH, Thomsen L. 2019. Physical and hydrodynamic properties of deep sea mining-generated, abyssal sediment plumes in the Clarion Clipperton Fracture Zone (eastern-central Pacific). Elementa 7:5
    [Google Scholar]
  29. Gladstone C, Phillips JC, Sparks RSJ. 1998. Experiments on bidisperse, constant-volume gravity currents: propagation and sediment deposition. Sedimentology 45:5833–43
    [Google Scholar]
  30. Hage S, Cartigny MJ, Sumner EJ, Clare MA, Hughes Clarke JE et al. 2019. Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes. Geophys. Res. Lett. 46:2011310–20
    [Google Scholar]
  31. Hallworth MA, Hogg AJ, Huppert HE. 1998. Effects of external flow on compositional and particle gravity currents. J. Fluid Mech. 359:109–42
    [Google Scholar]
  32. Hallworth MA, Huppert HE, Phillips JC, Sparks RSJ. 1996. Entrainment into two-dimensional and axisymmetric turbulent gravity currents. J. Fluid Mech. 308:289–311
    [Google Scholar]
  33. Hallworth MA, Phillips JC, Huppert HE, Sparks RSJ. 1993. Entrainment in turbulent gravity currents. Nature 362:6423829–31
    [Google Scholar]
  34. Harris TC, Hogg AJ, Huppert HE. 2002. Polydisperse particle-driven gravity currents. J. Fluid Mech. 472:333–71
    [Google Scholar]
  35. Hayes SP 1979. Benthic current observations at DOMES sites A, B, and C in the tropical North Pacific Ocean. Marine Geology and Oceanography of the Pacific Manganese Nodule Province JL Bischoff, DZ Piper 83–112 Boston, MA: Springer
    [Google Scholar]
  36. Hein JR, Koschinsky A, Kuhn T. 2020. Deep-ocean polymetallic nodules as a resource for critical materials. Nat. Rev. Earth Environ. 1:3158–69
    [Google Scholar]
  37. Hong K-S, Shah UH. 2018. Vortex-induced vibrations and control of marine risers: a review. Ocean Eng. 152:300–15
    [Google Scholar]
  38. Howell J. 2011. The decay of bluff body wakes. SAE Int. J. Passeng. Cars Mech. Syst. 4:1207–15
    [Google Scholar]
  39. James CB, Mingotti N, Woods AW. 2022. On particle separation from turbulent particle plumes in a cross-flow. J. Fluid Mech. 932:A45
    [Google Scholar]
  40. Jankowski J, Malcherek A, Zielke W. 1994. Numerical modeling of sediment transport processes caused by deep sea mining discharges. Proceedings of OCEANS'94, Vol. 3269–77 New York: IEEE
    [Google Scholar]
  41. Jankowski JA, Malcherek A, Zielke W. 1996. Numerical modeling of suspended sediment due to deep-sea mining. J. Geophys. Res. Oceans 101:C23545–60
    [Google Scholar]
  42. Jankowski JA, Zielke W. 2001. The mesoscale sediment transport due to technical activities in the deep sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 48:17–183487–521
    [Google Scholar]
  43. Jones DO, Simon-Lledó E, Amon DJ, Bett BJ, Caulle C et al. 2021. Environment, ecology, and potential effectiveness of an area protected from deep-sea mining (Clarion Clipperton Zone, abyssal Pacific). Prog. Oceanogr. 197:102653
    [Google Scholar]
  44. Keller GH, Anderson SH, Lavelle JW. 1975. Near-bottom currents in the Mid-Atlantic Ridge rift valley. Can. J. Earth Sci. 12:4703–10
    [Google Scholar]
  45. Klinkhammer G, Hudson A. 1986. Dispersal patterns for hydrothermal plumes in the South Pacific using manganese as a tracer. Earth Planet. Sci. Lett. 79:3–4241–49
    [Google Scholar]
  46. Kneller B, Nasr-Azadani MM, Radhakrishnan S, Meiburg E. 2016. Long-range sediment transport in the world's oceans by stably stratified turbidity currents. J. Geophys. Res. Oceans 121:128608–20
    [Google Scholar]
  47. Konn C, Fourré E, Jean-Baptiste P, Donval JP, Guyader V et al. 2016. Extensive hydrothermal activity revealed by multi-tracer survey in the Wallis and Futuna region (SW Pacific). Deep Sea Res. Part I Oceanogr. Res. Pap. 116:127–44
    [Google Scholar]
  48. Kontar EA, Sokov AV. 1994. A benthic storm in the northeastern tropical Pacific over the fields of manganese nodules. Deep Sea Res. Part I Oceanogr. Res. Pap. 41:71069–89
    [Google Scholar]
  49. Lahaye N, Gula J, Thurnherr AM, Reverdin G, Bouruet-Aubertot P, Roullet G. 2019. Deep currents in the rift valley of the North Mid-Atlantic Ridge. Front. Mar. Sci. 6:597
    [Google Scholar]
  50. Lavelle JW, Ozturgut E, Swift SA, Erickson BH. 1981. Dispersal and resedimentation of the benthic plume from deep-sea mining operations: a model with calibration. Mar. Min. 3:1–259–93
    [Google Scholar]
  51. Lee JH-W, Chu VH. 2003. Turbulent Jets and Plumes Boston, MA: Springer
  52. Lermusiaux PFJ, Schröter J, Danilov S, Iskandarani M, Pinardi N, Westerink JJ. 2013. Multiscale modeling of coastal, shelf, and global ocean dynamics. Ocean Dyn. 63:11–121341–44
    [Google Scholar]
  53. List EJ. 1982. Turbulent jets and plumes. Annu. Rev. Fluid Mech. 14:189–212
    [Google Scholar]
  54. Luchi R, Balachandar S, Seminara G, Parker G. 2018. Turbidity currents with equilibrium basal driving layers: a mechanism for long runout. Geophys. Res. Lett. 45:31518–26
    [Google Scholar]
  55. Maxworthy T. 2010. Experiments on gravity currents propagating down slopes. Part 2. The evolution of a fixed volume of fluid released from closed locks into a long, open channel. J. Fluid Mech. 647:27–51
    [Google Scholar]
  56. Maxworthy T, Leilich J, Simpson JE, Meiburg E. 2002. The propagation of a gravity current into a linearly stratified fluid. J. Fluid Mech. 453:371–94
    [Google Scholar]
  57. Meiburg E, Kneller B. 2010. Turbidity currents and their deposits. Annu. Rev. Fluid Mech. 42:135–56
    [Google Scholar]
  58. Mewes K, Mogollón JM, Picard A, Rühlemann C, Kuhn T et al. 2014. Impact of depositional and biogeochemical processes on small scale variations in nodule abundance in the Clarion-Clipperton Fracture Zone. Deep Sea Res. Part I Oceanogr. Res. Pap. 91:125–41
    [Google Scholar]
  59. Mingotti N, Woods AW. 2020. Stokes settling and particle-laden plumes: implications for deep-sea mining and volcanic eruption plumes. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378:217920190532
    [Google Scholar]
  60. Morton BR, Taylor G, Turner J. 1956. Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. A Math. Phys. Sci. 234:11961–23
    [Google Scholar]
  61. Muñoz-Royo C, Ouillon R, El Mousadik S, Alford MH, Peacock T. 2022. An in-situ study of turbidity-current plumes generated by a prototype deep-sea nodule mining vehicle. Sci. Adv. 8:38eabn1219
    [Google Scholar]
  62. Muñoz-Royo C, Peacock T, Alford MH, Smith JA, Le Boyer A et al. 2021. Extent of impact of deep-sea nodule mining midwater plumes is influenced by sediment loading, turbulence and thresholds. Commun. Earth Environ. 2:148
    [Google Scholar]
  63. Necker F, Härtel C, Kleiser L, Meiburg E. 2005. Mixing and dissipation in particle-driven gravity currents. J. Fluid Mech. 545:339–72
    [Google Scholar]
  64. Negretti ME, Flòr JB, Hopfinger EJ. 2017. Development of gravity currents on rapidly changing slopes. J. Fluid Mech. 833:70–97
    [Google Scholar]
  65. Nojiri Y, Ishibashi J, Kawai T, Otsuki A, Sakai H. 1989. Hydrothermal plumes along the North Fiji Basin spreading axis. Nature 342:667–70
    [Google Scholar]
  66. Oebius HU, Becker HJ, Rolinski S, Jankowski JA. 2001. Parametrization and evaluation of marine environmental impacts produced by deep-sea manganese nodule mining. Deep Sea Res. Part II Top. Stud. Oceanogr. 48:17–183453–67
    [Google Scholar]
  67. Ouillon R, Kakoutas C, Meiburg E, Peacock T. 2021. Gravity currents from moving sources. J. Fluid Mech. 924:A43
    [Google Scholar]
  68. Ouillon R, Meiburg E, Sutherland BR. 2019. Turbidity currents propagating down a slope into a stratified saline ambient fluid. Environ. Fluid Mech. 19:1143–66
    [Google Scholar]
  69. Ouillon R, Muñoz-Royo C, Alford MH, Peacock T 2022a. Advection-diffusion-settling of deep-sea mining sediment plumes. Part I: Midwater plumes. Flow 2:E22
    [Google Scholar]
  70. Ouillon R, Muñoz-Royo C, Alford MH, Peacock T 2022b. Advection-diffusion-settling of deep-sea mining sediment plumes. Part II: Collector plumes. Flow 2:E23
    [Google Scholar]
  71. Peacock T, Alford MH. 2018. Is deep-sea mining worth it?. Sci. Am. 318:572–77
    [Google Scholar]
  72. Purkiani K, Gillard B, Paul A, Haeckel M, Haalboom S et al. 2021. Numerical simulation of deep-sea sediment transport induced by a dredge experiment in the northeastern Pacific Ocean. Front. Mar. Sci. 8:719463
    [Google Scholar]
  73. Purkiani K, Paul A, Vink A, Walter M, Schulz M, Haeckel M. 2020. Evidence of eddy-related deep-ocean current variability in the northeast tropical Pacific Ocean induced by remote gap winds. Biogeosciences 17:246527–44
    [Google Scholar]
  74. Resing JA, Sedwick PN, German CR, Jenkins WJ, Moffett JW et al. 2015. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523:7559200–3
    [Google Scholar]
  75. Richardson MJ, Weatherly GL, Gardner WD. 1993. Benthic storms in the Argentine Basin. Deep Sea Res. Part II Top. Stud. Oceanogr. 40:4–5975–87
    [Google Scholar]
  76. Rolinski S, Segschneider J, Sündermann J. 2001. Long-term propagation of tailings from deep-sea mining under variable conditions by means of numerical simulations. Deep Sea Res. Part II Top. Stud. Oceanogr. 48:17–183469–85
    [Google Scholar]
  77. Rzeznik AJ, Flierl GR, Peacock T. 2019. Model investigations of discharge plumes generated by deep-sea nodule mining operations. Ocean Eng. 172:684–96
    [Google Scholar]
  78. Segschneider J, Sündermann J. 1998. Simulating large scale transport of suspended matter. J. Mar. Syst. 14:1–281–97
    [Google Scholar]
  79. Sharma R. 2017. Deep-Sea Mining Cham, Switz: Springer Int.
  80. Smith CR, Tunnicliffe V, Colaço A, Drazen JC, Gollner S et al. 2020. Deep-sea misconceptions cause underestimation of seabed-mining impacts. Trends Ecol. Evol. 35:10853–57
    [Google Scholar]
  81. Snow K, Sutherland BR. 2014. Particle-laden flow down a slope in uniform stratification. J. Fluid Mech. 755:251–73
    [Google Scholar]
  82. Sparks RSJ. 1986. The dimensions and dynamics of volcanic eruption columns. Bull. Volcanol. 48:3–15
    [Google Scholar]
  83. Spearman J, Taylor J, Crossouard N, Cooper A, Turnbull M et al. 2020. Measurement and modelling of deep sea sediment plumes and implications for deep sea mining. Sci. Rep. 10:5075
    [Google Scholar]
  84. Thorsen M, Challabotla N, Sævik S, Nydal O. 2019. A numerical study on vortex-induced vibrations and the effect of slurry density variations on fatigue of ocean mining risers. Ocean Eng. 174:1–13
    [Google Scholar]
  85. Thurnherr AM, Richards KJ, German CR, Lane-Serff GF, Speer KG. 2002. Flow and mixing in the rift valley of the Mid-Atlantic Ridge. J. Phys. Oceanogr. 32:61763–78
    [Google Scholar]
  86. Thurnherr AM, St. Laurent LC, Speer KG, Toole JM, Ledwell JR 2005. Mixing associated with sills in a canyon on the midocean ridge flank. J. Phys. Oceanogr. 35:81370–81
    [Google Scholar]
  87. Trancossi M. 2011. An overview of scientific and technical literature on Coanda effect applied to nozzles SAE Tech. Pap. 2011-01-2591 SAE Int. Warrandale, PA:
  88. Usui A, Suzuki K 2022. Geological characterization of ferromanganese crust deposits in the NW Pacific seamounts for prudent deep-sea mining. Perspectives on Deep-Sea Mining R Sharma 81–113 Cham, Switz: Springer Int.
    [Google Scholar]
  89. van der Grient J, Drazen J. 2021. Potential spatial intersection between high-seas fisheries and deep-sea mining in international waters. Mar. Policy 129:104564
    [Google Scholar]
  90. van Haren H. 2017. Exploring the vertical extent of breaking internal wave turbulence above deep-sea topography. Dyn. Atmos. Oceans 77:89–99
    [Google Scholar]
  91. van Haren H. 2018. Abyssal plain hills and internal wave turbulence. Biogeosciences 15:144387–403
    [Google Scholar]
  92. van Haren H. 2019. Off-bottom turbulence expansions of unbounded flow over a deep-ocean ridge. Tellus A Dyn. Meteorol. Oceanogr. 71:11653137
    [Google Scholar]
  93. van Wijk JM, van Grunsven F, Talmon AM, van Rhee C. 2015. Simulation and experimental proof of plug formation and riser blockage during vertical hydraulic transport. Ocean Eng. 101:58–66
    [Google Scholar]
  94. Voet G, Alford MH, Girton JB, Carter GS, Mickett JB, Klymak JM. 2016. Warming and weakening of the abyssal flow through Samoan Passage. J. Phys. Oceanogr. 46:82389–401
    [Google Scholar]
  95. Wang D, Adams EE. 2021. Secondary intrusion formation of multiphase plumes. Front. Mar. Sci. 8:61707
    [Google Scholar]
  96. Waterhouse AF, MacKinnon JA, Nash JD, Alford MH, Kunze E et al. 2014. Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr. 44:71854–72
    [Google Scholar]
  97. Weaver P, Aguzzi J, Boschen-Rose R, Colaço A, de Stigter H et al. 2022. Assessing plume impacts caused by polymetallic nodule mining vehicles. Mar. Policy 139:105011
    [Google Scholar]
  98. Wells M, Dorrell R. 2021. Turbulence processes within turbidity currents. Annu. Rev. Fluid Mech. 53:59–83
    [Google Scholar]
  99. Williamson C, Govardhan R. 2004. Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36:413–55
    [Google Scholar]
  100. Woods AW. 2010. Turbulent plumes in nature. Annu. Rev. Fluid Mech. 42:391–412
    [Google Scholar]
  101. Yeh GT. 1990. A Lagrangian-Eulerian Method with zoomable hidden fine-mesh approach to solving advection-dispersion equations. Water Resour. Res. 26:61133–44
    [Google Scholar]
  102. Zhao K, Pomes F, Vowinckel B, Hsu TJ, Bai B, Meiburg E. 2021. Flocculation of suspended cohesive particles in homogeneous isotropic turbulence. J. Fluid Mech. 921:A17
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-031822-010257
Loading
/content/journals/10.1146/annurev-fluid-031822-010257
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error