1932

Abstract

Iceberg calving accounts for half of the mass discharge from the Greenland and Antarctic ice sheets, which has increased dramatically over the last two decades. Through their displacement and progressive melt, icebergs can impact both the regional and large-scale ocean circulation and marine ecosystems by affecting their stratification and nutrient and carbon cycling. Freshwater input due to iceberg melt has the potential to impact regional sea ice distribution and the global overturning circulation. Notwithstanding their importance, our understanding of where and how icebergs melt is limited and their representation in ocean and climate models is oversimplistic, in part because they are informed by only a handful of observations. As a result, model-based predictions of iceberg melt rates, of the fate of the meltwater, and of its impact on the ocean are highly uncertain. New observational, modeling, and experimental studies are needed to improve our understanding of iceberg melting and hence, the forecasting power of climate models.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Icebergs Melting
Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-032522-100734
2023-01-19
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/fluid/55/1/annurev-fluid-032522-100734.html?itemId=/content/journals/10.1146/annurev-fluid-032522-100734&mimeType=html&fmt=ahah

Literature Cited

  1. Al Faisal M 1977. Water supply and weather modifications through the use of transported icebergs from the Antarctic. Desalination 20:1–3415–23
    [Google Scholar]
  2. Andres M, Silvano A, Straneo F, Watts D. 2015. Icebergs and sea ice detected with inverted echo sounders. J. Atmos. Ocean. Technol. 32:51042–57
    [Google Scholar]
  3. Andresen CS, Straneo F, Ribergaard MH, Bjørk AA, Andersen TJ et al. 2012. Rapid response of Helheim glacier in Greenland to climate variability over the past century. Nat. Geosci. 5:37–41
    [Google Scholar]
  4. Arrigo KR, van Dijken GL, Ainley DG, Fahnestock MA, Markus T 2002. Ecological impact of a large Antarctic iceberg. Geophys. Res. Lett. 29:78–18-4
    [Google Scholar]
  5. Bamber J, Tedstone A, King M, Howat I, Enderlin E et al. 2018. Land ice freshwater budget of the Arctic and North Atlantic oceans: 1. Data, methods, and results. J. Geophys. Res. Oceans 123:31827–37
    [Google Scholar]
  6. Bamber J, Van Den Broeke M, Ettema J, Lenaerts J, Rignot E. 2012. Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett. 39:19L19501
    [Google Scholar]
  7. Bassis JN, Jacobs S. 2013. Diverse calving patterns linked to glacier geometry. Nat. Geosci. 6:10833–36
    [Google Scholar]
  8. Bhatia MP, Kujawinski EB, Das SB, Breier CF, Henderson PB, Charette MA. 2013. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nat. Geosci. 6:4274–78
    [Google Scholar]
  9. Biddle LC, Kaiser J, Heywood KJ, Thompson AF, Jenkins A. 2015. Ocean glider observations of iceberg-enhanced biological production in the northwestern Weddell Sea. Geophys. Res. Lett. 42:2459–65
    [Google Scholar]
  10. Bigg GR. 2016. Icebergs: Their Science and Links to Global Change Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  11. Bigg GR, Clark C, Greenwood SL, Haflidason H, Hughes A et al. 2012. Sensitivity of the North Atlantic circulation to break-up of the marine sectors of the NW European ice sheets during the last glacial: a synthesis of modelling and palaeoceanography. Glob. Planet. Change 98:153–65
    [Google Scholar]
  12. Bigg GR, Johnson JA. 1996. Prediction of iceberg trajectories for the North Atlantic and Arctic oceans. Geophys. Res. Lett. 23:243587–90
    [Google Scholar]
  13. Bigg GR, Wadley MR, Stevens DP, Johnson JA. 1997. Modelling the dynamics and thermodynamics of icebergs. Cold Regions Sci. Technol. 26:2113–35
    [Google Scholar]
  14. Bond GC, Lotti R 1995. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267:52001005–10
    [Google Scholar]
  15. Braakmann-Folgmann A, Shepherd A, Gerrish L, Izzard J, Ridout A. 2022. Observing the disintegration of the A68A iceberg from space. Remote Sens. Environ. 270:112855
    [Google Scholar]
  16. Bushuk M, Holland DM, Stanton TP, Stern A, Gray C. 2019. Ice scallops: a laboratory investigation of the ice–water interface. J. Fluid Mech. 873:942–76
    [Google Scholar]
  17. Cassotto RK, Burton JC, Amundson JM, Fahnestock MA, Truffer M. 2021. Granular decoherence precedes ice mélange failure and glacier calving at Jakobshavn Isbræ. Nat. Geosci. 14:6417–22
    [Google Scholar]
  18. Claudin P, Durán O, Andreotti B. 2017. Dissolution instability and roughening transition. J. Fluid Mech. 832:R2
    [Google Scholar]
  19. Can. Ice Serv. 2005. MANICE: manual of standard procedures for observing and reporting ice conditions Can. Ice Serv., Environ. Can. Ottawa, Ont:.
    [Google Scholar]
  20. Condron A, Hill JC. 2021. Timing of iceberg scours and massive ice-rafting events in the subtropical North Atlantic. Nat. Commun. 12:3668
    [Google Scholar]
  21. Couston LA, Hester E, Favier B, Taylor JR, Holland PR, Jenkins A. 2021. Topography generation by melting and freezing in a turbulent shear flow. J. Fluid Mech. 911:A44
    [Google Scholar]
  22. Curl RL. 1966. Scallops and flutes. Trans. Cave Res. Group G.B 7121–60
    [Google Scholar]
  23. Davison B, Cowton T, Cottier FR, Sole A. 2020. Iceberg melting substantially modifies oceanic heat flux towards a major Greenlandic tidewater glacier. Nat. Commun. 11:5983
    [Google Scholar]
  24. Depoorter MA, Bamber JL, Griggs JA, Lenaerts JTM, Ligtenberg SRM et al. 2013. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502:746989–92
    [Google Scholar]
  25. Duprat LPAM, Bigg GR, Wilton DJ. 2016. Enhanced Southern Ocean marine productivity due to fertilization by giant icebergs. Nat. Geosci. 9:219–21
    [Google Scholar]
  26. Dutrieux P, Stewart C, Jenkins A, Nicholls KW, Corr HF et al. 2014. Basal terraces on melting ice shelves. Geophys. Res. Lett. 41:155506–13
    [Google Scholar]
  27. Eckert ERG, Drake RM. 1959. Heat and Mass Transfer New York: McGraw-Hill
    [Google Scholar]
  28. El-Tahan M, Venkatesh S, El-Tahan H. 1987. Validation and quantitative assessment of the detoriation mechanisms of Arctic icebergs. J. Offshore Mech. Arct. Eng. 109:102–8
    [Google Scholar]
  29. Enderlin EM, Hamilton GS, Straneo F, Sutherland DA. 2016. Iceberg meltwater fluxes dominate the freshwater budget in Greenland's iceberg-congested glacial fjords. Geophys. Res. Lett. 43:2111–287
    [Google Scholar]
  30. Enderlin EM, Howat IM, Jeong S, Noh MJ, Van Angelen JH, Van Den Broeke MR. 2014. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 41:3866–72
    [Google Scholar]
  31. England MR, Wagner TJ, Eisenman I. 2020. Modeling the breakup of tabular icebergs. Sci. Adv. 6:51eabd1273
    [Google Scholar]
  32. Falkner KK, Melling H, Münchow AM, Box JE, Wohlleben T et al. 2011. Context for the recent massive Petermann Glacier calving event. Eos 92:14117–18
    [Google Scholar]
  33. Feltham DL, Worster MG, Wettlaufer J. 2002. The influence of ocean flow on newly forming sea ice. J. Geophys. Res. Oceans 107:C21–11-9
    [Google Scholar]
  34. Fenco Nfld. Ltd. 1983. Development of an operational iceberg deterioration model Tech. Rep., Atmos. Environ. Serv., Environ. Can. Ontario, Can:.
    [Google Scholar]
  35. Fendrock M, Condron A, McGee D. 2022. Modeling iceberg longevity and distribution during Heinrich events. Paleoceanogr. Paleoclimatol. 37:6e2021PA004347
    [Google Scholar]
  36. FitzMaurice A, Cenedese C, Straneo F. 2017. Nonlinear response of iceberg side melting to ocean currents. Geophys. Res. Lett. 44:115637–44
    [Google Scholar]
  37. FitzMaurice A, Cenedese C, Straneo F. 2018. A laboratory study of iceberg side melting in vertically sheared flows. J. Phys. Oceanogr. 48:61367–73
    [Google Scholar]
  38. FitzMaurice A, Stern A 2018. Parameterizing the basal melt of tabular icebergs. Ocean Model. 130:66–78
    [Google Scholar]
  39. FitzMaurice A, Straneo F, Cenedese C, Andres M 2016. Effect of a sheared flow on iceberg motion and melting. Geophys. Res. Lett. 43:2412520–27
    [Google Scholar]
  40. Fogwill CJ, Van Sebille E, Cougnon EA, Turney CS, Rintoul SR et al. 2016. Brief communication: impacts of a developing polynya off Commonwealth Bay, East Antarctica, triggered by grounding of iceberg B09B. Cryosphere 10:62603–9
    [Google Scholar]
  41. Gayen B, Griffiths RW. 2022. Rotating horizontal convection. Annu. Rev. Fluid Mech. 54:105–32
    [Google Scholar]
  42. Gilpin R, Hirata T, Cheng K. 1980. Wave formation and heat transfer at an ice-water interface in the presence of a turbulent flow. J. Fluid Mech. 99:3619–40
    [Google Scholar]
  43. Gladstone RM, Bigg GR, Nicholls KW. 2001. Iceberg trajectory modeling and meltwater injection in the Southern Ocean. J. Geophys. Res. 106:C919903–15
    [Google Scholar]
  44. Green CL, Green JM, Bigg GR. 2011. Simulating the impact of freshwater inputs and deep-draft icebergs formed during a MIS 6 Barents Ice Sheet collapse. Paleoceanography 26:2PA2211
    [Google Scholar]
  45. Greisman P. 1979. On upwelling driven by the melt of ice shelves and tidewater glaciers. Deep Sea Res. A 26:91051–65
    [Google Scholar]
  46. Hanratty TJ. 1981. Stability of surfaces that are dissolving or being formed by convective diffusion. Annu. Rev. Fluid Mech. 13:231–52
    [Google Scholar]
  47. Hester EW, Couston LA, Favier B, Burns KJ, Vasil GM. 2020. Improved phase-field models of melting and dissolution in multi-component flows. Proc. R. Soc. A 476:224220200508
    [Google Scholar]
  48. Hester EW, McConnochie CD, Cenedese C, Couston LA, Vasil G. 2021. Aspect ratio affects iceberg melting. Phys. Rev. Fluids 6:2023802
    [Google Scholar]
  49. Hewitt IJ. 2020. Subglacial plumes. Annu. Rev. Fluid Mech. 52:145–69
    [Google Scholar]
  50. Holland DM, Jenkins A. 1999. Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr. 29:81787–800
    [Google Scholar]
  51. Hotzel IS, Miller JD. 1983. Icebergs: their physical dimensions and the presentation and application of measured data. Ann. Glaciol. 4:116–23
    [Google Scholar]
  52. Hulbe CL, MacAyeal DR, Denton GH, Kleman J, Lowell TV. 2004. Catastrophic ice shelf breakup as the source of Heinrich event icebergs. Paleoceanography 19:PA1004
    [Google Scholar]
  53. Hult J, Ostrander N. 1973. Antarctic icebergs as a global fresh water resource Tech. Rep. R-1255-NSF, Rand Corp. Santa Monica, CA:
    [Google Scholar]
  54. Hunke EC, Comeau D. 2011. Sea ice and iceberg dynamic interaction. J. Geophys. Res. Oceans 116:C5C05008
    [Google Scholar]
  55. Huppert HE, Josberger EG. 1980. The melting of ice in cold stratified water. J. Phys. Oceanogr. 10:6953–60
    [Google Scholar]
  56. Huppert HE, Turner JS. 1978. On melting icebergs. Nature 271:564046–48
    [Google Scholar]
  57. Huppert HE, Turner JS. 1980. Ice blocks melting into a salinity gradient. J. Fluid Mech. 100:2367–84
    [Google Scholar]
  58. Huth A, Adcroft A, Sergienko O. 2022. Parameterizing tabular-iceberg decay in an ocean model. J. Adv. Model. Earth Syst. 14:3e2021MS002869
    [Google Scholar]
  59. Ingersoll AP. 1969. Inertial Taylor columns and Jupiter's great red spot. J. Atmos. Sci. 26:4744–52
    [Google Scholar]
  60. Jacka TH, Giles AB. 2007. Antarctic iceberg distribution and dissolution from ship-based observations. J. Glaciol. 53:182341–56
    [Google Scholar]
  61. Jacobs S, Helmer H, Doake C, Jenkins A, Frolich R. 1992. Melting of ice shelves and the mass balance of Antarctica. J. Glaciol. 38:130375–87
    [Google Scholar]
  62. James TD, Murray T, Selmes N, Scharrer K, O'Leary M. 2014. Buoyant flexure and basal crevassing in dynamic mass loss at Helheim glacier. Nat. Geosci. 7:8593–96
    [Google Scholar]
  63. Jansen D, Schodlok M, Rack W. 2007. Basal melting of A-38B: a physical model constrained by satellite observations. Remote Sens. Environ. 111:2–3195–203
    [Google Scholar]
  64. Job J. 1978. Numerical modelling of iceberg towing for water supplies—a case study. J. Glaciol. 20:84533–42
    [Google Scholar]
  65. Johnson E 1983. Taylor columns in horizontally sheared flow. Geophys. Astrophys. Fluid Dyn. 24:2143–64
    [Google Scholar]
  66. Jongma JI, Driesschaert E, Fichefet T, Goosse H, Renssen H 2009. The effect of dynamic–thermodynamic icebergs on the Southern Ocean climate in a three-dimensional model. Ocean Model. 26:1–2104–13
    [Google Scholar]
  67. Josberger EG, Martin S 1981. A laboratory and theoretical study of the boundary layer adjacent to a vertical melting ice wall in salt water. J. Fluid Mech. 111:439–73
    [Google Scholar]
  68. Kader B, Yaglom A. 1972. Heat and mass transfer laws for fully turbulent wall flows. Int. J. Heat Mass Transf. 15:122329–51
    [Google Scholar]
  69. Karimidastenaei Z, Klöve B, Sadegh M, Haghighi AT. 2021. Polar ice as an unconventional water resource: opportunities and challenges. Water 13:223220
    [Google Scholar]
  70. Kerr RC, McConnochie CD. 2015. Dissolution of a vertical solid surface by turbulent compositional convection. J. Fluid Mech. 765:211–28
    [Google Scholar]
  71. Kimball PW, Rock SM. 2014. Mapping of translating, rotating icebergs with an autonomous underwater vehicle. IEEE J. Ocean. Eng. 40:196–208
    [Google Scholar]
  72. King EM, Stellmach S, Aurnou JM. 2012. Heat transfer by rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 691:568–82
    [Google Scholar]
  73. King EM, Stellmach S, Noir J, Hansen U, Aurnou JM. 2009. Boundary layer control of rotating convection systems. Nature 457:7227301–4
    [Google Scholar]
  74. Kubat I, Sayed M, Savage SB, Carrieres T, Crocker G 2007. An operational iceberg deterioration model. The Seventeenth International Offshore and Polar Engineering Conference JS Chang, SW Hong, S Nagata, AJNA Sarmento, W Koterayama 652–57 Cupertino, CA: Int. Soc. Offshore Polar Eng.
    [Google Scholar]
  75. Lawson J, Russell-Head D 1982. Augmentation of urban water by Antarctic icebergs. Proceedings of the 18th Coastal Engineering Conference BL Edge 2610–18 New York: Am. Soc. Civil Eng.
    [Google Scholar]
  76. Levine RC, Bigg GR. 2008. Sensitivity of the glacial ocean to Heinrich events from different iceberg sources, as modeled by a coupled atmosphere-iceberg-ocean model. Paleoceanography 23:4PA4213
    [Google Scholar]
  77. Lichey C, Hellmer HH. 2001. Modeling giant-iceberg drift under the influence of sea ice in the Weddell Sea, Antarctica. J. Glaciol. 47:158452–60
    [Google Scholar]
  78. Lubufsky E. 2021. Can icebergs be towed to water-starved cities?. Oceanus 56:244–45
    [Google Scholar]
  79. Madec G, NEMO Team. 2008. NEMO ocean engine, version 3.0. Notes Ple modél. l'Inst. Pierre-Simon Laplace 27: https://zenodo.org/record/6334656
    [Google Scholar]
  80. Malan N. 2018. Are icebergs a realistic option for augmenting Cape Town's water supply?. Water Wheel 17:232–34
    [Google Scholar]
  81. Mankoff KD, Solgaard A, Colgan W, Ahlstrøm AP, Khan SA, Fausto RS. 2020. Greenland ice sheet solid ice discharge from 1986 through March 2020. Earth Syst. Sci. Data 12:21367–83
    [Google Scholar]
  82. Marsh R, Ivchenko VO, Skliris N, Alderson S, Bigg GR et al. 2015. NEMO–ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution. Geosci. Model Dev. 8:51547–62
    [Google Scholar]
  83. Martin T, Adcroft A 2010. Parameterizing the fresh-water flux from land ice to ocean with interactive icebergs in a coupled climate model. Ocean Model. 34:3–4111–24
    [Google Scholar]
  84. McConnochie CD, Kerr RC. 2016a. The effect of a salinity gradient on the dissolution of a vertical ice face. J. Fluid Mech. 791:589–607
    [Google Scholar]
  85. McConnochie CD, Kerr RC. 2016b. The turbulent wall plume from a vertically distributed source of buoyancy. J. Fluid Mech. 787:237–53
    [Google Scholar]
  86. McConnochie CD, Kerr RC. 2018. Dissolution of a sloping solid surface by turbulent compositional convection. J. Fluid Mech. 846:563–77
    [Google Scholar]
  87. McKenna R. 2005. Iceberg shape characterization. POAC '05: Proceedings of the International Conference on Port and Ocean Engineering Under Arctic Conditions555–64 https://www.poac.com/PapersOnline.html
    [Google Scholar]
  88. McPhee M. 2008. Air-Ice-Ocean Interaction: Turbulent Ocean Boundary Layer Exchange Processes New York: Springer
    [Google Scholar]
  89. Merino I, Le Sommer J, Durand G, Jourdain NC, Madec G et al. 2016. Antarctic icebergs melt over the Southern Ocean: climatology and impact on sea-ice. Ocean Model. 104:99–110
    [Google Scholar]
  90. Meroni AN, McConnochie CD, Cenedese C, Sutherland B, Snow K. 2019. Nonlinear influence of the Earth's rotation on iceberg melting. J. Fluid Mech. 858:832–51
    [Google Scholar]
  91. Moon T, Sutherland D, Carroll D, Felikson D, Kehrl L, Straneo F. 2018. Subsurface iceberg melt key to Greenland fjord freshwater budget. Nat. Geosci. 11:49–54
    [Google Scholar]
  92. Morgan RA. 2018. Dry continent dreaming: Australian visions of using Antarctic icebergs for water supplies. Int. Rev. Environ. Hist. 4:145–66
    [Google Scholar]
  93. Mountain D. 1980. On predicting iceberg drift. Cold Reg. Sci. Technol. 1:3–4273–82
    [Google Scholar]
  94. Murray T, Selmes N, James TD, Edwards S, Martin I et al. 2015. Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland. J. Geophys. Res. Earth Surf. 120:6964–82
    [Google Scholar]
  95. Neshyba S. 1977. Upwelling by icebergs. Nature 267:5611507–8
    [Google Scholar]
  96. Neshyba S, Josberger EG. 1980. On the estimation of Antarctic iceberg melt rate. J. Phys. Oceanogr. 10:101681–85
    [Google Scholar]
  97. Nicholls KW, Østerhus S, Makinson K, Gammelsrød T, Fahrbach E. 2009. Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: a review. Rev. Geophys. 47:3RG3003
    [Google Scholar]
  98. Pieri AB, Falasca F, von Hardenberg J, Provenzale A. 2016. Plume dynamics in rotating Rayleigh–Bénard convection. Phys. Lett. A 380:14–151363–67
    [Google Scholar]
  99. Rackow T, Wesche C, Timmermann R, Hellmer HH, Juricke S, Jung T. 2017. A simulation of small to giant Antarctic iceberg evolution: differential impact on climatology estimates. J. Geophys. Res. Oceans 122:43170–90
    [Google Scholar]
  100. Ramudu E, Hirsh BH, Olson P, Gnanadesikan A. 2016. Turbulent heat exchange between water and ice at an evolving ice–water interface. J. Fluid Mech. 798:572–97
    [Google Scholar]
  101. Rignot E, Jacobs S, Mouginot J, Scheuchl B. 2013. Ice-shelf melting around Antarctica. Science 341:6143266–70
    [Google Scholar]
  102. Robe R, Maier D, Kollmeyer RC. 1977. Iceberg deterioration. Nature 267:5611505–6
    [Google Scholar]
  103. Robinson N, Williams M, Barrett P, Pyne A. 2010. Observations of flow and ice-ocean interaction beneath the McMurdo Ice Shelf, Antarctica. J. Geophys. Res. Oceans 115:C3C03025
    [Google Scholar]
  104. Ruhl HA, Ellena JA, Wilson RC, Helly J. 2011. Seabird aggregation around free-drifting icebergs in the northwest Weddell and Scotia Seas. Deep Sea Res. II 58:11–121497–504
    [Google Scholar]
  105. Savage SB. 2001. Aspects of iceberg deterioration and drift. Geomorphol. Fluid Mech. 582:279–318
    [Google Scholar]
  106. Scambos T, Sergienko O, Sargent A, MacAyeal D, Fastook J. 2005. ICESat profiles of tabular iceberg margins and iceberg breakup at low latitudes. Geophys. Res. Lett. 32:23L23S09
    [Google Scholar]
  107. Schild KM, Sutherland DA, Elosegui P, Duncan D. 2021. Measurements of iceberg melt rates using high-resolution GPS and iceberg surface scans. Geophys. Res. Lett. 48:3e2020GL089765
    [Google Scholar]
  108. Schodlok M, Hellmer H, Rohardt G, Fahrbach E. 2006. Weddell Sea iceberg drift: five years of observations. J. Geophys. Res. Oceans 111:C6C06018
    [Google Scholar]
  109. Sciascia R, Straneo F, Cenedese C, Heimbach P. 2013. Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res. Oceans 118:52492–506
    [Google Scholar]
  110. Seki N, Fukusako S, Younan G. 1984. Ice-formation phenomena for water flow between two cooled parallel plates. J. Heat Transf. 106:3498–505
    [Google Scholar]
  111. Shah V, Schild K, Lindeman M, Duncan D, Sutherland D et al. 2019. Multi-sensor mapping for low contrast, quasi-dynamic, large objects. IEEE Robot. Autom. Lett. 5:2470–76
    [Google Scholar]
  112. Shaw TJ, Raiswell R, Hexel CR, Vu HP, Moore WS et al. 2011. Input, composition, and potential impact of terrigenous material from free-drifting icebergs in the Weddell Sea. Deep Sea Res. II 58:11–121376–83
    [Google Scholar]
  113. Shepherd A, Ivins ER, Barletta VR, Bentley MJ, Bettadpur S et al. 2012. A reconciled estimate of ice-sheet mass balance. Science 338:61111183–89
    [Google Scholar]
  114. Silva TAM, Bigg GR, Nicholls KW. 2006. Contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. Oceans 111:3C03004
    [Google Scholar]
  115. Smith KL Jr., Robison BH, Helly JJ, Kaufmann RS, Ruhl HA et al. 2007. Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea. Science 317:5837478–82
    [Google Scholar]
  116. Smith KL Jr., Sherman AD, Shaw TJ, Murray AE, Vernet M, Cefarelli AO. 2011. Carbon export associated with free-drifting icebergs in the southern ocean. Deep Sea Res. II 58:11–121485–96
    [Google Scholar]
  117. Smith KL Jr., Sherman AD, Shaw TJ, Sprintall J. 2013. Icebergs as unique Lagrangian ecosystems in polar seas. Annu. Rev. Mar. Sci. 5:269–87
    [Google Scholar]
  118. Smith SD. 1993. Hindcasting iceberg drift using current profiles and winds. Cold Reg. Sci. Technol. 22:33–45
    [Google Scholar]
  119. Srokosz M, Baringer M, Bryden H, Cunningham S, Delworth T et al. 2012. Past, present, and future changes in the Atlantic meridional overturning circulation. Bull. Am. Meteorol. Soc. 93:111663–76
    [Google Scholar]
  120. Stefan J. 1891. On the theory of ice formation, especially ice formation in the polar seas. Ann. Phys 278:2269–86
    [Google Scholar]
  121. Stephenson GR, Sprintall J, Gille ST, Vernet M, Helly JJ, Kaufmann RS. 2011. Subsurface melting of a free-floating Antarctic iceberg. Deep Sea Res. II 58:11–121336–45
    [Google Scholar]
  122. Stern AA, Adcroft A, Sergienko O. 2016. The effects of Antarctic iceberg calving-size distribution in a global climate model. J. Geophys. Res. Oceans 121:85773–88
    [Google Scholar]
  123. Stern AA, Adcroft A, Sergienko O. 2019. Modeling ice shelf cavities and tabular icebergs using Lagrangian elements. J. Geophys. Res. Oceans 124:53378–92
    [Google Scholar]
  124. Stern AA, Adcroft A, Sergienko O, Marques G. 2017. Modeling tabular icebergs submerged in the ocean. J. Adv. Model. Earth Syst. 9:41948–72
    [Google Scholar]
  125. Stern AA, Johnson E, Holland DM, Wagner TJ, Wadhams P et al. 2015. Wind-driven upwelling around grounded tabular icebergs. J. Geophys. Res. Oceans 120:85820–35
    [Google Scholar]
  126. Sulak DJ, Sutherland DA, Enderlin EM, Stearns LA, Hamilton GS. 2017. Iceberg properties and distributions in three Greenlandic fjords using satellite imagery. Ann. Glaciol. 58:7492–106
    [Google Scholar]
  127. Sutherland DA, Roth GE, Hamilton GS, Mernild SH, Stearns LA, Straneo F. 2014. Quantifying flow regimes in a Greenland glacial fjord using iceberg drifters. Geophys. Res. Lett. 41:238411–20
    [Google Scholar]
  128. Thorness CB, Hanratty TJ. 1979. Mass transfer between a flowing fluid and a solid wavy surface. AIChE J. 25:4686–97
    [Google Scholar]
  129. Tournadre J, Bouhier N, Girard-Ardhuin F, Rémy F. 2015. Large icebergs characteristics from altimeter waveforms analysis. J. Geophys. Res. Oceans 120:31954–74
    [Google Scholar]
  130. Tournadre J, Bouhier N, Girard-Ardhuin F, Rémy F. 2016. Antarctic icebergs distributions 1992–2014. J. Geophys. Res. Oceans 121:327–49
    [Google Scholar]
  131. Vernet M, Smith KL Jr., Cefarelli AO, Helly JJ, Kaufmann RS et al. 2012. Islands of ice: influence of free-drifting Antarctic icebergs on pelagic marine ecosystems. Oceanography 25:338–39
    [Google Scholar]
  132. Wadham JL, De'Ath R, Monteiro F, Tranter M, Ridgwell A et al. 2013. The potential role of the Antarctic ice sheet in global biogeochemical cycles. Earth Environ. Sci. Trans. R. Soc. Edinb. 104:55–67
    [Google Scholar]
  133. Wagner TJ, Dell RW, Eisenman I. 2017a. An analytical model of iceberg drift. J. Phys. Oceanogr. 47:71605–16
    [Google Scholar]
  134. Wagner TJ, Stern AA, Dell RW, Eisenman I 2017b. On the representation of capsizing in iceberg models. Ocean Model. 117:88–96
    [Google Scholar]
  135. Wagner TJ, Wadhams P, Bates R, Elosegui P, Stern A et al. 2014. The “footloose” mechanism: iceberg decay from hydrostatic stresses. Geophys. Res. Lett. 41:155522–29
    [Google Scholar]
  136. Weeks WF, Campbell WJ. 1973. Icebergs as a fresh-water source: an appraisal. J. Glaciol. 12:65207–33
    [Google Scholar]
  137. Weeks WF, Mellor M 1978. Some elements of iceberg technology. Iceberg Utilization AA Husseiny 45–98 New York: Pergamon
    [Google Scholar]
  138. Wettlaufer J. 1991. Heat flux at the ice-ocean interface. J. Geophys. Res. Oceans 96:C47215–36
    [Google Scholar]
  139. White FM, Spaulding ML, Gominho L. 1980. Theoretical estimates of the various mechanisms involved in iceberg deterioration in the open ocean environment Tech. Rep. CG-D-62-80, U.S. Coast Guard Off. Res. Dev. Washington, DC:
    [Google Scholar]
  140. Yankovsky AE, Yashayaev I. 2014. Surface buoyant plumes from melting icebergs in the Labrador Sea. Deep Sea Res. I 91:1–9
    [Google Scholar]
  141. Yulmetov R, Marchenko A, Løset S. 2016. Iceberg and sea ice drift tracking and analysis off north-east Greenland. Ocean Eng. 123:223–37
    [Google Scholar]
  142. Zhou M, Bachmayer R, DeYoung B. 2019. Mapping the underside of an iceberg with a modified underwater glider. J. Field Robot. 36:61102–17
    [Google Scholar]
  143. Zhou M, Bachmayer R, DeYoung B. 2021. Surveying a floating iceberg with the USV SEADRAGON. Front. Mar. Sci. 8:549566
    [Google Scholar]
  144. Zickfeld K, Levermann A, Morgan MG, Kuhlbrodt T, Rahmstorf S, Keith DW. 2007. Expert judgements on the response of the Atlantic meridional overturning circulation to climate change. Clim. Change 82:3235–65
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-032522-100734
Loading
/content/journals/10.1146/annurev-fluid-032522-100734
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error