1932

Abstract

Colloid-sized particles (10 nm–10 μm in characteristic size) adsorb onto fluid interfaces, where they minimize their interfacial energy by straddling the surface, immersing themselves partly in each phase bounding the interface. The energy minimum achieved by relocation to the surface can be orders of magnitude greater than the thermal energy, effectively trapping the particles into monolayers, allowing them freedom only to translate and rotate along the surface. Particles adsorbed at interfaces are models for the understanding of the dynamics and assembly of particles in two dimensions and have broad technological applications, importantly in foam and emulsion science and in the bottom-up fabrication of new materials based on their monolayer assemblies. In this review, the hydrodynamics of the colloid motion along the surface is examined from both continuum and molecular dynamics frameworks. The interfacial energies of adsorbed particles is discussed first, followed by the hydrodynamics, starting with isolated particles followed by pairwise and multiple particle interactions. The effect of particle shape is emphasized, and the role played by the immersion depth and the surface rheology is discussed; experiments illustrating the applicability of the hydrodynamic studies are also examined.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-032621-043917
2022-01-05
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/fluid/54/1/annurev-fluid-032621-043917.html?itemId=/content/journals/10.1146/annurev-fluid-032621-043917&mimeType=html&fmt=ahah

Literature Cited

  1. Ally J, Amirfazli A 2010. Magnetophoretic measurement of the drag force on partially immersed microparticles at air–liquid interfaces. Colloids Surf. A 360:1120–28
    [Google Scholar]
  2. Ballard N, Law AD, Bon SA. 2019. Colloidal particles at fluid interfaces: behaviour of isolated particles. Soft Matter 15:61186–99
    [Google Scholar]
  3. Barman S, Christopher GF. 2016. Role of capillarity and microstructure on interfacial viscoelasticity of particle laden interfaces. J. Rheol. 60:135–45
    [Google Scholar]
  4. Binks BP. 2002. Solid-stabilised emulsions and foams. Curr. Opin. Colloid Interface Sci. 7:1–221–41
    [Google Scholar]
  5. Binks BP, Horozov TS 2006. Colloidal Particles at Liquid Interfaces Cambridge, UK: Cambridge Univ. Press
  6. Blanc C, Fedorenko D, Gross M, In M, Abkarian M et al. 2013. Capillary force on a micrometric sphere trapped at a fluid interface exhibiting arbitrary curvature gradients. Phys. Rev. Lett. 111:5058302
    [Google Scholar]
  7. Bleibel J, Dominiguez A, Oettel M 2013. Colloidal particles at fluid interfaces: effective interactions, dynamics and gravitation-like instability. Eur. Phys. J. Spec. Top. 222:3071–87
    [Google Scholar]
  8. Boneva MP, Christov NC, Danov KD, Kralchevsky PA. 2007. Effect of electric-field-induced capillary attraction on the motion of particles at an oil–water interface. Phys. Chem. Chem. Phys. 9:486371–84
    [Google Scholar]
  9. Boneva MP, Danov KD, Christov NC, Kralchevsky PA. 2009. Attraction between particles at a liquid interface due to the interplay of gravity- and electric-field-induced interfacial deformations. Langmuir 25:169129–39
    [Google Scholar]
  10. Boniello G, Blanc C, Fedorenko D, Medfai M, Mbarek NB et al. 2015. Brownian diffusion of a partially wetted colloid. Nat. Mater. 14:9908–11
    [Google Scholar]
  11. Bouzigues CI, Tabeling P, Bocquet L. 2008. Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces. Phys. Rev. Lett. 101:114503
    [Google Scholar]
  12. Bowles A, Honig C, Ducker W. 2011. No-slip boundary condition for weak solid–liquid interactions. J. Phys. Chem. C 115:8613–21
    [Google Scholar]
  13. Bresme F, Oettel M. 2007. Nanoparticles at fluid interfaces. J. Phys. Condens. Matter 19:413101
    [Google Scholar]
  14. Burmeister F, Schafle C, Matthes T, Bahmisch M, Boneberg J, Leiderer P. 1997. Colloid monolayers as versatile lithographic masks. Langmuir 13:112983–87
    [Google Scholar]
  15. Chan DYC, Henry JH Jr., White LR. 1981. The interaction of colloidal particles collected at fluid interfaces. J. Colloid Interface Sci. 79:2410–18
    [Google Scholar]
  16. Chen W, Tan S, Huang Z, Ng TK, Ford W, Tong P 2006. Measured long-range attractive interaction between charged polystyrene latex spheres at a water-air interface. Phys. Rev. E 74:021406
    [Google Scholar]
  17. Chen W, Tan S, Ng TK, Ford WT, Tong P. 2005. Long-ranged attraction between charged polystyrene spheres at aqueous interfaces. Phys. Rev. Lett. 95:218301
    [Google Scholar]
  18. Chen W, Tong P 2008. Short-time self-diffusion of weakly charged silica spheres at aqueous interfaces. EPL 84:28003
    [Google Scholar]
  19. Cheng S, Grest G. 2012. Structure and diffusion of nanoparticle monolayers floating at liquid/vapor interfaces: a molecular dynamics study. J. Chem. Phys. 136:214702
    [Google Scholar]
  20. Colosqui CE, Morris JF, Koplik J 2013. Colloidal adsorption at fluid interfaces: regime crossover from fast relaxation to physical aging. Phys. Rev. Lett. 111:2028302
    [Google Scholar]
  21. Cottin-Bizonne C, Cross B, Steinberger A, Charlaix E. 2005. Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Phys. Rev. Lett. 94:056102
    [Google Scholar]
  22. Dalbe MJ, Cosic D, Berhanu M, Kudrolli A. 2011. Aggregation of frictional particles due to capillary attraction. Phys. Rev. E 83:5051403
    [Google Scholar]
  23. Dani A, Keiser G, Yeganeh M, Maldarelli C 2015. Hydrodynamics of particles at an oil–water interface. Langmuir 31:4913290–302
    [Google Scholar]
  24. Danov KD, Aust R, Durst F, Lange U 1995. Influence of the surface viscosity on the drag and torque coefficients of a solid particle in a thin liquid layer. Chem. Eng. Sci. 50:263–77
    [Google Scholar]
  25. Danov KD, Dimova R, Pouligny B. 2000. Viscous drag of a solid sphere straddling a spherical or flat surface. Phys. Fluids 12:2711–22
    [Google Scholar]
  26. Danov KD, Kralchevsky PA. 2006. Electric forces induced by a charged colloid particle attached to the water–nonpolar fluid interface. J. Colloid Interface Sci. 298:1213–31
    [Google Scholar]
  27. Danov KD, Kralchevsky PA. 2010a. Capillary forces between particles at a liquid interface: general theoretical approach and interactions between capillary multipoles. Adv. Colloid Interface Sci. 154:1–291–103
    [Google Scholar]
  28. Danov KD, Kralchevsky PA. 2010b. Interaction between like-charged particles at a liquid surface: electrostatic repulsion versus capillary attraction. J. Colloid Interface Sci. 345:505–14
    [Google Scholar]
  29. Darras A, Mignolet F, Vandewalle N, Lumay G. 2018. Remote-controlled deposit of superparamagnetic colloidal droplets. Phys. Rev. E 98:6062608
    [Google Scholar]
  30. Das S, Koplik J, Farinato R, Nagaraj D, Maldarelli C, Somasundaran P. 2018. The translational and rotational dynamics of a colloid moving along the air-liquid interface of a thin film. Sci. Rep. 8:8910
    [Google Scholar]
  31. Das S, Koplik J, Somasundaran P, Maldarelli C. 2021. Pairwise hydrodynamic interactions of spherical colloids at a gas-liquid interface. J. Fluid Mech. 915:A99
    [Google Scholar]
  32. Davis AM, Kezirian M, Brenner H. 1994. On the Stokes-Einstein model of surface diffusion along solid surfaces: slip boundary conditions. J. Colloid Interface Sci. 165:129–40
    [Google Scholar]
  33. Dehghani NL, Christopher GF. 2019. 2D Stokesian simulation of particle aggregation at quiescent air/oil-water interfaces. J. Colloid Interface Sci. 553:259–68
    [Google Scholar]
  34. Dehghani NL, Khare R, Christopher GF 2017. 2D Stokesian approach to modeling flow induced deformation of particle laden interfaces. Langmuir 34:3904–16
    [Google Scholar]
  35. Denkov ND, Velev O, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K 1992. Mechanism of formation of two dimensional crystals from latex particles on substrates. Langmuir 8:3183–90
    [Google Scholar]
  36. Denkov ND, Velev O, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K. 1993. Two dimensional crystallization. Nature 361:26
    [Google Scholar]
  37. Deshmukh OS, van den Ende D, Stuart MC, Mugele F, Duits MH 2015. Hard and soft colloids at fluid interfaces: adsorption, interactions, assembly & rheology. Adv. Colloid Interface Sci. 222:215–27
    [Google Scholar]
  38. Dhar P, Prasad V, Weeks E, Bohlein T, Fischer TM. 2008. Immersion of charged nanoparticles in a salt solution/air interface. Phys. Chem. B 112:9565–67
    [Google Scholar]
  39. Dietrich K, Jaensson N, Buttinoni I, Volpe G, Isa L 2020. Microscale Marangoni surfers. Phys. Rev. Lett. 125:9098001
    [Google Scholar]
  40. Dimova R, Danov K, Pouligny B, Ivanov IB 2000. Drag of a solid particle trapped in a thin film or at an interface: influence of surface viscosity and elasticity. J. Colloid Interface Sci. 226:135–43
    [Google Scholar]
  41. Dominguez A, Oettel M, Dietrich S. 2007. Theory of capillary-induced interactions beyond the superposition approximation. J. Chem. Phys. 127:204706
    [Google Scholar]
  42. Dörr A, Hardt S. 2015. Driven particles at fluid interfaces acting as capillary dipoles. J. Fluid Mech. 770:5–26
    [Google Scholar]
  43. Dörr A, Hardt S, Masoud H, Stone HA. 2016. Drag and diffusion coefficients of a spherical particle attached to a fluid–fluid interface. J. Fluid Mech. 790:607–18
    [Google Scholar]
  44. Du D, Hilou E, Biswal SL. 2018. Reconfigurable paramagnetic microswimmers: Brownian motion affects non-reciprocal actuation. Soft Matter 14:183463–70
    [Google Scholar]
  45. Du K, Liddle J, Berglund A. 2012. Three-dimensional real-time tracking of nanoparticles at an oil-water interface. Langmuir 28:9181–88
    [Google Scholar]
  46. Elfring GJ, Leal LG, Squires TM. 2016. Surface viscosity and Marangoni stresses at surfactant laden interfaces. J. Fluid Mech. 792:712–39
    [Google Scholar]
  47. Fischer TM, Dhar P, Heinig P. 2006. The viscous drag of spheres and filaments moving in membranes or monolayers. J. Fluid Mech. 558:451–75
    [Google Scholar]
  48. Foret L, Wurger A. 2004. Electric-field induced capillary interaction of charged particles at a polar interface. Phys. Rev. Lett. 92:058302
    [Google Scholar]
  49. Fournier J, Galatola P. 2002. Anisotropic capillary interactions and jamming of colloidal particles trapped at a liquid-fluid interface. Phys. Rev. E 65:031601
    [Google Scholar]
  50. Fujita M, Nishikawa H, Okubo T, Yamaguchi Y 2004. Multiscale simulation of two-dimensional self-organization of nanoparticles in liquid film. Jpn. J. Appl. Phys. 43:7R4434–42
    [Google Scholar]
  51. Galatola P, Fournier J. 2014. Capillary force acting on a colloidal particle floating on a deformed interface. Soft Matter 10:2197–212
    [Google Scholar]
  52. Gehring T, Fischer TM. 2011. Diffusion of nanoparticles at an air/water interface is not invariant under a reversal of the particle charges. J. Phys. Chem. C 115:23677–81
    [Google Scholar]
  53. Ghezzi F, Earnshaw J, Finnis M, McCluney M 2001. Pattern formation in colloidal monolayers at the air–water interface. J. Colloid Interface Sci. 238:2433–46
    [Google Scholar]
  54. Guzmán E, Abelenda-Núñez I, Maestro A, Ortega F, Santamaria A, Rubio RG. 2021. Particle-laden fluid/fluid interfaces: physico-chemical foundations. J. Phys. Condens. Matter 33:333001
    [Google Scholar]
  55. Hadjinski A, Dimova R, Denkov N, Ivanov I, Borwanker R 1996. Film trapping technique: precose method for three phase contact angle determnation of solid and fluid particles of micrometer size. Langmuir 12:6665–75
    [Google Scholar]
  56. Happel J, Brenner H. 2012. Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media Dordrecht, Neth.: Springer Neth.
  57. Hilou E, Du D, Kuei S, Biswal SL 2018. Interfacial energetics of two-dimensional colloidal clusters generated with a tunable anharmonic interaction potential. Phys. Rev. Mater. 2:2025602
    [Google Scholar]
  58. Hórvölgyi Z, Mate M, Zrinyi M. 1994. On the universal growth of two-dimensional aggregates of hydrophobed glass beads formed at the (aqueous solution of electrolyte)–air interfaces. Colloids Surf. A 84:2207–16
    [Google Scholar]
  59. Hórvölgyi Z, Medveczky G, Zrinyi M. 1991. Experimental study of the aggregate structures formed in the boundary layer of water-air phases. Colloids Surf. 60:79–95
    [Google Scholar]
  60. Huang P, Guasto J, Bruer K 2006. Direct measurement of slip velocities using three dimensional total internal reflection velocimetry. J. Fluid Mech. 566:447–64
    [Google Scholar]
  61. Hughes B, Pailthorpe B, White L 1981. The translational and rotational drag on a cylinder moving in a membrane. J. Fluid Mech. 110:349–72
    [Google Scholar]
  62. Isa L, Lucas F, Wepf R, Reimhult E. 2011. Measring single nanoparticle wetting properties by freeze-fracture shadow casting cryo-scanning electro microscopy. Nat. Commun. 2:438
    [Google Scholar]
  63. Jeffrey DJ, Onishi Y. 1984. Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. 139:261–90
    [Google Scholar]
  64. Kaz DM, McGorty R, Mani M, Brenner MP, Manoharan VN. 2012. Physical ageing of the contact line on colloidal particles at liquid interfaces. Nat. Mater. 11:2138–42
    [Google Scholar]
  65. Kollmann M, Hund R, Rinn B, Nägele G, Zahn K et al. 2002. Structure and tracer-diffusion in quasi–two-dimensional and strongly asymmetric magnetic colloidal mixtures. EPL 58:6919–25
    [Google Scholar]
  66. Koplik J, Maldarelli C. 2017. Diffusivity and hydrodynamic drag of nanoparticles at a vapor-liquid interface. Phys. Rev. Fluids 2:2024303
    [Google Scholar]
  67. Koplik J, Maldarelli C. 2019. Molecular dynamics of the translation and rotation of amphiphilic Janus nanoparticles at a vapor-liquid surface. Phys. Rev. Fluids 4:4044201
    [Google Scholar]
  68. Kralchevsky PA, Denkov ND. 2001. Capillary forces and structuring in layers of colloid particles. Curr. Opin. Colloid Interface Sci. 6:4383–401
    [Google Scholar]
  69. Kralchevsky PA, Denkov ND, Danov KD. 2001. Particles with an undulated contact line at a fluid interface: interaction between capillary quadrupoles and rheology of particulate monolayers. Langmuir 17:247694–705
    [Google Scholar]
  70. Kralchevsky PA, Nagayama K. 1994. Capillary forces between colloidal particles. Langmuir 10:123–36
    [Google Scholar]
  71. Kralchevsky PA, Nagayama K. 2000. Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv. Colloid Interface Sci. 85:145–92
    [Google Scholar]
  72. Kralchevsky PA, Nagayama K. 2001. Particles at Fluid Interfaces and Membranes: Attachment of Colloid Particles and Proteins to Interfaces and Formation of Two Dimensional Arrays Amsterdam: Elsevier
  73. Lauga E, Brenner M, Stone H 2007. Microfluidics: the no-slip boundary condition. Springer Handbook of Experimental Fluid Dynamics C Tropea, AL Yarin, JF Foss 1219–40 Berlin: Springer
    [Google Scholar]
  74. Lee T, Charrault E, Neto C 2014. Interfacial slip on rough, patterned and soft surfaces: a review of experiments and simulations. Adv. Colloid Interface Sci. 210:21–38
    [Google Scholar]
  75. Löwen H, Messina R, Hoffmann N, Likos CN, Eisenmann C et al. 2005. Colloidal layers in magnetic fields and under shear flow. J. Phys. Condens. Matter 17:45S337986
    [Google Scholar]
  76. Lumay G, Obara N, Weyer F, Vandewalle N. 2013. Self-assembled magnetocapillary swimmers. Soft Matter 9:82420–25
    [Google Scholar]
  77. Luo H, Pozrikidis C. 2008. Effect of surface slip on stokes flow past a spherical particle in infinite fluid and near a plane wall. J. Eng. Math. 62:1–21
    [Google Scholar]
  78. Maestro A, Bonales LJ, Ritacco H, Fischer TM, Rubio RG, Ortega F. 2011. Surface rheology: macro- and microrheology of poly(tert-butyl acrylate) monolayers. Soft Matter 7:177761–71
    [Google Scholar]
  79. Maestro A, Guzmán E, Ortega F, Rubio RG. 2014. Contact angle of micro- and nanoparticles at fluid interfaces. Curr. Opin. Colloid Interface Sci. 19:4355–67
    [Google Scholar]
  80. Maestro A, Santini E, Guzmán E. 2018. Physico-chemical foundations of particle-laden fluid interfaces. Eur. Phys. J. E 41:897
    [Google Scholar]
  81. Masoud H, Stone HA. 2019. The reciprocal theorem in fluid dynamics and transport phenomena. J. Fluid Mech. 879:P1
    [Google Scholar]
  82. McBride S, Law B. 2009. Viscosity dependent liquid slip at molecularly smooth hydrophobic surfaces. Phys. Rev. E 80:060601
    [Google Scholar]
  83. Mendoza AJ, Guzmán E, Martínez-Pedrero F, Ritacco H, Rubio RG et al. 2014. Particle laden fluid interfaces: dynamics and interfacial rheology. Adv. Colloid Interface Sci. 206:303–19
    [Google Scholar]
  84. Millett PC, Wang YU. 2011. Diffuse-interface field approach to modeling arbitrarily-shaped particles at fluid–fluid interfaces. J. Colloid Interface Sci. 353:146–51
    [Google Scholar]
  85. Neto C, Evans DR, Bonaccurso E, Butt HJ, Craig VSJ. 2005. Boundary slip in newtonian liquids: a review of experimental studies. Rep. Progress Phys. 68:122859–97
    [Google Scholar]
  86. Nicolson MM. 1949. The interaction between floating particles. Math. Proc. Camb. Philos. Soc. 45:2288–95
    [Google Scholar]
  87. Nishikawa H, Fujita M, Maenosono S, Yamaguchi Y, Okudo T 2006. Effects of frictional force on the formation of colloidal particle monolayer during drying—study using discrete element method. KONA Powder Part. J. 24:192202 (from Japanese)
    [Google Scholar]
  88. Nishikawa H, Maenosono S, Yamaguchi Y, Okubo T 2003. Self-assembling process of colloidal particles into two-dimensional arrays induced by capillary immersion force: a simulation study with discrete element method. J. Nanopart. Res. 5:1–2103–10
    [Google Scholar]
  89. Oettel M, Dietrich S. 2008. Colloidal interactions at fluid interfaces. Langmuir 24:1425–41
    [Google Scholar]
  90. Oettel M, Dominguez A, Dietrich S. 2005. Effective capillary interaction of spherical particles at fluid interfaces. Phys. Rev. E 71:051401
    [Google Scholar]
  91. O'Neill M, Ranger K, Brenner H. 1985. Slip at the surface of a translating-rotating sphere bisected by a free surface bounding a semi infinite viscous fluid: removal of the contact line singularity. Phys. Fluids 29:913–24
    [Google Scholar]
  92. Onoda GY. 1985. Direct observation of two-dimensional, dynamic clustering and ordering with colloids. Phys. Rev. Lett. 55:2226–29
    [Google Scholar]
  93. Paunov VN. 2003. Novel method for determining the three phase contact angle of colloid particle adsorbed at an air–water or oil–water interface. Langmuir 19:7970–76
    [Google Scholar]
  94. Peng Y, Chen W, Fischer T, Weitz D, Tong P. 2008. Short-time self-diffusion of nearly hard spheres at an oil–water interface. J. Fluid Mech. 618:243–61
    [Google Scholar]
  95. Petkov JT, Denkov ND, Danov KD, Velev OD, Aust R, Durst F 1995. Measurement of the drag coefficient of spherical particles attached to fluid interfaces. J. Colloid Interface Sci. 172:1147–54
    [Google Scholar]
  96. Pieranski P. 1980. Two-dimensional interfacial colloidal crystals. Phys. Rev. Lett. 45:7569–72
    [Google Scholar]
  97. Pourali M, Kröger M, Vermant J, Anderson PD, Jaensson NO 2021. Drag on a spherical particle at the air–liquid interface: interplay between compressibility, Marangoni flow, and surface viscosities. Phys. Fluids 33:6062103
    [Google Scholar]
  98. Pozrikidis C. 2007. Particle motion near and inside an interface. J. Fluid Mech. 575:333–57
    [Google Scholar]
  99. Prevo B, Kuncicky D, Velev O 2007. Engineered deposition of coatings from nano- and micro-particles: a brief review of convective assembly at high volume fraction. Colloids Surf. A 311:2–10
    [Google Scholar]
  100. Radoev B, Nedjalkov M, Djakovich V. 1992. Brownian motion at liquid-gas interfaces. 1. Diffusion coefficients of macroparticles at pure interfaces. Langmuir 8:2962–65
    [Google Scholar]
  101. Rahman SE, Laal-Dehghani N, Barman S, Christopher GF. 2019a. Modifying interfacial interparticle forces to alter microstructure and viscoelasticity of densely packed particle laden interfaces. J. Colloid Interface Sci. 536:30–41
    [Google Scholar]
  102. Rahman SE, Laal-Dehghani N, Christopher GF. 2019b. Interfacial viscoelasticity of self-assembled hydrophobic/hydrophilic particles at an air/water interface. Langmuir 35:4013116–25
    [Google Scholar]
  103. Rahmani AM, Wang A, Manoharan VN, Colosqui CE. 2016. Colloidal particle adsorption at liquid interfaces: capillary driven dynamics and thermally activated kinetics. Soft Matter 12:306365–72
    [Google Scholar]
  104. Ranger K. 1978. The circular disk straddling the interface of a two-phase flow. Int. J. Multiphase Flow 4:3263–77
    [Google Scholar]
  105. Razavi S, Koplik J, Kretzschmar I. 2013. The effect of capillary bridging on the Janus particle stability at the interface of two immiscible liquids. Soft Matter 9:184585–89
    [Google Scholar]
  106. Rinn B, Zahn K, Maass P, Maret G 1999. Influence of hydrodynamic interactions on the dynamics of long-range interacting colloidal particles. EPL 46:453741
    [Google Scholar]
  107. Ruiz-Garcia J, Gamez-Corrales R, Ivlev BI. 1997. Foam and cluster structure formation by latex particles at the air/water interface. Physica A 236:97–104
    [Google Scholar]
  108. Ruiz-Garcia J, Gamez-Corrales R, Ivlev BI. 1998. Formation of two-dimensional colloidal voids, soap froths, and clusters. Phys. Rev. E 58:1660–63
    [Google Scholar]
  109. Saffman P. 1976. Brownian motion in thin sheets of viscous fluid. J. Fluid Mech. 73:4593–602
    [Google Scholar]
  110. Saffman P, Delbrück M. 1975. Brownian motion in biological membranes. PNAS 72:83111–13
    [Google Scholar]
  111. Samaniuk JR, Vermant J. 2014. Micro and macrorheology at fluid–fluid interfaces. Soft Matter 10:367023–33
    [Google Scholar]
  112. Sendner C, Horinek D, Bocquet L, Netz RR. 2009. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion. Langmuir 25:1810768–81
    [Google Scholar]
  113. Sickert M, Rondelez F. 2003. Shear viscosity of Langmuir monolayers in the low-density limit. Phys. Rev. Lett. 90:126104
    [Google Scholar]
  114. Sickert M, Rondelez F, Stone H 2007. Single-particle brownian dynamics for characterizing the rheology of fluid Langmuir monolayers. EPL 79:666005
    [Google Scholar]
  115. Snoeyink C, Barman S, Christopher GF. 2015. Contact angle distribution of particles at fluid interfaces. Langmuir 31:3891–97
    [Google Scholar]
  116. Stamou D, Duschl C, Johannsmann D. 2000. Long-range attraction between colloidal spheres at the air-water interface: the consequence of an irregular meniscus. Phys. Rev. E 62:45263–72
    [Google Scholar]
  117. Stone HA, Ajdari A. 1998. Hydrodynamics of particles embedded in a flat surfactant layer overlying a subphase of finite depth. J. Fluid Mech. 369:151–73
    [Google Scholar]
  118. Stone HA, Masoud H. 2015. Mobility of membrane-trapped particles. J. Fluid Mech. 781:494–505
    [Google Scholar]
  119. Uzi A, Ostrovski Y, Levy A. 2016. Modeling and simulation of particles in gas–liquid interface. Adv. Powder Technol. 27:1112–23
    [Google Scholar]
  120. Vandadi V, Kang SJ, Masoud H. 2017. Reverse Marangoni surfing. J. Fluid Mech. 811:612–21
    [Google Scholar]
  121. Vandewalle N, Clermont L, Terwagne D, Dorbolo S, Mersch E, Lumay G. 2012. Symmetry breaking in a few-body system with magnetocapillary interactions. Phys. Rev. E 85:4041402
    [Google Scholar]
  122. Vandewalle N, Obara N, Lumay G. 2013. Mesoscale structures from magnetocapillary self-assembly. Eur. Phys. J. E 36:10127
    [Google Scholar]
  123. Vassileva ND, van den Ende D, Mugele F, Mellema J 2005. Capillary forces between spherical particles floating at a liquid–liquid interface. Langmuir 21:2411190–200
    [Google Scholar]
  124. Vidal A, Botto L. 2017. Slip flow past a gas–liquid interface with embedded solid particles. J. Fluid Mech. 813:152–74
    [Google Scholar]
  125. Villa S, Boniello G, Stocco A, Nobili M. 2020. Motion of micro- and nano-particles interacting with a fluid interface. Adv. Colloid Interface Sci. 284:102262
    [Google Scholar]
  126. Vinogradova OI, Yakubov GE. 2003. Dynamic effects on force measurements. 2. Lubrication and the atomic force microscope. Langmuir 19:41227–34
    [Google Scholar]
  127. Voronov RS, Papavassiliou DV, Lee LL. 2007. Slip length and contact angle over hydrophobic surfaces. Chem. Phys. Lett. 441:273–76
    [Google Scholar]
  128. Wurger A, Foret L. 2005. Capillary attraction of colloid particles at an aqueous interface. J. Phys. Chem. B 109:16435–38
    [Google Scholar]
  129. Zabarankin M. 2007. Asymmetric three-dimensional Stokes flows about two fused equal spheres. Proc. R. Soc. A 463:20852329–50
    [Google Scholar]
  130. Zahn K, Maret G. 1999. Two-dimensional colloidal structures responsive to external fields. Curr. Opin. Colloid Interface Sci. 4:160–65
    [Google Scholar]
  131. Zahn K, Méndez-Alcaraz JM, Maret G. 1997. Hydrodynamic interactions may enhance the self-diffusion of colloidal particles. Phys. Rev. Lett. 79:117578
    [Google Scholar]
  132. Zhu L, Neto C, Attard P. 2012. Reliable measurements of interfacial slip by colloid probe atomic force microscopy. III. Shear-rate-dependent slip. Langmuir 28:73465–73
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-032621-043917
Loading
/content/journals/10.1146/annurev-fluid-032621-043917
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error