1932

Abstract

When very small particles are suspended in a fluid in motion, they tend to follow the flow. How such tracer particles are mixed, transported, and dispersed by turbulent flow has been successfully described by statistical models. Heavy particles, with mass densities larger than that of the carrying fluid, can detach from the flow. This results in preferential sampling, small-scale fractal clustering, and large relative velocities. To describe these effects of particle inertia, one must consider both particle positions and velocities in phase space. In recent years, statistical phase-space models have significantly contributed to our understanding of inertial-particle dynamics in turbulence. These models help to identify the key mechanisms and nondimensional parameters governing the particle dynamics and have made qualitative and, in some cases, quantitative predictions. This article reviews statistical phase-space models for the dynamics of small, yet heavy, spherical particles in turbulence. We evaluate their effectiveness by comparing their predictions with results from numerical simulations and laboratory experiments, and we summarize their successes and failures.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-032822-014140
2024-01-19
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/fluid/56/1/annurev-fluid-032822-014140.html?itemId=/content/journals/10.1146/annurev-fluid-032822-014140&mimeType=html&fmt=ahah

Literature Cited

  1. Abrahamson J. 1975. Collision rates of small particles in a vigorously turbulent fluid. Chem. Eng. Sci. 30:1371–79
    [Google Scholar]
  2. Afonso MM. 2008. The terminal velocity of sedimenting particles in a flowing fluid. J. Phys. A 41:385501
    [Google Scholar]
  3. Alipchenkov VM, Zaichik LI, Petrov OF. 2004. Clustering of charged particles in isotropic turbulence. High Temp. 42:919–27
    [Google Scholar]
  4. Aliseda A, Cartellier A, Hainaux F, Lasheras JC. 2002. Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 468:77–105
    [Google Scholar]
  5. Ariki T, Yoshida K, Matsuda K, Yoshimatsu K. 2018. Scale-similar clustering of heavy particles in the inertial range of turbulence. Phys. Rev. E 97:033109
    [Google Scholar]
  6. Balachandar S, Eaton J. 2010. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42:111–33
    [Google Scholar]
  7. Balkovsky E, Falkovich G, Fouxon A. 2001. Intermittent distribution of inertial particles in turbulent flows. Phys. Rev. Lett. 86:2790–93
    [Google Scholar]
  8. Bätge T, Fouxon I, Wilczek M. 2023. Quantitative prediction in turbulence at high Reynolds numbers. Phys. Rev. Lett 131054001
  9. Bec J, Biferale L, Boffetta G, Cencini M, Musacchio S, Toschi F. 2006. Lyapunov exponents of heavy particles in turbulence. Phys. Fluids 18:091702
    [Google Scholar]
  10. Bec J, Biferale L, Cencini M, Lanotte A, Musacchio S, Toschi F. 2007. Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98:084502
    [Google Scholar]
  11. Bec J, Biferale L, Cencini M, Lanotte A, Toschi F. 2010. Intermittency in the velocity distribution of heavy particles in turbulence. J. Fluid Mech. 646:527–36
    [Google Scholar]
  12. Bec J, Celani A, Cencini M, Musacchio S. 2005. Clustering and collisions of heavy particles in random smooth flows. Phys. Fluids 17:073301
    [Google Scholar]
  13. Bec J, Cencini M, Hillerbrand R, Turitsyn K. 2008. Stochastic suspensions of heavy particles. Physica D 237:2037–50
    [Google Scholar]
  14. Bec J, Chétrite R. 2007. Toward a phenomenological approach to the clustering of heavy particles in turbulent flows. New J. Phys. 9:77
    [Google Scholar]
  15. Bec J, Homann H, Sankar Ray S 2014. Gravity-driven enhancement of heavy particle clustering in turbulent flow. Phys. Rev. Lett. 112:184501
    [Google Scholar]
  16. Berry M, Upstill C 1980. Catastrophe optics: morphologies of caustics and their diffraction patterns. Progress in Optics E Wolf , Vol. 18257–346. Amsterdam: North Holland
    [Google Scholar]
  17. Bewley GP, Saw EW, Bodenschatz E. 2013. Observation of the sling effect. New J. Phys. 15:083051
    [Google Scholar]
  18. Bhatnagar A. 2020. Statistics of relative velocity for particles settling under gravity in a turbulent flow. Phys. Rev. E 101:033102
    [Google Scholar]
  19. Bhatnagar A, Gustavsson K, Mitra D. 2018. Statistics of the relative velocity of particles in turbulent flows: monodisperse particles. Phys. Rev. E 97:023105
    [Google Scholar]
  20. Bhatnagar A, Pandey V, Perlekar P, Mitra D. 2022. Rate of formation of caustics in heavy particles advected by turbulence. Philos. Trans. R. Soc. A 380:20210086
    [Google Scholar]
  21. Birnstiel T, Fang M, Johansen A. 2016. Dust evolution and the formation of planetesimals. Space Sci. Rev. 205:41–75
    [Google Scholar]
  22. Bodenschatz E, Malinowski S, Shaw R, Stratman F. 2010. Can we understand clouds without turbulence?. Science 327:970–71
    [Google Scholar]
  23. Boffetta G, De Lillo F, Gamba A. 2004. Large scale inhomogeneity of inertial particles in turbulent flows. Phys. Fluids 16:L20–23
    [Google Scholar]
  24. Bragg AD, Collins LR. 2014a. New insights from comparing statistical theories for inertial particles in turbulence: I. Spatial distribution of particles. New J. Phys. 16:055013
    [Google Scholar]
  25. Bragg AD, Collins LR. 2014b. New insights from comparing statistical theories for inertial particles in turbulence: II. Relative velocities. New J. Phys. 16:055014
    [Google Scholar]
  26. Bragg AD, Hammond AL, Dhariwal R, Meng H. 2022. Hydrodynamic interactions and extreme particle clustering in turbulence. J. Fluid Mech. 933:A31
    [Google Scholar]
  27. Bragg AD, Ireland PJ, Collins LR. 2015a. Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence. Phys. Rev. E 92:023029
    [Google Scholar]
  28. Bragg AD, Ireland PJ, Collins LR. 2015b. On the relationship between the non-local clustering mechanism and preferential concentration. J. Fluid Mech. 780:327–43
    [Google Scholar]
  29. Brandt L, Coletti F. 2022. Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54:159–89
    [Google Scholar]
  30. Calzavarini E, Kerscher M, Lohse D, Toschi F. 2008. Dimensionality and morphology of particle and bubble clusters in turbulent flow. J. Fluid Mech. 607:13–24
    [Google Scholar]
  31. Candelier F, Mehaddi R, Mehlig B, Magnaudet J. 2023. Second-order inertial forces and torques on a sphere in a viscous steady linear flow. J. Fluid Mech. 954:A25
    [Google Scholar]
  32. Carballido A, Cuzzi JN, Hogan RC. 2010. Relative velocities of solids in a turbulent protoplanetary disc. Mon. Not. R. Astron. Soc. 405:2339–44
    [Google Scholar]
  33. Chen L, Goto S, Vassilicos JC. 2006. Turbulent clustering of stagnation points and inertial particles. J. Fluid Mech. 553:143–54
    [Google Scholar]
  34. Chun J, Koch DL, Rani SL, Ahluwalia A, Collins LR. 2005. Clustering of aerosol particles in isotropic turbulence. J. Fluid Mech. 536:219–51
    [Google Scholar]
  35. Coleman SW, Vassilicos JC. 2009. A unified sweep-stick mechanism to explain particle clustering in two- and three-dimensional homogeneous, isotropic turbulence. Phys. Fluids 21:113301
    [Google Scholar]
  36. Crisanti A, Falcioni M, Provenzale A, Tanga P, Vulpiani A. 1992. Dynamics of passively advected impurities in simple two-dimensional flow models. Phys. Fluids 4:1805–20
    [Google Scholar]
  37. Daitche A, Tél T. 2011. Memory effects are relevant for chaotic advection of inertial particles. Phys. Rev. Lett. 107:244501
    [Google Scholar]
  38. Derevyanko SA, Falkovich G, Turitsyn K, Turitsyn S. 2007. Lagrangian and Eulerian descriptions of inertial particles in random flows. J. Turbul. 8:N16
    [Google Scholar]
  39. Devenish BJ, Bartello P, Brenguier JL, Collins LR, Grabowski WW et al. 2012. Droplet growth in warm turbulent clouds. Q. J. R. Meteorol. Soc. 138:1401–29
    [Google Scholar]
  40. Dhanasekaran J, Roy A, Koch DL. 2021. Collision rate of bidisperse spheres settling in a compressional non-continuum gas flow. J. Fluid Mech. 910:A10
    [Google Scholar]
  41. Dimotakis PE. 2005. Turbulent mixing. Annu. Rev. Fluid Mech. 37:329–56
    [Google Scholar]
  42. Dubey A, Gustavsson K, Bewley GP, Mehlig B. 2022. Bifurcations in droplet collisions. Phys. Rev. Fluids 7:064401
    [Google Scholar]
  43. Ducasse L, Pumir A. 2009. Inertial particle collisions in turbulent synthetic flows: quantifying the sling effect. Phys. Rev. E 80:066312
    [Google Scholar]
  44. Elgobashi S. 2019. Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech. 51:217–44
    [Google Scholar]
  45. Elperin T, Kleeorin N, Lvov VS, Rogachevskii I, Sokoloff D. 2002. Clustering instability of the spatial distribution of inertial particles in turbulent flows. Phys. Rev. E 66:036302
    [Google Scholar]
  46. Falkovich G, Fouxon A, Stepanov M. 2002. Acceleration of rain initiation by cloud turbulence. Nature 419:151–54
    [Google Scholar]
  47. Falkovich G, Fouxon A, Stepanov M. 2003. Statistics of turbulence-induced fluctuations of particle concentration. Sedimentation and Sedimentation Transport A Gyrr, W Kinzelbach 155–58. Dordrecht, Neth: Springer
    [Google Scholar]
  48. Falkovich G, Gawdzki K, Vergassola M. 2001. Particles and fields in fluid turbulence. Rev. Mod. Phys. 73:913–75
    [Google Scholar]
  49. Falkovich G, Musacchio S, Piterbarg L, Vucelja M. 2007. Inertial particles driven by a telegraph noise. Phys. Rev. E 76:026313
    [Google Scholar]
  50. Falkovich G, Pumir A. 2004. Intermittent distribution of heavy particles in a turbulent flow. Phys. Fluids 16:L47–50
    [Google Scholar]
  51. Fevrier P, Simonin O, Squires KD. 2005. Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study. J. Fluid Mech. 533:1–46
    [Google Scholar]
  52. Fouxon I. 2011. Construction and description of the stationary measure of weakly dissipative dynamical systems. arXiv:1110.1625 [ nlin.CD]. https://doi.org/10.48550/arXiv.1110.1625
  53. Fox RO. 2012. Large-eddy-simulation tools for multiphase flows. Annu. Rev. Fluid Mech. 44:47–76
    [Google Scholar]
  54. Frisch U. 1995. Turbulence: The Legacy of A.N. Kolmogorov Cambridge, UK: Cambridge Univ. Press
  55. Fung JCH, Hunt JCR, Malik NA, Perkins RJ. 1992. Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech. 236:281–318
    [Google Scholar]
  56. Gibert M, Xu H, Bodenschatz E. 2012. Where do small weakly inertial particles go in a turbulent flow?. J. Fluid Mech. 698:160–67
    [Google Scholar]
  57. Good G, Ireland P, Bewley G, Bodenschatz E, Collins L, Warhaft Z. 2014. Settling regimes of inertial particles in isotropic turbulence. J. Fluid Mech. 759:R3
    [Google Scholar]
  58. Goossens WR. 2019. Review of the empirical correlations for the drag coefficient of rigid spheres. Powder Technol. 352:350–59
    [Google Scholar]
  59. Goto S, Vassilicos J. 2006. Self-similar clustering of inertial particles and zero-acceleration points in fully developed two-dimensional turbulence. Phys. Fluids 18:115103
    [Google Scholar]
  60. Grabowski WW, Wang LP. 2013. Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech. 45:293–324
    [Google Scholar]
  61. Grassberger P. 1983. Generalized dimensions of strange attractors. Phys. Lett. A 97:6227–30
    [Google Scholar]
  62. Guseva K, Daitche A, Feudel U, Tél T. 2016. History effects in the sedimentation of light aerosols in turbulence: the case of marine snow. Phys. Rev. Fluids 1:074203
    [Google Scholar]
  63. Gustavsson K, Mehlig B. 2014. Relative velocities of inertial particles in turbulent aerosols. J. Turbul. 15:34–69
    [Google Scholar]
  64. Gustavsson K, Mehlig B. 2016. Statistical models for spatial patterns of heavy particles in turbulence. Adv. Phys. 65:157
    [Google Scholar]
  65. Gustavsson K, Mehlig B, Wilkinson M. 2015. Analysis of the correlation dimension of inertial particles. Phys. Fluids 27:073305
    [Google Scholar]
  66. Gustavsson K, Mehlig B, Wilkinson M, Uski V. 2008. Variable-range projection model for turbulence-driven collisions. Phys. Rev. Lett. 101:174503
    [Google Scholar]
  67. Gustavsson K, Vajedi S, Mehlig B. 2014. Clustering of particles falling in a turbulent flow. Phys. Rev. Lett. 112:214501
    [Google Scholar]
  68. Hammond A, Meng H. 2021. Particle radial distribution function and relative velocity measurement in turbulence at small particle-pair separations. J. Fluid Mech. 921:A16
    [Google Scholar]
  69. Hentschel HGE, Procaccia I. 1983. The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8:435–44
    [Google Scholar]
  70. Hunt BR, Kaloshin VY. 1997. How projections affect the dimension spectrum of fractal measures. Nonlinearity 10:1031
    [Google Scholar]
  71. Ijzermans RHA, Meneguz E, Reeks MW. 2010. Segregation of particles in incompressible random flows: singularities, intermittency and random uncorrelated motion. J. Fluid Mech. 653:99–135
    [Google Scholar]
  72. Ireland PJ, Bragg AD, Collins LR. 2016a. The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 1. Simulations without gravitational effects. J. Fluid Mech. 796:617–58
    [Google Scholar]
  73. Ireland PJ, Bragg AD, Collins LR. 2016b. The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 2. Simulations with gravitational effects. J. Fluid Mech. 796:659–711
    [Google Scholar]
  74. Kaplan JL, Yorke JA 1979. Chaotic behavior of multidimensional difference equations. Functional Differential Equations and Approximation of Fixed Points H-O Peitgen, H-O Walther 204–27. Lect. Notes Math . Vol. 730 Berlin: Springer-Verlag
    [Google Scholar]
  75. Karpińska K, Bodenschatz JFE, Malinowski SP, Nowak JL, Risius S et al. 2019. Turbulence-induced cloud voids: observation and interpretation. Atmos. Chem. Phys. 19:4991–5003
    [Google Scholar]
  76. Klett JD, Davis M. 1973. Theoretical collision efficiencies of cloud droplets at small Reynolds numbers. J. Atmos. Sci. 30:107–17
    [Google Scholar]
  77. Kraichnan R. 1968. Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11:5945–53
    [Google Scholar]
  78. Landau LD, Lifshitz EM. 1987. Fluid Mechanics Oxford: Pergamon. , 2nd ed..
  79. Larsen ML, Shaw RA, Kostinski AB, Glienke S. 2018. Fine-scale droplet clustering in atmospheric clouds: 3D radial distribution function from airborne digital holography. Phys. Rev. Lett. 121:204501
    [Google Scholar]
  80. Ledrappier F, Young LS. 1988. Dimension formula for random transformations. Commun. Math. Phys. 117:529–48
    [Google Scholar]
  81. Legendre D, Magnaudet J. 1997. A note on the lift force on a spherical bubble or drop in a low-Reynolds-number shear flow. Phys. Fluids 9:3572–74
    [Google Scholar]
  82. Lillo FD, Cecconi F, Lacorata G, Vulpiani A. 2008. Sedimentation speed of inertial particles in laminar and turbulent flows. Europhys. Lett. 84:40005
    [Google Scholar]
  83. Lovalenti PM, Brady JF. 1993. The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number. J. Fluid Mech. 256:561–605
    [Google Scholar]
  84. Lu J, Nordsiek H, Saw E, Shaw RA. 2010. Clustering of charged inertial particles in turbulence. Phys. Rev. Lett. 104:184505
    [Google Scholar]
  85. Lu J, Shaw RA. 2015. Charged particle dynamics in turbulence: theory and direct numerical simulations. Phys. Fluids 27:065111
    [Google Scholar]
  86. Magnusson G, Dubey A, Kearney R, Bewley GP, Mehlig B. 2022. Collisions of micron-sized, charged water droplets in still air. Phys. Rev. Fluids 7:043601
    [Google Scholar]
  87. Martin JE, Meiburg E. 1994. The accumulation and dispersion of heavy particles in forced two-dimensional mixing layers. 1. The fundamental and subharmonic cases. Phys. Fluids 6:1116–32
    [Google Scholar]
  88. Mathai V, Calzavarini E, Brons J, Sun C, Lohse D. 2016. Microbubbles and microparticles are not faithful tracers of turbulent acceleration. Phys. Rev. Lett. 117:024501
    [Google Scholar]
  89. Mathai V, Lohse D, Sun C. 2020. Bubbly and buoyant particle–laden turbulent flows. Annu. Rev. Condens. Matter Phys. 11:529–59
    [Google Scholar]
  90. Mathai V, Prakash VN, Brons J, Sun C, Lohse D. 2015. Wake-driven dynamics of finite-sized buoyant spheres in turbulence. Phys. Rev. Lett. 115:124501
    [Google Scholar]
  91. Maxey MR. 1987. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174:441–65
    [Google Scholar]
  92. Maxey MR. 2017. Simulation methods for particulate flows and concentrated suspensions. Annu. Rev. Fluid Mech. 49:171–93
    [Google Scholar]
  93. Maxey MR, Corrsin S. 1986. Gravitational settling of aerosol particles in randomly oriented cellular flow fields. J. Atmos. Sci. 43:1112–34
    [Google Scholar]
  94. Maxey MR, Riley JJ. 1983. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26:883–89
    [Google Scholar]
  95. Mazzitelli IM, Lohse D. 2004. Lagrangian statistics for fluid particles and bubbles in turbulence. New J. Phys. 6:203
    [Google Scholar]
  96. Meibohm J, Gustavsson K, Bec J, Mehlig B. 2020. Fractal catastrophes. New J. Phys. 22:013033
    [Google Scholar]
  97. Meibohm J, Gustavsson K, Mehlig B. 2023a. Caustics in turbulent aerosols form along the Vieillefosse line at weak particle inertia. Phys. Rev. Fluids 8:024305
    [Google Scholar]
  98. Meibohm J, Pandey V, Bhatnagar A, Gustavsson K, Mitra D et al. 2021. Paths to caustic formation in turbulent aerosols. Phys. Rev. Fluids 6:L062302
    [Google Scholar]
  99. Meibohm J, Pistone L, Gustavsson K, Mehlig B. 2017. Relative velocities in bidisperse turbulent suspensions. Phys. Rev. E 96:061102
    [Google Scholar]
  100. Meibohm J, Sundberg L, Mehlig B, Gustavsson K. 2023b. Caustic formation in a non-Gaussian model for turbulent aerosols. arXiv:2307.10689 [ physics.flu-dyn] https://doi.org/10.48550/arXiv.2307.10689
  101. Minier JP. 2016. Statistical descriptions of polydisperse turbulent two-phase flows. Phys. Rep. 665:1–122
    [Google Scholar]
  102. Mizuno H, Markiewicz W, Völk H. 1988. Grain growth in turbulent protoplanetary accretion disks. Astron. Astrophys. 195:183–92
    [Google Scholar]
  103. Monchaux R, Bourgoin M, Cartellier A. 2010. Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22:10103304
    [Google Scholar]
  104. Monchaux R, Bourgoin M, Cartellier A. 2012. Analyzing preferential concentration and clustering of inertial particles in turbulence. Int. J. Multiphase Flow 40:1–18
    [Google Scholar]
  105. Nair V, Devenish B, van Reeuwijk M. 2023. Effect of gravity on particle clustering and collisions in decaying turbulence. Flow Turbul. Combust. 110:889–915
    [Google Scholar]
  106. Olivieri S, Picano F, Sardina G, Iudicone D, Brandt L. 2014. The effect of the Basset history force on particle clustering in homogeneous and isotropic turbulence. Phys. Fluids 26:041704
    [Google Scholar]
  107. Paladin G, Vulpiani A. 1987. Anomalous scaling laws in multifractal objects. Phys. Rep. 156:147–225
    [Google Scholar]
  108. Pan L, Padoan P. 2010. Relative velocity of inertial particles in turbulent flows. J. Fluid Mech. 661:73–107
    [Google Scholar]
  109. Pan L, Padoan P. 2013. Turbulence-induced relative velocity of dust particles. I. Identical particles. Astrophys. J. 776:12
    [Google Scholar]
  110. Pan L, Padoan P. 2014. Turbulence-induced relative velocity of dust particles. IV. The collision kernel. Astrophys. J. 797:101
    [Google Scholar]
  111. Pan L, Padoan P, Scalo J. 2014a. Turbulence-induced relative velocity of dust particles. II. The bidisperse case. Astrophys. J. 791:48
    [Google Scholar]
  112. Pan L, Padoan P, Scalo J. 2014b. Turbulence-induced relative velocity of dust particles. III. The probability distribution. Astrophys. J. 792:69
    [Google Scholar]
  113. Pergolizzi B. 2012. Etude de la dynamique de particules interielles dans des écoulements aléatoires. PhD Thesis Univ. Nice Sophia Antipolis France:
    [Google Scholar]
  114. Perrin VE, Jonker HJJ. 2014. Preferred location of droplet collisions in turbulent flows. Phys. Rev. E 89:033005
    [Google Scholar]
  115. Perrin VE, Jonker HJJ. 2015. Relative velocity distribution of inertial particles in turbulence: a numerical study. Phys. Rev. E 92:043022
    [Google Scholar]
  116. Petersen AJ, Baker L, Coletti F. 2019. Experimental study of inertial particles clustering and settling in homogeneous turbulence. J. Fluid Mech. 864:925–70
    [Google Scholar]
  117. Pinsky M, Khain A. 1995. A model of a homogeneous isotropic turbulent flow and its application for the simulation of cloud drop tracks. Geophys. Astrophys. Fluid Dyn. 81:33–55
    [Google Scholar]
  118. Pinsky M, Khain A, Shapiro M. 1999. Collisions of small drops in a turbulent flow. Part I: collision efficiency. Problem formulation and preliminary results. J. Atmos. Sci. 56:152585–600
    [Google Scholar]
  119. Pinsky M, Khain A, Shapiro M. 2007. Collisions of cloud droplets in a turbulent flow. Part IV: droplet hydrodynamic interaction. J. Atmos. Sci. 64:72462–82
    [Google Scholar]
  120. Pope S. 1994. Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26:23–63
    [Google Scholar]
  121. Prasath SG, Vasan V, Govindarajan R. 2019. Accurate solution method for the Maxey–Riley equation, and the effects of Basset history. J. Fluid Mech. 868:428–60
    [Google Scholar]
  122. Pumir A, Wilkinson M. 2016. Collisional aggregation due to turbulence. Annu. Rev. Condens. Matter Phys. 7:141–70
    [Google Scholar]
  123. Ray B, Collins LR. 2011. Preferential concentration and relative velocity statistics of inertial particles in Navier–Stokes turbulence with and without filtering. J. Fluid Mech. 680:488–510
    [Google Scholar]
  124. Reeks MW. 2021. The development and application of a kinetic theory for modeling dispersed particle flows. J. Fluids Eng. 143:8080803
    [Google Scholar]
  125. Riley JJ, Patterson GS. 1974. Diffusion experiments with numerically integrated isotropic turbulence. Phys. Fluids 17:292–97
    [Google Scholar]
  126. Rosa B, Parishani H, Ayala O, Wang LP. 2016. Settling velocity of small inertial particles in homogeneous isotropic turbulence from high-resolution DNS. Int. J. Multiphase Flow 83:217–31
    [Google Scholar]
  127. Saffman PG, Turner JS. 1956. On the collision of drops in turbulent clouds. J. Fluid Mech. 1:16–30
    [Google Scholar]
  128. Salazar JP, Collins LR. 2009. Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech. 41:405–32
    [Google Scholar]
  129. Saw EW, Bewley GP, Bodenschatz E, Sankar Ray S, Bec J 2014. Extreme fluctuations of the relative velocities between droplets in turbulent airflow. Phys. Fluids 26:111702
    [Google Scholar]
  130. Saw EW, Shaw RA, Salazar JP, Collins LR. 2012. Spatial clustering of polydisperse inertial particles in turbulence: II. Comparing simulation with experiment. New J. Phys. 14:105031
    [Google Scholar]
  131. Sawford B. 2001. Turbulent relative dispersion. Annu. Rev. Fluid Mech. 33:289–317
    [Google Scholar]
  132. Schneider T, Teixeira J, Bretherton CS, Brient F, Pressel KG et al. 2017. Climate goals and computing the future of clouds. Nat. Clim. Chang. 7:3–5
    [Google Scholar]
  133. Shaw RA. 2003. Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35:183–227
    [Google Scholar]
  134. Sigurgeirsson H, Stuart AM. 2002. A model for preferential concentration. Phys. Fluids 14:124352–61
    [Google Scholar]
  135. Simonin O, Zaichik LI, Alipchenkov VM, Février P. 2006. Connection between two statistical approaches for the modelling of particle velocity and concentration distributions in turbulent flow: the mesoscopic Eulerian formalism and the two-point probability density function method. Phys. Fluids 18:125107
    [Google Scholar]
  136. Snyder WH, Lumley JL. 1971. Some measurements of particle velocity autocorrelation functions in a turbulent flow. J. Fluid Mech. 48:41–71
    [Google Scholar]
  137. Soldati A, Marchioli C. 2009. Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study. Int. J. Multiphase Flow 35:827–39
    [Google Scholar]
  138. Sommerer J, Ott E. 1993. Particles floating on a moving fluid: a dynamically comprehensible physical fractal. Science 259:335–39
    [Google Scholar]
  139. Squires KD, Eaton JK. 1991. Preferential concentration of particles by turbulence. Phys. Fluids A 3:1169–78
    [Google Scholar]
  140. Sumbekova S, Cartellier A, Aliseda A, Bourgoin M. 2017. Preferential concentration of inertial sub-Kolmogorov particles: the roles of mass loading of particles, Stokes numbers, and Reynolds numbers. Phys. Rev. Fluids 2:024302
    [Google Scholar]
  141. Sundaram S, Collins LR. 1997. Collision statistics in an isotropic particle-laden turbulent suspension. J. Fluid. Mech. 335:75–109
    [Google Scholar]
  142. Sundararajakumar RR, Koch DL. 1996. Non-continuum lubrication flows between particles colliding in a gas. J. Fluid Mech. 313:283–308
    [Google Scholar]
  143. Tenneti S, Subramaniam S. 2014. Particle-resolved direct numerical simulation for gas-solid flow model development. Annu. Rev. Fluid Mech. 46:199–230
    [Google Scholar]
  144. Toschi F, Bodenschatz E. 2009. Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41:375–404
    [Google Scholar]
  145. Völk H, Jones F, Morfill G, Roeser S. 1980. Collisions between grains in a turbulent gas. Astron. Astrophys. 85:316–25
    [Google Scholar]
  146. Voßkuhle M, Pumir A, Lévêque E. 2011. Estimating the collision rate of inertial particles in a turbulent flow: limitations of the “ghost collision” approximation. J. Phys. Conf. Ser. 318:052024
    [Google Scholar]
  147. Voßkuhle M, Pumir A, Lévêque E, Wilkinson M. 2014. Prevalence of the sling effect for enhancing collision rates in turbulent suspensions. J. Fluid Mech. 749:841–52
    [Google Scholar]
  148. Voßkuhle M, Pumir A, Lévêque E, Wilkinson M. 2015. Collision rate for suspensions at large Stokes numbers—comparing Navier-Stokes and synthetic turbulence. J. Turbul. 16:15–25
    [Google Scholar]
  149. Voth GA, Soldati A. 2017. Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49:249–76
    [Google Scholar]
  150. Wang LP, Ayala O, Rosa B, Grabowski WW. 2008. Turbulent collision efficiency of heavy particles relevant to cloud droplets. New J. Phys. 10:075013
    [Google Scholar]
  151. Wang LP, Maxey MR. 1993. Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256:27–68
    [Google Scholar]
  152. Warhaft Z. 2000. Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32:203–40
    [Google Scholar]
  153. Wilkinson M, Mehlig B. 2005. Caustics in turbulent aerosols. Europhys. Lett. 71:186–92
    [Google Scholar]
  154. Wilkinson M, Mehlig B, Östlund S, Duncan KP. 2007. Unmixing in random flows. Phys. Fluids 19:113303
    [Google Scholar]
  155. Yavuz M, Kunnen R, Van Heijst G, Clercx H. 2018. Extreme small-scale clustering of droplets in turbulence driven by hydrodynamic interactions. Phys. Rev. Lett. 120:244504
    [Google Scholar]
  156. Yoshimoto H, Goto S. 2007. Self-similar clustering of inertial particles in homogeneous turbulence. J. Fluid Mech. 577:275–86
    [Google Scholar]
  157. Zaichik LI, Alipchenkov VM. 2003. Pair dispersion and preferential concentration of particles in isotropic turbulence. Phys. Fluids 15:1776–87
    [Google Scholar]
  158. Zel'Dovich YB. 1970. Gravitational instability: an approximate theory for large density perturbations. Astron. Astrophys. 500:13–18
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-032822-014140
Loading
/content/journals/10.1146/annurev-fluid-032822-014140
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error