1932

Abstract

For an infectious disease such as the coronavirus disease 2019 (COVID-19) to spread, contact needs to be established between an infected host and a susceptible one. In a range of populations and infectious diseases, peer-to-peer contact modes involve complex interactions of a pathogen with a fluid phase, such as isolated complex fluid droplets or a multiphase cloud of droplets. This is true for exhalations including coughs or sneezes in humans and animals, bursting bubbles leading to micron-sized droplets in a range of indoor and outdoor settings, or impacting raindrops and airborne pathogens in foliar diseases transferring pathogens from water to air via splashes. Our mechanistic understanding of how pathogens actually transfer from one host or reservoir to the next remains woefully limited, with the global consequences that we are all experiencing with the ongoing COVID-19 pandemic. This review discusses the emergent area of the fluid dynamics of disease transmission. It highlights a new frontier and the rich multiscale fluid physics, from interfacial to multiphase and complex flows, that govern contact between an infected source and a susceptible target in a range of diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-060220-113712
2021-01-05
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/fluid/53/1/annurev-fluid-060220-113712.html?itemId=/content/journals/10.1146/annurev-fluid-060220-113712&mimeType=html&fmt=ahah

Literature Cited

  1. ACS (Am. Cancer Soc.). 2019. Cancer facts & figures 2019 Tech. Rep., Am. Cancer Soc Atlanta, GA: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html
  2. Agbaglah G, Thoraval MJ, Thoroddsen ST, Zhang LV, Fezzaa K, Deegan RD 2015. Drop impact into a deep pool: vortex shedding and jet formation. J. Fluid Mech. 764:R1
    [Google Scholar]
  3. Alsved M, Bourouiba L, Duchaine C, Löndahl J, Marr LC et al. 2020. Natural sources and experimental generation of bioaerosols: challenges and perspectives. Aerosol Sci. Technol. 54:547–71
    [Google Scholar]
  4. Atkins KE, Wenzel NS, Ndeffo-Mbah M, Altice FL, Townsend JP, Galvani AP 2015. Under-reporting and case fatality estimates for emerging epidemics. BMJ 350:h1115
    [Google Scholar]
  5. Aylor DE. 2017. Aerial Dispersal of Pollen and Spores St. Paul, MN: Am. Phytopathol. Soc.
  6. Bahl P, Doolan C, de Silva C, Chughtai AA, Bourouiba L, MacIntyre CR 2020. Airborne or droplet precautions for health workers treating coronavirus disease 2019. ? J. Infect. Dis. 2020:jiaa189
    [Google Scholar]
  7. Bansil R, Turner BS. 2006. Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11:164–70
    [Google Scholar]
  8. Berberović E, Van Hinsberg NP, Jakirlić S, Roisman IV, Tropea C 2009. Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Phys. Rev. E 79:036306
    [Google Scholar]
  9. Best EL, Sandoe JAT, Wilcox MH 2012. Potential for aerosolization of Clostridium difficile after flushing toilets: the role of toilet lids in reducing environmental contamination risk. J. Hosp. Infect. 80:1–5
    [Google Scholar]
  10. Blanchard D. 1989. The ejection of drops from the sea and with bacteria and their enrichment—a review. Estuaries 12:127–37
    [Google Scholar]
  11. Blower S. 2004. An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it. Rev. Med. Virol. 14:275–88
    [Google Scholar]
  12. Bolster DT, Linden PF. 2007. Contaminants in ventilated filling boxes. J. Fluid Mech. 591:97–116
    [Google Scholar]
  13. Boseley S. 2020. Coronavirus ‘could infect 60% of global population if unchecked’. The Guardian Feb. 11. https://www.theguardian.com/world/2020/feb/11/coronavirus-expert-warns-infection-could-reach-60-of-worlds-population
    [Google Scholar]
  14. Bourouiba L. 2013. Understanding the transmission of H5N1. CAB Rev 8:1–8
    [Google Scholar]
  15. Bourouiba L. 2016. A sneeze. N. Engl. J. Med. 375:e15
    [Google Scholar]
  16. Bourouiba L. 2018. How diseases and epidemics move through a breath of air TEDMED Talk, accessed May 16, 2020. https://www.tedmed.com/talks/show?id=730067
  17. Bourouiba L. 2020. Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19. JAMA 323:1837–38
    [Google Scholar]
  18. Bourouiba L, Bush JWM. 2013. Drops and bubbles in the environment. Handbook of Environmental Fluid Dynamics, Vol. 1: Overview and Fundamentals HJS Fernando 427–39 Boca Raton, FL: CRC
    [Google Scholar]
  19. Bourouiba L, Dehandschoewercker E, Bush JWM 2014. Violent expiratory events: on coughing and sneezing. J. Fluid Mech. 745:537–63
    [Google Scholar]
  20. Bourouiba L, Wu J, Newman S, Takekawa J, Natdorj T et al. 2010. Spatial dynamics of bar-headed geese migration in the context of H5N1. J. R. Soc. Interface 7:1627–39
    [Google Scholar]
  21. Bremond N, Villermaux E. 2006. Atomization by jet impact. J. Fluid Mech. 549:273–306
    [Google Scholar]
  22. Bush JWM, Thurber BA, Blanchette FA 2003. Particle clouds in homogeneous and stratified environments. J. Fluid Mech. 489:29–54
    [Google Scholar]
  23. CDC (Cent. Dis. Control Prev.). 2017a. Seasonal flu death estimate increases worldwide Press Release Dec. 13. https://www.cdc.gov/media/releases/2017/p1213-flu-death-estimate.html
  24. CDC (Cent. Dis. Control Prev.). 2017b. Severe acute respiratory syndrome (SARS) Web Resour., Cent. Dis. Control Prev Atlanta, GA: updated Dec. 6. https://www.cdc.gov/sars/index.html
  25. CDC (Cent. Dis. Control Prev.). 2019. Middle east repsiratory syndrome (MERS)—transmission Cent. Dis. Control Prev Atlanta, GA: updated Aug. 2. http://www.cdc.gov/coronavirus/mers/about/transmission.html
  26. Clanet C, Villermaux E. 2002. Life of a smooth liquid sheet. J. Fluid Mech. 462:307–40
    [Google Scholar]
  27. Culick F. 1960. Comments on a ruptured soap film. J. Appl. Phys. 31:1128–29
    [Google Scholar]
  28. Darlow H, Bale W. 1959. Infective hazards of water-closets. Lancet 273:1196–200
    [Google Scholar]
  29. Déchelette A, Babinsky E, Sojka PE 2011. Drop size distributions. Handbook of Atomization and Sprays: Theory and Applications N Ashgriz 479–95 Boston: Springer
    [Google Scholar]
  30. Ding Z, Qian H, Xu B, Huang Y, Miao T et al. 2020. Toilets dominate environmental detection of SARS-CoV-2 virus in a hospital. medRxiv 20052175. https://doi.org/10.1101/2020.04.03.20052175
    [Crossref]
  31. Duguid J. 1945. The numbers and the sites of origin of the droplets expelled during expiratory activities. Edinb. Med. J. 52:385–401
    [Google Scholar]
  32. Duguid J. 1946. The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. J. Hyg. 44:471–79
    [Google Scholar]
  33. Eggers J, Villermaux E. 2008. Physics of liquid jets. Rep. Prog. Phys. 71:036601
    [Google Scholar]
  34. Falkinham JO. 2003. Mycobacterial aerosols and respiratory disease. Emerg. Infect. Dis. 9:763–67
    [Google Scholar]
  35. Fitt B, McCartney H, Walklate P 1989. The role of rain in dispersal of pathogen inoculum. Annu. Rev. Phytopathol. 27:241–70
    [Google Scholar]
  36. Flügge C. 1897. Über Luftinfection. Zeit. Hyg. Infektionskrankh. 25:179–224
    [Google Scholar]
  37. Fones H, Gurr S. 2015. The impact of Septoria tritici Blotch disease on wheat: an EU perspective. Fungal Genet. Biol. 79:3–7
    [Google Scholar]
  38. Furbish D, Hammer K, Schmeeckle M, Borosund M, Mudd S 2007. Rain splash of dry sand revealed by high-speed imaging and sticky paper splash targets. J. Geophys. Res. 112:F01001
    [Google Scholar]
  39. Geagea L, Huber L, Sache I 1999. Dry-dispersal and rain-splash of brown (Puccinia recondita f.sp. tritci) and yellow (P. striiformis) rust spores from infected wheat leaves exposed to simulated raindrops. Plant Pathol 48:472–82
    [Google Scholar]
  40. Gerba CP, Wallis C, Manlike JL 1975. Microbiological hazards of household toilets: droplet production and the fate of residual organisms. Appl. Microbiol. 30:229–37
    [Google Scholar]
  41. Gilet T, Bourouiba L. 2014. Rain-induced ejection of pathogens from leaves: revisiting the hypothesis of splash-on-film using high-speed visualization. Integr. Comp. Biol. 54:974–84
    [Google Scholar]
  42. Gilet T, Bourouiba L. 2015. Fluid fragmentation shapes rain-induced foliar disease transmission. J. R. Soc. Interface 12:20141092
    [Google Scholar]
  43. Gonnermann HM, Manga M. 2007. The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech. 39:321–56
    [Google Scholar]
  44. Grotberg JB. 2001. Respiratory fluid mechanics and transport processes. Annu. Rev. Biomed. Eng. 3:421–57
    [Google Scholar]
  45. Hamner L, Dubbel P, Capron I, Ross A, Jordan A et al. 2020. High SARS-CoV-2 attack rate following exposure at a choir practice—Skagit County, Washington. Morb. Mortal. Wkly. Rep. 69:606–10
    [Google Scholar]
  46. Harding L, Campbell D. 2020. Up to 20% of hospital patients with covid-19 caught it at hospital. The Guardian May 17. https://www.theguardian.com/world/2020/may/17/hospital-patients-england-coronavirus-covid-19
    [Google Scholar]
  47. Hare R. 1964. The transmission of respiratory infections. Proc. R. Soc. Med. 57:221–30
    [Google Scholar]
  48. Haward S, Odell J, Berry M, Hall T 2011. Extensional rheology of human saliva. Rheol. Acta 50:869–79
    [Google Scholar]
  49. Hewitt A. 2000. Spray drift: impact of requirements to protect the environment. Crop Prot 19:623–27
    [Google Scholar]
  50. Hirst J. 1995. Bioaerosols: introduction, retrospect and prospect. Bioaerosols Handbook CS Cox, CM Wathes 5–14 Boca Raton, FL: CRC
    [Google Scholar]
  51. Huber L, Gillespie TJ. 1992. Modeling leaf wetness in relation to plant disease epidemiology. Annu. Rev. Phytopathol. 30:553–77
    [Google Scholar]
  52. Hunt GR, Linden 2005. Displacement and mixing ventilation driven by opposing wind and buoyancy. J. Fluid Mech. 527:27–55
    [Google Scholar]
  53. Hunt JCR, Delfos R, Eames I, Perkins RJ 2007. Vortices, complex flows and inertial particles. Flow Turbul. Combust. 79:207–34
    [Google Scholar]
  54. IMF (Int. Monet. Fund)/WB (World Bank). 2006. Avian flu update Press Brief Sept. 17. https://www.imf.org/external/mmedia/view.aspx?vid=78598401001
  55. Johnson DL, Lynch RA, Marshall C, Mead KR, Hirst DV 2013a. Aerosol generation by modern flush toilets. Aerosol Sci. Technol. 47:1047–57
    [Google Scholar]
  56. Johnson DL, Mead KR, Lynch RA, Hirst DV 2013b. Lifting the lid on toilet plume aerosol: a literature review with suggestions for future research. Am. J. Infect. Control 41:254–58
    [Google Scholar]
  57. Johnson G, Morawska L, Ristovski Z, Hargreaves M, Mengersen K et al. 2011. Modality of human expired aerosol size distributions. J. Aerosol Sci. 42:839–51
    [Google Scholar]
  58. Johnston C, Qiu H, Ticehurst J, Dickson C, Rosenbaum P et al. 2007. Outbreak management and implications of a nosocomial norovirus outbreak. Clin. Infect. Dis. 45:534–40
    [Google Scholar]
  59. Jones NR, Queshi Z, Temple R, Larwood JPJ, Greenhalgh T, Bourouiba L 2020. 2 metres or 1? What is the evidence base for physical distancing in the context of COVID-19. ? Br. Med. J. 370:m3223
    [Google Scholar]
  60. Josserand C, Thoroddsen ST. 2016. Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48:365–91
    [Google Scholar]
  61. Josserand C, Zaleski S. 2003. Droplet splashing on a thin liquid film. Phys. Fluids 15:1650–57
    [Google Scholar]
  62. Jung S, Staples S, Dabiri J, Marsden A, Prakash M et al. 2016. Research trends in biological fluid dynamics: a USNCTAM report on recent trends in mechanics Tech. Rep., US Natl. Comm. Theor. Appl. Mech., US Natl. Acad. Sci. Eng. Med Washington, DC:
  63. Kesimer M, Makhov AM, Griffith JD, Verdugo P, Sheehan JK 2010. Unpacking a gel-forming mucin: a view of MUC5B organization after granular release. Am. J. Physiol. Lung Cell Mol. Physiol. 289:15–22
    [Google Scholar]
  64. Khamsi R. 2020. They say coronavirus isn't airborne—but it's definitely borne by air. Wired Mar. 14. https://www.wired.com/story/they-say-coronavirus-isnt-airborne-but-its-definitely-borne-by-air/
    [Google Scholar]
  65. Koch R. 1876. Untersuchungen über Bakterien: V. Die Aetiologie der Milzbrandkrankheit, begründet auf der Entwicklungsgeschichte des Bacillus anthracis. Beitr. Biol. Pflanzen 2:277–310
    [Google Scholar]
  66. Kyne L, Hamel H, Polavaram R, Kelly C 2002. Health care costs and mortality associated with nosocomial diarrhea due to Clostridium difficile. Clin. Infect. Dis. 42:346–53
    [Google Scholar]
  67. Laan N, de Bruin KG, Slenter D, Wilhelm J, Jermy M, Bonn D 2015. Bloodstain pattern analysis: implementation of a fluid dynamic model for position determination of victims. Sci. Rep. 5:11461
    [Google Scholar]
  68. Lefebvre AH, McDonell VG. 2017. Atomization and Sprays Boca Raton, FL: CRC. , 2nd. ed.
  69. Lejeune S, Gilet T, Bourouiba L 2018. Edge-effect: Liquid sheet and droplets formed by drop impact close to an edge. Phys. Rev. Fluids 3:083601
    [Google Scholar]
  70. Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK et al. 2015. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 372:825–34
    [Google Scholar]
  71. Lewis D. 2020. Is the coronavirus airborne? Experts can't agree. Nature 580:175
    [Google Scholar]
  72. Lhuissier H, Villermaux E. 2012. Bursting bubble aerosols. J. Fluid Mech. 696:5–44
    [Google Scholar]
  73. Li Y, Qian H, Hang J, Chen X, Hong L et al. 2020. Evidence for probable aerosol transmission of SARS-CoV-2 in a poorly ventilated restaurant. medRxiv 20067728. https://doi.org/10.1101/2020.04.16.20067728
    [Crossref]
  74. Linden PF. 1999. The fluid mechanics of natural ventilation. Annu. Rev. Fluid Mech. 31:201–38
    [Google Scholar]
  75. Liu Y, Ning Z, Chen Y, Guo M, Liu Y et al. 2020. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582:557–60
    [Google Scholar]
  76. Lohse D, Zhang X. 2020. Physicochemical hydrodynamics of droplets out of equilibrium: a perspective review. arXiv:2005.03782 [physics.flu-dyn]
  77. Madden LV, Hughes G, van den Bosch F 2007. The Study of Plant Disease Epidemics St. Paul, MN: Am. Phytopathol. Soc. , 2nd. ed.
  78. Majumder MS, Brownstein JS, Finkelstein SN, Larson RC, Bourouiba L 2017. Nosocomial amplification of MERS-coronavirus in South Korea, 2015. Trans. R. Soc. Trop. Med. Hyg. 111:261–69
    [Google Scholar]
  79. Martin D, Nokes R. 1988. Crystal settling in a vigorously convecting magma chamber. Nature 332:534–36
    [Google Scholar]
  80. Maxworthy T. 1972. The structure and stability of vortex rings. J. Fluid Mech. 51:15–32
    [Google Scholar]
  81. Mbareche H, Veillette M, Teertstra W, Kegel W, Bilodeau GJ et al. 2019. Recovery of fungal cells from air samples: a tale of loss and gain. Appl. Environ. Microbiol. 85:e02941–18
    [Google Scholar]
  82. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS et al. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5:607–25
    [Google Scholar]
  83. Meredith D. 1973. Significance of spore release and dispersal mechanisms in plant disease epidemiology. Annu. Rev. Phytopathol. 11:313–42
    [Google Scholar]
  84. Mokyr J. 2020. Great famine. Encyclopædia Britannica updated Feb. 4. https://www.britannica.com/event/Great-Famine-Irish-history
    [Google Scholar]
  85. Morawska L, Johnson GR, Ristovski ZD, Hargreaves M, Mengersen K et al. 2009. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol Sci. 40:256–69
    [Google Scholar]
  86. Morton BR, Taylor GI, Turner JS 1956. Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. A 234:1–23
    [Google Scholar]
  87. Néel B, Villermaux E. 2018. The spontaneous puncture of thick liquid films. J. Fluid Mech. 838:192–221
    [Google Scholar]
  88. Nelson KE, Williams CM. 2014. Infectious Disease Epidemiology: Theory and Practice Burlington, MA: Jones & Bartlett. , 3rd. ed.
  89. Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT et al. 2020. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 323:1610–12
    [Google Scholar]
  90. Ouyang W, Han J. 2019. Universal amplification-free molecular diagnostics by billion-fold hierarchical nanofluidic concentration. PNAS 116:16240–49
    [Google Scholar]
  91. Papineni RS, Rosenthal FS. 2009. The size distribution of droplets in the exhaled breath of healthy human subjects. J. Aerosol Med. 10:105–16
    [Google Scholar]
  92. Park RF. 2007. Stem rust of wheat in Australia. Aust. J. Agric. Res. 58:558–66
    [Google Scholar]
  93. Parshina-Kottas Y, Saget B, Patanjali K, Fleisher O, Gianordol G 2020. This 3-D simulation shows why social distancing is so important. New York Times April 14. https://www.nytimes.com/interactive/2020/04/14/science/coronavirus-transmission-cough-6-feet-ar-ul.html
    [Google Scholar]
  94. Pasteur L. 1861. Memoire sur les corpuscules organisés qui existent dans l'atmosphère; examen de la doctrine de générations spontanées. Ann. Sci. Nat. 16:5–98
    [Google Scholar]
  95. Paul P, El-Allaf S, Lipps P, Madden L 2004. Rain splash dispersal of Gibberella zeae within wheat canopies in Ohio. Phytopathol 94:1342–49
    [Google Scholar]
  96. Poulain S, Bourouiba L. 2018. Biosurfactants change the thinning of contaminated bubbles at bacteria-laden water interfaces. Phys. Rev. Lett. 121:204502
    [Google Scholar]
  97. Poulain S, Bourouiba L. 2019. Disease transmission via drops and bubbles. Phys. Today 72:70
    [Google Scholar]
  98. Poulain S, Villermaux E, Bourouiba L 2018. Aging and burst of surface bubbles. J. Fluid Mech. 851:636–71
    [Google Scholar]
  99. Prussin AJ, Schwake DO, Marr LC 2017. Ten questions concerning the aerosolization and transmission of Legionella in the built environment. Build. Environ. 123:684–95
    [Google Scholar]
  100. Reynolds K, Madden L, Reichard D, Ellis M 1987. Methods for study of raindrop impact on plant surfaces with application to predicting inoculum dispersal by rain. Phytopathology 77:226–32
    [Google Scholar]
  101. Roisman IV, Prunet-Foch B, Tropea C, Vignes-Adler M 2002. Multiple drop impact onto a dry solid substrate. J. Colloid Interface Sci. 256:396–410
    [Google Scholar]
  102. Roisman IV, Tropea C. 2002. Impact of a drop onto a wetted wall: description of crown formation and propagation. J. Fluid Mech. 472:373–97
    [Google Scholar]
  103. Römkens M, Helming K, Prasad S 2002. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. CATENA 46:103–23
    [Google Scholar]
  104. Roper M, Seminara A. 2019. Mycofluidics: the fluid mechanics of fungal adaptation. Annu. Rev. Fluid Mech. 51:511–38
    [Google Scholar]
  105. Ross RD. 1910. The Prevention of Malaria New York: E.P. Dutton & Co.
  106. Rozhkov A, Prunet-Foch B, Vignes-Adler M 2004. Dynamics of a liquid lamella resulting from the impact of a water drop on a small target. Proc. R. Soc. A 460:2681–704
    [Google Scholar]
  107. Ruhl CR, Pasko BL, Khan HS, Kindt LM, Stamm CE et al. 2020. Mycobacterium tuberculosis sulfolipid-1 activates nociceptive neurons and induces cough. Cell 181:293–305.e11
    [Google Scholar]
  108. SARS Comm. 2007. The SARS Commission Final Report, Vol. 3: Spring of Fear Toronto: Comm. Investig. Intro. Spread SARS Ontario
    [Google Scholar]
  109. Scharfman BE, Techet AH, Bush JWM, Bourouiba L 2016. Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets. Exp. Fluids 57:24
    [Google Scholar]
  110. Scorer RS. 1978. Environmental Aerodynamics West Sussex, UK: Ellis Horwood
  111. Shrestha SS, Swerdlow DL, Borse RH, Prabhu VS, Finelli L et al. 2011. Estimating the burden of 2009 pandemic influenza A (H1N1) in the United States (April 2009–April 2010). Clin. Infect. Dis. 52:75–82
    [Google Scholar]
  112. Siegel J, Rhinehart E, Jackson M, Chiarello L 2007. 2007 guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings Healthc. Guidel., Cent. Dis. Control Prev Atlanta, GA: updated July 2019. https://www.cdc.gov/infectioncontrol/guidelines/isolation/index.html
  113. Socolofsky SA, Crounse BC, Adams EE 2002. Multi-phase plumes in uniform, stratified, and flowing environments. Environmental Fluid Mechanics: Theories and Applications HH Shen, AHD Cheng, K-H Wang, MH Teng, CCK Liu 85–125 Reston, VA: Am. Soc. Civil Eng.
    [Google Scholar]
  114. Sonkin LS. 1951. The role of particle size in experimental airborne infection. Am. J. Hyg. 53:337–54
    [Google Scholar]
  115. Soper G. 1919. The lessons learned from the pandemic. Science 49:501–6
    [Google Scholar]
  116. Strange R, Scott P. 2005. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 43:83–116
    [Google Scholar]
  117. Straub H. 1970. Bernoulli, Daniel. Dictionary of Scientific Biography, American Council of Learned Societies 2 C Gillespie 36 New York: Scribner
    [Google Scholar]
  118. Su J. 2018. Biological and particulate contaminants in interfaces Master's Thesis, MIT Cambridge, MA:
  119. Taylor GI. 1959. The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proc. R. Soc. A 253:313–21
    [Google Scholar]
  120. Traverso G, Laken S, Lu CC, Maa R, Langer R, Bourouiba L 2013. Fluid fragmentation from hospital toilets. arXiv:1310.5511 [physics.flu-dyn]
  121. Turner JS. 1979. Buoyancy Effects in Fluids Cambridge, UK: Cambridge Univ. Press
  122. Vauquelin O. 2015. Oscillatory behaviour in an emptying–filling box. J. Fluid Mech. 781:712–26
    [Google Scholar]
  123. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A et al. 2020. Aerosol and surface stability of SARS-COV-2 as compared with SARS-COV-1. N. Engl. J. Med. 382:1564–67
    [Google Scholar]
  124. Vernay C, Ramos L, Ligoure C 2015. Free radially expanding liquid sheet in air: time- and space-resolved measurement of the thickness field. J. Fluid Mech. 764:428–44
    [Google Scholar]
  125. Veron F. 2015. Ocean spray. Annu. Rev. Fluid Mech. 47:507–38
    [Google Scholar]
  126. Villermaux E. 2007. Fragmentation. Annu. Rev. Fluid Mech. 39:419–46
    [Google Scholar]
  127. Villermaux E, Bossa B. 2011. Drop fragmentation on impact. J. Fluid Mech. 668:412–35
    [Google Scholar]
  128. Villermaux E, Marmottant P, Duplat J 2004. Ligament-mediated spray formation. Phys. Rev. Lett. 92:074501
    [Google Scholar]
  129. Walls PLL, Bird JC, Bourouiba L 2014. Moving with bubbles: a review of the interactions between bubbles and the microorganisms that surround them. Integr. Comp. Biol. 54:1014–25
    [Google Scholar]
  130. Wang D, Hu B, Hu C, Zhu F, Liu X et al. 2020. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 323:1061–69
    [Google Scholar]
  131. Wang Y, Bourouiba L. 2017. Drop impact on small surfaces: thickness and velocity profiles of the expanding sheet in the air. J. Fluid Mech. 814:510–34
    [Google Scholar]
  132. Wang Y, Bourouiba L. 2018a. Non-isolated drop impact on surfaces. J. Fluid Mech. 835:24–44
    [Google Scholar]
  133. Wang Y, Bourouiba L. 2018b. Unsteady sheet fragmentation: droplet sizes and speeds. J. Fluid Mech. 848:946–67
    [Google Scholar]
  134. Wang Y, Bourouiba L. 2020a. Growth and breakup of ligaments in unsteady fragmentation. J. Fluid Mech. In press
    [Google Scholar]
  135. Wang Y, Bourouiba L. 2020b. Non-Galilean Taylor–Culick's law governs sheet dynamics in unsteady fragmentation. J. Fluid Mech. In press
    [Google Scholar]
  136. Wang Y, Dandekar R, Bustos N, Poulain S, Bourouiba L 2018a. Universal rim thickness in unsteady sheet fragmentation. Phys. Rev. Lett. 120:204503
    [Google Scholar]
  137. Wang Y, You W, Fan J, Jin M, Wei X, Wang Q 2018b. Effects of subsequent rainfall events with different intensities on runoff and erosion in a coarse soil. CATENA 170:100–7
    [Google Scholar]
  138. Wei W, Jia F, Yang L, Chen L, Zhang H, Yu Y 2014. Effects of surficial condition and rainfall intensity on runoff in a loess hilly area, China. J. Hydrol. 513:115–26
    [Google Scholar]
  139. Wells WF. 1934. On air-born infection. Study II. Droplet and droplet nuclei. Am. J. Epidemiol. 20:611–18
    [Google Scholar]
  140. Wells WF. 1955. Airborne Contagion and Air Hygiene: An Ecological Study of Droplet Infection Cambridge, MA: Harvard Univ. Press
  141. WHO (World Health Org.). 2014. Ebola Response Team Ebola virus disease in West Africa—the first 9 months of the epidemic and forward projections. N. Engl. J. Med. 371:1481–95
    [Google Scholar]
  142. WHO (World Health Org.). 2018. Global Health Observatory (GHO) data: tuberculosis (TB) Fact Sheet, World Health Org Geneva: accessed April 6. https://www.who.int/gho/tb/en/
  143. Woods AW. 2010. Turbulent plumes in nature. Annu. Rev. Fluid Mech. 42:391–412
    [Google Scholar]
  144. Yang S, Lee GWM, Chen CM, Wu CC, Yu KP 2007. The size and concentration of droplets generated by coughing in human subjects. J. Aerosol Med. 20:484–94
    [Google Scholar]
  145. Yarin AL. 2006. Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38:159–92
    [Google Scholar]
  146. Zanin M, Baviskar P, Webster R, Webby R 2016. The interaction between respiratory pathogens and mucus. Cell Host Microbe 19:159–68
    [Google Scholar]
  147. Zayas G, Chiang M, Wong E, MacDonald F, Lange C et al. 2012. Cough aerosol in healthy participants: fundamental knowledge to optimize droplet-spread infectious respiratory disease management. BMC Pulm. Med. 12:11
    [Google Scholar]
  148. Zhang LV, Toole J, Fezzaa K, Deegan RD 2012. Splashing from drop impact into a deep pool: multiplicity of jets and the failure of conventional scaling. J. Fluid Mech. 703:402–13
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-060220-113712
Loading
/content/journals/10.1146/annurev-fluid-060220-113712
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error