1932

Abstract

This review examines large eddy simulation (LES) models from the perspective of their a priori statistical characteristics. The most well-known statistical characteristic of an LES subgrid-scale model is its dissipation (energy transfer to unresolved scales), and many models are directly or indirectly formulated and tuned for consistency of this characteristic. However, in complex turbulent flows, many other subgrid statistical characteristics are important. These include such quantities as mean subgrid stress, subgrid transport of resolved Reynolds stress, and dissipation anisotropy. Also important are the statistical characteristics of models that account for filters that do not commute with differentiation and of the discrete numerical operators in the LES equations. We review the known statistical characteristics of subgrid models to assess these characteristics and the importance of their a priori consistency. We hope that this analysis will be helpful in continued development of LES models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-060420-023735
2021-01-05
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/fluid/53/1/annurev-fluid-060420-023735.html?itemId=/content/journals/10.1146/annurev-fluid-060420-023735&mimeType=html&fmt=ahah

Literature Cited

  1. Adams NA. 2001. The role of deconvolution and numerical discretization in subgrid-scale modeling. Direct and Large-Eddy Simulation IV BJ Geurts, R Friedrich, O Métais 311–20 Dordrecht, Neth: Springer
    [Google Scholar]
  2. Adrian RJ. 1979. Conditional eddies in isotropic turbulence. Phys. Fluids 22:2065–70
    [Google Scholar]
  3. Adrian RJ. 1990. Stochastic estimation of sub-grid scale motions. Appl. Mech. Rev. 43:S214–18
    [Google Scholar]
  4. Adrian RJ, Jones B, Chung M, Hassan Y, Nithianandan C, Tung AC 1989. Approximation of turbulent conditional averages by stochastic estimation. Phys. Fluids A 1:992–98
    [Google Scholar]
  5. Adrian RJ, Moin P. 1988. Stochastic estimation of organized turbulent structure: homogeneous shear flow. J. Fluid Mech. 190:531–59
    [Google Scholar]
  6. Antonopoulos-Domis M. 1981. Large-eddy simulation of a passive scalar in isotropic turbulence. J. Fluid Mech. 104:55–79
    [Google Scholar]
  7. Bardina J, Ferziger J, Reynolds W 1980. Improved subgrid-scale models for large-eddy simulation Paper presented at Fluid and PlasmaDynamics Conference, 13th Snowmass, CO: AIAA Pap 1980–1357
    [Google Scholar]
  8. Bastiaans R, Rindt C, Steenhoven A 1998. Experimental analysis of a confined transitional plume with respect to subgrid-scale modelling. Int. J. Heat Mass Transfer 41:3989–4007
    [Google Scholar]
  9. Beck A, Flad D, Munz CD 2019. Deep neural networks for data-driven LES closure models. J. Comput. Phys. 398:108910
    [Google Scholar]
  10. Boris JP. 1990. On large eddy simulation using subgrid turbulence models: comment 1. Whither Turbulence? Turbulence at the Crossroads JL Lumley 344–53 Berlin: Springer
    [Google Scholar]
  11. Borue V, Orszag SA. 1995. Forced three-dimensional homogeneous turbulence with hyperviscosity. EPL 29:687
    [Google Scholar]
  12. Borue V, Orszag SA. 1998. Local energy flux and subgrid-scale statistics in three-dimensional turbulence. J. Fluid Mech. 366:1–31
    [Google Scholar]
  13. Bose ST. 2012. Explicitly filtered large-eddy simulation: with application to grid adaptation and wall modeling PhD Thesis, Stanford Univ Stanford, CA:
    [Google Scholar]
  14. Bose ST, Moin P. 2014. A dynamic slip boundary condition for wall-modeled large-eddy simulation. Phys. Fluids 26:015104
    [Google Scholar]
  15. Bose ST, Moin P, You D 2010. Grid-independent large-eddy simulation using explicit filtering. Phys. Fluids 22:105103
    [Google Scholar]
  16. Bose ST, Park GI. 2018. Wall-modeled large-eddy simulation for complex turbulent flows. Annu. Rev. Fluid Mech. 50:535–61
    [Google Scholar]
  17. Carati D, Ghosal S, Moin P 1995a. On the representation of backscatter in dynamic localization models. Phys. Fluids 7:606–16
    [Google Scholar]
  18. Carati D, Jansen K, Lund T 1995b. A family of dynamic models for large-eddy simulation. Annual Research Briefs 199535–40 Stanford, CA: Cent. Turbul. Res.
    [Google Scholar]
  19. Carati D, Winckelmans GS, Jeanmart H 2001. On the modelling of the subgrid-scale and filtered-scale stress tensors in large-eddy simulation. J. Fluid Mech. 441:119–38
    [Google Scholar]
  20. Cerutti S, Meneveau C, Knio OM 2000. Spectral and hyper eddy viscosity in high-Reynolds-number turbulence. J. Fluid Mech. 421:307–38
    [Google Scholar]
  21. Chang H. 2012. Modeling turbulence using optimal large eddy simulation PhD Thesis, Univ. Texas Austin:
    [Google Scholar]
  22. Chaouat B, Schiestel R. 2005. A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Phys. Fluids 17:065106
    [Google Scholar]
  23. Chaouat B, Schiestel R. 2013. Hybrid RANS/LES simulations of the turbulent flow over periodic hills at high Reynolds number using the PITM method. Comput. Fluids 84:279–300
    [Google Scholar]
  24. Chen S, Xia Z, Pei S, Wang J, Yang Y et al. 2012. Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows. J. Fluid Mech. 703:1–28
    [Google Scholar]
  25. Chen Q, Zhang H, Wang D, Tong C 2003. Subgrid-scale stress and its production rate: conditions for the resolvable-scale velocity probability density function. J. Turbul. 4:N27
    [Google Scholar]
  26. Chollet JP, Lesieur M. 1981. Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. J. Atmos. Sci. 38:2747–57
    [Google Scholar]
  27. Chow FK, Moin P. 2003. A further study of numerical errors in large-eddy simulations. J. Comput. Phys. 184:366–80
    [Google Scholar]
  28. Clark RA, Ferziger JH, Reynolds WC 1979. Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91:1–16
    [Google Scholar]
  29. Cook AW, Cabot WH. 2005. Hyperviscosity for shock-turbulence interactions. J. Comput. Phys. 203:379–85
    [Google Scholar]
  30. Dantinne G, Jeanmart H, Winckelmans GS, Legat V, Carati D 1997. Hyperviscosity and vorticity-based models for subgrid scale modeling. Appl. Sci. Res. 59:409–20
    [Google Scholar]
  31. Deardorff JW. 1970. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41:453–80
    [Google Scholar]
  32. Deardorff JW. 1971. On the magnitude of the subgrid scale eddy coefficient. J. Comput. Phys. 7:120–33
    [Google Scholar]
  33. Deardorff JW. 1973. The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence. J. Fluids Eng. 95:3429–38
    [Google Scholar]
  34. Domaradzki JA, Adams NA. 2002. Direct modelling of subgrid scales of turbulence in large eddy simulations. J. Turbul. 3:N24
    [Google Scholar]
  35. Domaradzki JA, Metcalfe RW, Rogallo RS, Riley JJ 1987. Analysis of subgrid-scale eddy viscosity with use of results from direct numerical simulations. Phys. Rev. Lett. 58:547–50
    [Google Scholar]
  36. Domaradzki JA, Saiki EM. 1997. A subgrid-scale model based on the estimation of unresolved scales of turbulence. Phys. Fluids 9:2148–64
    [Google Scholar]
  37. Evans JA, Hughes TJ. 2013. Isogeometric divergence-conforming B-splines for the steady Navier–Stokes equations. Math. Models Methods Appl. Sci. 23:1421–78
    [Google Scholar]
  38. Fabre Y, Balarac G. 2011. Development of a new dynamic procedure for the Clark model of the subgrid-scale scalar flux using the concept of optimal estimator. Phys. Fluids 23:115103
    [Google Scholar]
  39. Ferziger J, Mehta U, Reynolds W 1977. Large eddy simulation of homogeneous isotropic turbulence. In Symposium on Turbulent Shear Flows 1:14.31–14.39 University Park, PA: Pa. State Univ.
    [Google Scholar]
  40. Fox DG, Lilly DK. 1972. Numerical simulation of turbulent flows. Rev. Geophys. 10:51–72
    [Google Scholar]
  41. Fox DG, Orszag SA. 1973. Pseudospectral approximation to two-dimensional turbulence. J. Comput. Phys. 11:612–19
    [Google Scholar]
  42. Fureby C, Grinstein FF. 2002. Large eddy simulation of high-Reynolds-number free and wall-bounded flows. J. Comput. Phys. 181:68–97
    [Google Scholar]
  43. Fureby C, Tabor G. 1997. Mathematical and physical constraints on large-eddy simulations. Theor. Comput. Fluid Dyn. 9:85–102
    [Google Scholar]
  44. Germano M. 1986a. Differential filters for the large eddy numerical simulation of turbulent flows. Phys. Fluids 29:1755–57
    [Google Scholar]
  45. Germano M. 1986b. Differential filters of elliptic type. Phys. Fluids 29:1757–58
    [Google Scholar]
  46. Germano M, Piomelli U, Moin P, Cabot WH 1991. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3:1760
    [Google Scholar]
  47. Geurts B, Holm D. 2006. Leray and LANS-α modeling of turbulent mixing. J. Turbul. 7:237–48
    [Google Scholar]
  48. Ghosal S. 1996. An analysis of numerical errors in large-eddy simulations of turbulence. J. Comput. Phys. 125:187–206
    [Google Scholar]
  49. Ghosal S, Lund TS, Moin P, Akselvoll K 1995. A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286:229–55
    [Google Scholar]
  50. Ghosal S, Moin P. 1995. The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comput. Phys. 118:24–37
    [Google Scholar]
  51. Girimaji SS. 2005. Partially-averaged Navier-Stokes model for turbulence: a Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method. J. Appl. Mech. 73:413–21
    [Google Scholar]
  52. Girimaji SS, Wallin S. 2013. Closure modeling in bridging regions of variable-resolution (VR) turbulence computations. J. Turbul. 14:72–98
    [Google Scholar]
  53. Grinstein FF, Fureby C. 2002. Recent progress on miles for high Reynolds number flows. J. Fluids Eng. 124:848–61
    [Google Scholar]
  54. Grinstein FF, Margolin LG, Rider WJ 2007. Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  55. Gullbrand J, Chow FK. 2003. The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech. 495:323–41
    [Google Scholar]
  56. Haering SW. 2015. Anisotropic hybrid turbulence modeling with specific application to the simulation of pulse-actuated dynamic stall control PhD Thesis, Univ. Texas Austin:
    [Google Scholar]
  57. Haering SW, Lee M, Moser RD 2019a. Resolution-induced anisotropy in large-eddy simulations. Phys. Rev. Fluids 4:114605
    [Google Scholar]
  58. Haering SW, Oliver T, Moser RD 2019b. Towards a predictive hybrid RANS/LES framework Paper presented at AIAA SciTech 2019 Forum San Diego, CA: AIAA Pap 2019–0087
    [Google Scholar]
  59. Haering SW, Oliver TA, Moser RD 2020. Active model split hybrid RANS/LES. arXiv:2006.13118 [physics.flu–dyn]
  60. Hamba F. 2011. Analysis of filtered Navier–Stokes equation for hybrid RANS/LES simulation. Phys. Fluids 23:015108
    [Google Scholar]
  61. Hughes TJ, Mazzei L, Jansen KE 2000. Large eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3:47–59
    [Google Scholar]
  62. Iovieno M, Tordella D. 2003. Variable scale filtered Navier–Stokes equations: a new procedure to deal with the associated commutation error. Phys. Fluids 15:1926–36
    [Google Scholar]
  63. Ishihara T, Yoshida K, Kaneda Y 2002. Anisotropic velocity correlation spectrum at small scales in a homogeneous turbulent shear flow. Phys. Rev. Lett. 88:154501
    [Google Scholar]
  64. Jimenéz J, Moser RD. 2000. Large eddy simulation: Where are we and what can we expect. ? AIAA J 38:605–12
    [Google Scholar]
  65. Kajishima T, Nomachi T. 2006. One-equation subgrid scale model using dynamic procedure for the energy production. Trans. ASME 73:368–73
    [Google Scholar]
  66. Kaltenbach HJ. 1997. Cell aspect ratio dependence of anisotropy measures for resolved and subgrid scale stresses. J. Comput. Phys. 136:399–410
    [Google Scholar]
  67. Karman TD, Howarth L. 1938. On the statistical theory of isotropic turbulence. Proc. R. Soc. A 164:192–215
    [Google Scholar]
  68. King R, Hamlington PE, Dahm W 2015. Autonomic subgrid-scale closure for large eddy simulations Paper presented at AIAA Aerospace Sciences Meeting, 53rd, Kissimmee, FL, AIAA Pap 2015–1285
    [Google Scholar]
  69. Kolmogorov AN. 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30:301–5
    [Google Scholar]
  70. Kraichnan RH. 1976. Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33:1521–36
    [Google Scholar]
  71. Kravchenko A, Moin P. 1997. On the effect of numerical errors in large eddy simulations of turbulent flows. J. Comput. Phys. 131:310–22
    [Google Scholar]
  72. Kwak D, Reynolds WC, Ferziger JH 1975. Three-dimensional time dependent computation of turbulent flow Tech. Rep. NASA-CR-166408, SU-TF-5, Dep. Mech. Eng., Stanford Univ Stanford, CA:
    [Google Scholar]
  73. Kwok WY, Moser RD, Jiménez J 2001. A critical evaluation of the resolution properties of B-spline and compact finite difference methods. J. Comput. Phys. 174:510–51
    [Google Scholar]
  74. Langford JA, Moser RD. 1999. Optimal LES formulations for isotropic turbulence. J. Fluid Mech. 398:321–46
    [Google Scholar]
  75. Langford JA, Moser RD. 2001. Breakdown of continuity in large-eddy simulation. Phys. Fluids 13:1524–27
    [Google Scholar]
  76. Langford JA, Moser RD. 2004. Optimal large-eddy simulation results for isotropic turbulence. J. Fluid Mech. 521:273–94
    [Google Scholar]
  77. Lehmkuhl O, Park G, Bose S, Moin P 2018. Large-eddy simulation of practical aeronautical flows at stall conditions. Proceedings of the Summer Program 201887–96 Stanford, CA: Cent. Turbul. Res.
    [Google Scholar]
  78. Leonard A. 1974. Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. 18:237–48
    [Google Scholar]
  79. Lesieur M, Métais O. 1996. New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28:45–82
    [Google Scholar]
  80. Lesieur M, Rogallo R. 1989. Large-eddy simulation of passive scalar diffusion in isotropic turbulence. Phys. Fluids A 1:718–22
    [Google Scholar]
  81. Leslie DC, Quarini GL. 1979. The application of turbulence theory to the formulation of subgrid modeling procedures. J. Fluid Mech. 91:65–91
    [Google Scholar]
  82. Lévêque E, Toschi F, Shao L, Bertoglio JP 2007. Shear-improved Smagorinsky model for large-eddy simulation of wall-bounded turbulent flows. J. Fluid Mech. 570:491–502
    [Google Scholar]
  83. Li Y, Meneveau C. 2004. Analysis of mean momentum flux in subgrid models of turbulence. Phys. Fluids 16:3483–86
    [Google Scholar]
  84. Lilly DK. 1966. On the application of the eddy viscosity concept in the inertial sub-range of turbulence Tech. Rep. 123, Natl. Cent. Atmos. Res Boulder, CO:
    [Google Scholar]
  85. Lilly DK. 1992. A proposed modification of the Germano subgrid scale closure method. Phys. Fluids A 4:633
    [Google Scholar]
  86. Liu S, Meneveau C, Katz J 1994. On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J. Fluid Mech. 275:83–119
    [Google Scholar]
  87. Lozano-Duran A, Moin P, Bose ST 2020. Prediction of trailing edge separation on the NASA junction flow using wall-modeled LES Paper presented at AIAA SciTech 2020 Forum, Orlando, FL AIAA Pap:2020–1776
    [Google Scholar]
  88. Lund T. 2003. The use of explicit filters in large eddy simulation. Comput. Math. Appl. 46:603–16
    [Google Scholar]
  89. Marsden AL, Vasilyev OV, Moin P 2002. Construction of commutative filters for LES on unstructured meshes. J. Comput. Phys. 175:584–603
    [Google Scholar]
  90. Marstorp L, Brethouwer G, Grundestam O, Johansson A 2009. Explicit algebraic subgrid stress models with application to rotating channel flow. J. Fluid Mech. 639:403–32
    [Google Scholar]
  91. Martinez-Tossas LA, Churchfield MJ, Yilmaz AE, Sarlak H, Johnson PL et al. 2018. Comparison of four large-eddy simulation research codes and effects of model coefficient and inflow turbulence in actuator-line-based wind turbine modeling. J. Renew. Sustain. Energy 10:033301
    [Google Scholar]
  92. Mathew J, Lechner R, Foysi H, Sesterhenn J, Friedrich R 2003. An explicit filtering method for large eddy simulation of compressible flows. Phys. Fluids 15:2279–89
    [Google Scholar]
  93. McMillan OJ, Ferziger JH. 1979. Direct testing of subgrid-scale models. AIAA J 17:1340–46
    [Google Scholar]
  94. McMillan OJ, Ferziger JH, Rogallo RS 1980. Tests of subgrid-scale models in strained turbulence Paper presented at Fluid and PlasmaDynamics Conference, 13th Snowmass, CO: AIAA Pap1980–1339
    [Google Scholar]
  95. Meneveau C. 1994. Statistics of turbulence subgrid-scale stresses: necessary conditions and experimental tests. Phys. Fluids 6:815–33
    [Google Scholar]
  96. Meneveau C. 2011. Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 43:219–45
    [Google Scholar]
  97. Meneveau C, Katz J. 2000. Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32:1–32
    [Google Scholar]
  98. Meneveau C, Lund TS, Cabot WH 1996. A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319:353–85
    [Google Scholar]
  99. Métais O, Lesieur M. 1992. Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239:157–94
    [Google Scholar]
  100. Meyers J, Geurts BJ, Sagaut P 2007. A computational error-assessment of central finite-volume. di: scretizations in large-eddy simulation using a Smagorinsky model. J. Comput. Phys. 227:156–73
    [Google Scholar]
  101. Meyers J, Sagaut P. 2006. On the model coefficients for the standard and the variational multi-scale Smagorinsky model. J. Fluid Mech. 569:287–319
    [Google Scholar]
  102. Moin P, Kim J. 1982. Numerical investigation of turbulent channel flow. J. Fluid Mech. 118:341–77
    [Google Scholar]
  103. Moreau A, Teytaud O, Bertoglio JP 2006. Optimal estimation for large-eddy simulation of turbulence and application to the analysis of subgrid models. Phys. Fluids 18:105101
    [Google Scholar]
  104. Moser RD, Malaya NP, Chang H, Zandonade PS, Vedula P et al. 2009. Theoretically based optimal large-eddy simulation. Phys. Fluids 21:105104
    [Google Scholar]
  105. Nicoud F, Ducros F. 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62:183–200
    [Google Scholar]
  106. Nicoud F, Toda HB, Cabrit O, Bose S, Lee J 2011. Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23:085106
    [Google Scholar]
  107. Papoulis A. 1965. Probability, Random Variables, and Stochastic Processes New York: McGraw-Hill
    [Google Scholar]
  108. Park G. 2017. Wall-modeled large-eddy simulation of a high Reynolds number separating and reattaching flow. AIAA J 55:3709–21
    [Google Scholar]
  109. Park N, Mahesh K. 2008. A velocity-estimation subgrid model constrained by subgrid scale dissipation. J. Comput. Phys. 227:4190–206
    [Google Scholar]
  110. Park N, Yoo JY, Choi H 2005. Toward improved consistency of a priori tests with a posteriori tests in large eddy simulation. Phys. Fluids 17:015103
    [Google Scholar]
  111. Piomelli U, Balaras E. 2002. Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34:349–74
    [Google Scholar]
  112. Piomelli U, Cabot WH, Moin P, Lee S 1991. Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids A 3:1766–71
    [Google Scholar]
  113. Pope S. 2004. Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6:35
    [Google Scholar]
  114. Pope S. 2006. Turbulent Flows Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  115. Porte-Agel F, Meneveau C, Parlange M 2000. A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J. Fluid Mech. 415:261–84
    [Google Scholar]
  116. Posa A, Broglia R, Felli M, Falchi M, Balaras E 2019. Characterization of the wake of a submarine propeller via large-eddy simulation. Comput. Fluids 184:138–52
    [Google Scholar]
  117. Pruett CD, Sochacki JS, Adams NA 2001. On Taylor-series expansions of residual stress. Phys. Fluids 13:2578–89
    [Google Scholar]
  118. Qiu J, Shu CW. 2002. On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes. J. Comput. Phys. 183:187–209
    [Google Scholar]
  119. Razi P, Tazraei P, Girimaji S 2017. Partially-averaged Navier–Stokes (PANS) simulations of flow separation over smooth curved surfaces. Int. J. Heat Fluid Flow 66:157–71
    [Google Scholar]
  120. Reynolds O. 1883. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. 174:935–82
    [Google Scholar]
  121. Rozema W, Bae HJ, Moin P, Verstappen R 2015. Minimum-dissipation models for large-eddy simulation. Phys. Fluids 27:085107
    [Google Scholar]
  122. Sagaut P. 2006. Large Eddy Simulation for Incompressible Flows: An Introduction Berlin: Springer-Verlag. , 3rd ed..
    [Google Scholar]
  123. Sagaut P, Deck S, Terracol M 2006. Multiscale and Multiresolution Approaches in Turbulence London: Imp. Coll. Press. , 2nd ed..
    [Google Scholar]
  124. Schumann U. 1975. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18:376–404
    [Google Scholar]
  125. Schwarzkopf J, Livescu D, Baltzer J, Gore R, Ristorcelli J 2016. A two-length scale turbulence model for single-phase multi-fluid mixing. Flow Turbul. Combust. 96:1–43
    [Google Scholar]
  126. Shaanan S, Ferziger J, Reynolds W 1975. Numerical simulation of turbulence in the presence of shear Tech. Rep. NASA-CR-143349, SU-TF-6, Dep. Mech. Eng., Stanford Univ. Stanford, CA:
    [Google Scholar]
  127. Shi Y, Xiao Z, Chen S 2008. Constrained subgrid-scale stress model for large eddy simulation. Phys. Fluids 20:011701
    [Google Scholar]
  128. Silvis M, Remmerswaal R, Verstappen R 2016. Physical conisistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. Phys. Fluids 29:015105
    [Google Scholar]
  129. Smagorinsky J. 1963. General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 91:99–164
    [Google Scholar]
  130. Spyksma K, Magcalas M, Campbell N 2012. Quantifying effects of hyperviscosity on isotropic turbulence. Phys. Fluids 24:125102
    [Google Scholar]
  131. Stolz S, Adams NA. 1999. An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11:1699–701
    [Google Scholar]
  132. Stolz S, Adams NA, Kleiser L 2001. An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13:997–1015
    [Google Scholar]
  133. Trefethen LN. 1982. Group velocity in finite difference schemes. SIAM Rev 24:113–36
    [Google Scholar]
  134. Uribe JC, Jarrin N, Prosser R, Laurence D 2010. Development of a two-velocities hybrid RANS-LES model and its application to a trailing edge flow. Flow Turbul. Combust. 85:181–97
    [Google Scholar]
  135. van der Ven H. 1995. A family of large eddy simulation (LES) filters with nonuniform filter widths. Phys. Fluids 7:1171–72
    [Google Scholar]
  136. Vasilyev OV, Lund TS, Moin P 1998. A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 146:82–104
    [Google Scholar]
  137. Verstappen R. 2011. When does eddy viscosity damp subfilter scales sufficiently. ? J. Sci. Comput. 49:94–110
    [Google Scholar]
  138. Verstappen R. 2018. How much eddy dissipation is needed to counterbalance the nonlinear production of small, unresolved scales in a large-eddy simulation of turbulence. ? Comput. Fluids 176:276–84
    [Google Scholar]
  139. Völker S, Moser RD, Venugopal P 2002. Optimal large eddy simulation of turbulent channel flow based on direct numerical simulation statistical data. Phys. Fluids 14:3675–91
    [Google Scholar]
  140. Vollant A, Balarac G, Corre C 2017. Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning procedures. J. Turbul. 18:854–78
    [Google Scholar]
  141. Vreman AW. 2004. An eddy-viscosity subgrid-scale model for turbulent shear flow. Phys. Fluids 16:3670–81
    [Google Scholar]
  142. Vreman B, Geurts B, Kuerten H 1996. Large-eddy simulation of the temporal mixing layer using the Clark model. Theor. Comput. Fluid Dyn. 8:309–24
    [Google Scholar]
  143. Waleffe F. 1992. The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4:350–63
    [Google Scholar]
  144. Winckelmans G, Jeanmart H, Carati D 2002. On the comparison of turbulence intensities from large-eddy simulation with those from experiment or direct numerical simulation. Phys. Fluids 14:1809–11
    [Google Scholar]
  145. Yalla GR, Oliver TA, Haering SW, Engquist B, Moser RD 2020. On the effects of resolution inhomogeneity in LES. arXiv:2003.02355 [physics.flu–dyn]
  146. Yoshizawa A, Horiuti K. 1985. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Jpn. 54:2834–39
    [Google Scholar]
  147. You D, Moin P. 2007. A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries. Phys. Fluids 19:065110
    [Google Scholar]
  148. Zandonade PS, Langford JA, Moser RD 2004. Finite-volume optimal large-eddy simulation of isotropic turbulence. Phys. Fluids 16:2255–71
    [Google Scholar]
  149. Zang Y, Street R, Koseff J 1993. A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A 5:3186–96
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-060420-023735
Loading
/content/journals/10.1146/annurev-fluid-060420-023735
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error