1932

Abstract

Reliable full-scale prediction of drag due to rough wall-bounded turbulent fluid flow remains a challenge. Currently, the uncertainty is at least 10%, with consequences, for example, on energy and transport applications exceeding billions of dollars per year. The crux of the difficulty is the large number of relevant roughness topographies and the high cost of testing each topography, but computational and experimental advances in the last decade or so have been lowering these barriers. In light of these advances, here we review the underpinnings and limits of relationships between roughness topography and drag behavior, focusing on canonical and fully turbulent incompressible flow over rigid roughness. These advances are beginning to spill over into multiphysical areas of roughness, such as heat transfer, and promise broad increases in predictive reliability.

Keyword(s): dragroughnesswall turbulence
Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-062520-115127
2021-01-05
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/fluid/53/1/annurev-fluid-062520-115127.html?itemId=/content/journals/10.1146/annurev-fluid-062520-115127&mimeType=html&fmt=ahah

Literature Cited

  1. Acharya M, Bornstein J, Escudier MP 1986. Turbulent boundary layers on rough surfaces. Exp. Fluids 4:33–47
    [Google Scholar]
  2. Amir M, Castro IP. 2011. Turbulence in rough-wall boundary layers: universality issues. Exp. Fluids 51:313–26
    [Google Scholar]
  3. Anderson W, Barros J, Christensen KT, Awasthi A 2015. Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J. Fluid Mech. 768:316–47
    [Google Scholar]
  4. Anderson W, Meneveau C. 2011. Dynamic roughness model for large-eddy simulation of turbulent flow over multiscale, fractal-like rough surfaces. J. Fluid Mech. 679:288–314
    [Google Scholar]
  5. Antonia RA, Luxton RE. 1971. The response of a turbulent boundary layer to a step change in surface roughness. Part 1. Smooth to rough. J. Fluid Mech. 48:721–61
    [Google Scholar]
  6. Antonia RA, Luxton RE. 1972. The response of a turbulent boundary layer to a step change in surface roughness. Part 2. Rough-to-smooth. J. Fluid Mech. 53:737–57
    [Google Scholar]
  7. Barros JM, Christensen KT. 2014. Observations of turbulent secondary flows in a rough-wall turbulent boundary layer. J. Fluid Mech. 748:R1
    [Google Scholar]
  8. Barros JM, Schultz MP, Flack KA 2018. Measurements of skin-friction of systematically generated surface roughness. Int. J. Heat Fluid Flow 72:1–7
    [Google Scholar]
  9. Bechert DW, Bruse M, Hage W, van der Hoeven JGT, Hoppe G 1997. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech 338:59–87
    [Google Scholar]
  10. Berghout P, Zhu X, Chung D, Verzicco R, Stevens RJAM, Lohse D 2019. Direct numerical simulations of Taylor–Couette turbulence: the effects of sand grain roughness. J. Fluid Mech. 873:260–86
    [Google Scholar]
  11. Bons JP. 2005. A critical assessment of Reynolds analogy for turbine flows. J. Heat Transf. 127:472–85
    [Google Scholar]
  12. Bons JP, Taylor RP, McClain ST, Rivir RB 2001. The many faces of turbine surface roughness. J. Turbomach. 123:739–48
    [Google Scholar]
  13. Bowersox R. 2007. Survey of high-speed rough wall boundary layers: invited presentation Paper presented at 37th AIAA Fluid Dynamics Conference Miami, FL: AIAA Pap. 2007-3998
    [Google Scholar]
  14. Bradshaw P. 2000. A note on “critical roughness height” and “transitional roughness.”. Phys. Fluids 12:1611–14
    [Google Scholar]
  15. Breugem WP, Boersma BJ. 2005. Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach. Phys. Fluids 17:025103
    [Google Scholar]
  16. Breugem WP, Boersma BJ, Uittenbogaard RE 2006. The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562:35–72
    [Google Scholar]
  17. Brutsaert W. 1982. Evaporation into the Atmosphere Dordrecht, Neth: Springer
    [Google Scholar]
  18. Busse A, Jelly TO. 2020. Influence of surface anisotropy on turbulent flow over irregular roughness. Flow Turbul. Combust. 104:331–54
    [Google Scholar]
  19. Busse A, Lützner M, Sandham ND 2015. Direct numerical simulation of turbulent flow over a rough surface based on a surface scan. Comput. Fluids 116:129–47
    [Google Scholar]
  20. Castro IP. 2007. Rough-wall boundary layers: mean flow universality. J. Fluid Mech. 585:469–85
    [Google Scholar]
  21. Chan L, MacDonald M, Chung D, Hutchins N, Ooi A 2015. A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J. Fluid Mech. 771:743–77
    [Google Scholar]
  22. Chan L, MacDonald M, Chung D, Hutchins N, Ooi A 2018. Secondary motion in turbulent pipe flow with three-dimensional roughness. J. Fluid Mech. 854:5–33
    [Google Scholar]
  23. Chan-Braun C, García-Villalba M, Uhlmann M 2011. Force and torque acting on particles in a transitionally rough open-channel flow. J. Fluid Mech. 684:441–74
    [Google Scholar]
  24. Chavarin A, Luhar M. 2020. Resolvent analysis for turbulent channel flow with riblets. AIAA J 58:589–99
    [Google Scholar]
  25. Cheng H, Castro IP. 2002. Near wall flow over urban-like roughness. Bound.-Layer Meteorol. 104:229–59
    [Google Scholar]
  26. Chu DC, Karniadakis GE. 1993. A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces. J. Fluid Mech. 250:1–42
    [Google Scholar]
  27. Chung D, Chan L, MacDonald M, Hutchins N, Ooi A 2015. A fast direct numerical simulation method for characterising hydraulic roughness. J. Fluid Mech. 773:418–31
    [Google Scholar]
  28. Chung D, Monty JP, Hutchins N 2018. Similarity and structure of wall turbulence with lateral wall shear stress variations. J. Fluid Mech. 847:591–613
    [Google Scholar]
  29. Clauser FH. 1954. Turbulent boundary layers in adverse pressure gradients. J. Aeronaut. Sci. 21:91–108
    [Google Scholar]
  30. Coceal O, Dobre A, Thomas TG, Belcher SE 2007. Structure of turbulent flow over regular arrays of cubical roughness. J. Fluid Mech. 589:375–409
    [Google Scholar]
  31. Colebrook CF. 1939. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. J. Inst. Civ. Eng. 11:133–56
    [Google Scholar]
  32. Coles D. 1968. The young person's guide to the data. Proceedings of the AFOSR-IFP-Stanford Conference on Computation of Turbulent Boundary Layers 2 DE Coles, EA Hirst 1–45 Stanford, CA: Dep. Mech. Eng.
    [Google Scholar]
  33. Colombini M, Parker G. 1995. Longitudinal streaks. J. Fluid Mech. 304:161–83
    [Google Scholar]
  34. Devenport W, Alexander N, Glegg S, Wang M 2018. The sound of flow over rigid walls. Annu. Rev. Fluid Mech. 50:435–58
    [Google Scholar]
  35. Dipprey DF, Sabersky RH. 1963. Heat and momentum transfer in smooth and rough tubes at various Prandtl numbers. Int. J. Heat Mass Transf. 6:329–53
    [Google Scholar]
  36. Elliot WP. 1958. The growth of the atmospheric internal boundary layer. Eos 39:1048–54
    [Google Scholar]
  37. Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J 2000. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161:35–60
    [Google Scholar]
  38. Finnigan J. 2000. Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32:519–71
    [Google Scholar]
  39. Flack KA, Schultz MP. 2010. Review of hydraulic roughness scales in the fully rough regime. J. Fluids Eng. 132:041203
    [Google Scholar]
  40. Flack KA, Schultz MP. 2014. Roughness effects on wall-bounded turbulent flows. Phys. Fluids 26:101305
    [Google Scholar]
  41. Flack KA, Schultz MP, Barros JM 2019. Skin friction measurements of a systematically-varied roughness: probing the role of roughness amplitude and skewness. Flow Turbul. Combust. 104:317–29
    [Google Scholar]
  42. Flack KA, Schultz MP, Barros JM, Kim YC 2016. Skin-friction behavior in the transitionally-rough regime. Int. J. Heat Fluid Flow 61:21–30
    [Google Scholar]
  43. Flack KA, Schultz MP, Connelly JS 2007. Examination of a critical roughness height for outer layer similarity. Phys. Fluids 19:095104
    [Google Scholar]
  44. Flack KA, Schultz MP, Rose WB 2012. The onset of roughness effects in the transitionally rough regime. Int. J. Heat Fluid Flow 35:160–67
    [Google Scholar]
  45. Flack KA, Schultz MP, Shapiro TA 2005. Experimental support for Townsend's Reynolds number similarity hypothesis on rough walls. Phys. Fluids 17:035102
    [Google Scholar]
  46. Forooghi P, Stripf M, Frohnapfel B 2018. A systematic study of turbulent heat transfer over rough walls. Int. J. Heat Mass Transf. 127:1157–68
    [Google Scholar]
  47. Forooghi P, Stroh A, Magagnato F, Jakirlić S, Frohnapfel B 2017. Toward a universal roughness correlation. J. Fluids Eng. 139:121201
    [Google Scholar]
  48. García-Mayoral R, de Segura GG, Fairhall CT 2019. The control of near-wall turbulence through surface texturing. Fluid Dyn. Res. 51:011410
    [Google Scholar]
  49. Garratt JR. 1990. The internal boundary layer—a review. Bound.-Layer Meteorol. 50:171–203
    [Google Scholar]
  50. Gatti D, von Deyn L, Forooghi P, Frohnapfel B 2020. Do riblets exhibit fully rough behaviour. ? Exp. Fluids 61:81
    [Google Scholar]
  51. Gioia G, Chakraborty P. 2006. Turbulent friction in rough pipes and the energy spectrum of the phenomenological theory. Phys. Rev. Lett. 96:044502
    [Google Scholar]
  52. Granville PS. 1958. The frictional resistance and turbulent boundary layer of rough surfaces Tech. Rep. 1579, Hydromech. Lab., David Taylor Model Basin Bethesda, MD:
    [Google Scholar]
  53. Grigson C. 1992. Drag losses of new ships caused by hull finish. J. Ship Res. 36:182–96
    [Google Scholar]
  54. Grimmond CS, Oke TR. 1999. Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteorol. 38:1262–92
    [Google Scholar]
  55. Hama FR. 1954. Boundary-layer characteristics for smooth and rough surfaces. Trans. SNAME 62:333–58
    [Google Scholar]
  56. Hanson RE, Ganapathisubramani B. 2016. Development of turbulent boundary layers past a step change in wall roughness. J. Fluid Mech. 795:494–523
    [Google Scholar]
  57. Hartenberger J. 2019. Drag production of filamentous biofilm PhD Thesis, Univ. Mich Ann Arbor:
    [Google Scholar]
  58. Hinze JO. 1967. Secondary currents in wall turbulence. Phys. Fluids 10:S122
    [Google Scholar]
  59. Hong J, Katz J, Schultz MP 2011. Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow. J. Fluid Mech. 667:1–37
    [Google Scholar]
  60. Howell D, Behrends B. 2006. A review of surface roughness in antifouling coatings illustrating the importance of cutoff length. Biofouling 22:401–10
    [Google Scholar]
  61. Hwang HG, Lee JH. 2018. Secondary flows in turbulent boundary layers over longitudinal surface roughness. Phys. Rev. Fluids 3:014608
    [Google Scholar]
  62. IATA (Int. Air Transp. Assoc.). 2019. Economic performance of the airline industry: 2019 end-year report Tech. Rep., Int. Air Transp. Assoc Montréal:
    [Google Scholar]
  63. Ismail U, Zaki TA, Durbin PA 2018. The effect of cube-roughened walls on the response of rough-to-smooth (RTS) turbulent channel flows. Int. J. Heat Fluid Flow 72:174–85
    [Google Scholar]
  64. Jackson PS. 1981. On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111:15–25
    [Google Scholar]
  65. Jelly TO, Busse A. 2018. Reynolds and dispersive shear stress contributions above highly skewed roughness. J. Fluid Mech. 852:710–24
    [Google Scholar]
  66. Jiménez J. 2004. Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36:173–96
    [Google Scholar]
  67. Johnson BE, Christensen KT. 2009. Turbulent flow over low-order models of highly irregular surface roughness. AIAA J 47:1288–99
    [Google Scholar]
  68. Kanda M, Kanega M, Kawai T, Moriwaki R, Sugawara H 2007. Roughness lengths for momentum and heat derived from outdoor urban scale models. J. Appl. Meteorol. Climatol. 46:1067–79
    [Google Scholar]
  69. Kays WM, Crawford ME. 1993. Convective Heat and Mass Transfer New York: McGraw-Hill. , 2nd. ed.
    [Google Scholar]
  70. Krogstad , Efros V 2010. Rough wall skin friction measurements using a high resolution surface balance. Int. J. Heat Fluid Flow 31:429–33
    [Google Scholar]
  71. Krogstad , Efros V 2012. About turbulence statistics in the outer part of a boundary layer developing over two-dimensional surface roughness. Phys. Fluids 24:075112
    [Google Scholar]
  72. Kuwata Y, Kawaguchi Y. 2019. Direct numerical simulation of turbulence over systematically varied irregular rough surfaces. J. Fluid Mech. 862:781–815
    [Google Scholar]
  73. Langelandsvik LI, Kunkel GJ, Smits AJ 2008. Flow in a commercial steel pipe. J. Fluid Mech. 595:323–39
    [Google Scholar]
  74. Lee SH, Sung HJ. 2007. Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall. J. Fluid Mech. 584:125–46
    [Google Scholar]
  75. Leonardi S, Orlandi P, Antonia RA 2007. Properties of d- and k-type roughness in a turbulent channel flow. Phys. Fluids 19:125101
    [Google Scholar]
  76. Leonardi S, Orlandi P, Djenidi L, Antonia RA 2015. Heat transfer in a turbulent channel flow with square bars or circular rods on one wall. J. Fluid Mech. 776:512–30
    [Google Scholar]
  77. Leonardi S, Orlandi P, Smalley RJ, Djenidi L, Antonia RA 2003. Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech. 491:229–38
    [Google Scholar]
  78. Li M, de Silva CM, Rouhi A, Baidya R, Chung D et al. 2019. Recovery of wall-shear stress to equilibrium flow conditions after a rough-to-smooth step change in turbulent boundary layers. J. Fluid Mech. 872:472–91
    [Google Scholar]
  79. Ligrani PM, Oliveira MM, Blaskovich T 2003. Comparison of heat transfer augmentation techniques. AIAA J 41:337–62
    [Google Scholar]
  80. Luchini P, Manzo F, Pozzi A 1991. Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228:87–109
    [Google Scholar]
  81. Luhar M, Rominger J, Nepf H 2008. Interaction between flow, transport and vegetation spatial structure. Environ. Fluid Mech. 8:423–39
    [Google Scholar]
  82. MacDonald M, Chan L, Chung D, Hutchins N, Ooi A 2016. Turbulent flow over transitionally rough surfaces with varying roughness densities. J. Fluid Mech. 804:130–61
    [Google Scholar]
  83. MacDonald M, Chung D, Hutchins N, Chan L, Ooi A, García-Mayoral R 2017. The minimal-span channel for rough-wall turbulent flows. J. Fluid Mech. 816:5–42
    [Google Scholar]
  84. MacDonald M, Hutchins N, Chung D 2019. Roughness effects in turbulent forced convection. J. Fluid Mech. 861:138–62
    [Google Scholar]
  85. MacDonald M, Ooi A, García-Mayoral R, Hutchins N, Chung D 2018. Direct numerical simulation of high aspect ratio spanwise-aligned bars. J. Fluid Mech. 843:126–55
    [Google Scholar]
  86. Macdonald RW, Griffiths RF, Hall DJ 1998. An improved method for the estimation of surface roughness of obstacle arrays. Atmos. Environ. 32:1857–64
    [Google Scholar]
  87. Medjnoun T, Vanderwel C, Ganapathisubramani B 2018. Characteristics of turbulent boundary layers over smooth surfaces with spanwise heterogeneities. J. Fluid Mech. 838:516–43
    [Google Scholar]
  88. Mejia-Alvarez R, Christensen KT. 2010. Low-order representations of irregular surface roughness and their impact on a turbulent boundary layer. Phys. Fluids 22:015106
    [Google Scholar]
  89. Mejia-Alvarez R, Christensen KT. 2013. Wall-parallel stereo particle-image velocimetry measurements in the roughness sublayer of turbulent flow overlying highly irregular roughness. Phys. Fluids 25:115109
    [Google Scholar]
  90. Monty JP, Dogan E, Hanson R, Scardino AJ, Ganapathisubramani B, Hutchins N 2016. An assessment of the ship drag penalty arising from light calcareous tubeworm fouling. Biofouling 32:451–64
    [Google Scholar]
  91. Moody LF. 1944. Friction factors for pipe flow. Trans. ASME 66:671–84
    [Google Scholar]
  92. Moyes AJ, Kostak HE, Cox CN, Kocian TS, Saric WS et al. 2017. Drag reduction initial conditions on various legacy fleet aircraft: surface roughness measurements Paper presented at 55th AIAA Aerospace Sciences Meeting Grapevine, TX: AIAA Pap. 2017-0285
    [Google Scholar]
  93. Murphy EAK, Barros JM, Schultz MP, Flack KA, Steppe CN, Reidenbach MA 2018. Roughness effects of diatomaceous slime fouling on turbulent boundary layer hydrodynamics. Biofouling 34:976–88
    [Google Scholar]
  94. Musker AJ. 1980. Universal roughness functions for naturally-occurring surfaces. Trans. CSME 6:1–6
    [Google Scholar]
  95. Nagib HM, Chauhan KA. 2008. Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20:101518
    [Google Scholar]
  96. Napoli E, Armenio V, De Marchis M 2008. The effect of the slope of irregularly distributed roughness elements on turbulent wall-bounded flows. J. Fluid Mech. 613:385–94
    [Google Scholar]
  97. Nepf HM. 2012. Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44:123–42
    [Google Scholar]
  98. Newton R, Chung D, Hutchins N 2018. An experimental investigation into the breakdown of riblet drag reduction at post-optimal conditions. Proceedings of the 21st Australasian Fluid Mechanics Conference TCW Lau, RM Kelso Adelaide, Aust: Australas. Fluid Mech. Soc.
    [Google Scholar]
  99. Nikora V, Koll K, McLean S, Dittrich A, Aberle J 2006. Zero-plane displacement for rough-bed open-channel flows. River Flow 2002: Proceedings of the International Conference on Fluvial Hydraulics Y Zech, D Bousmar 83–92 Lisse, Neth: Balkema
    [Google Scholar]
  100. Nikora V, McEwan I, McLean S, Coleman S, Pokrajac D, Walters R 2007. Double-averaging concept for rough-bed open-channel and overland flows: theoretical background. J. Hydraul. Eng. 133:873–83
    [Google Scholar]
  101. Nikora VI, Stoesser T, Cameron SM, Stewart M, Papadopoulos K et al. 2019. Friction factor decomposition for rough-wall flows: theoretical background and application to open-channel flows. J. Fluid Mech. 872:626–64
    [Google Scholar]
  102. Nikuradse J. 1933. Strömungsgesetze in rauhen Rohren VDI-Forschungsh. 361 Berlin: Ver. Dtsch. Ing.
    [Google Scholar]
  103. Nugroho B, Hutchins N, Monty JP 2013. Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness. Int. J. Heat Fluid Flow 41:90–102
    [Google Scholar]
  104. Nugroho B, Monty JP, Utama IKAP, Ganapathisubramani B, Hutchins N 2020. Non k-type behaviour of roughness when in-plane wavelength approaches the boundary layer thickness. J. Fluid Mech In press
    [Google Scholar]
  105. Orlandi P, Sassun D, Leonardi S 2016. DNS of conjugate heat transfer in presence of rough surfaces. Int. J. Heat Mass Transf. 100:250–66
    [Google Scholar]
  106. Owen PR, Thomson WR. 1963. Heat transfer across rough surfaces. J. Fluid Mech. 15:321–34
    [Google Scholar]
  107. Peeters JWR, Sandham ND. 2019. Turbulent heat transfer in channels with irregular roughness. Int. J. Heat Mass Transf. 138:454–67
    [Google Scholar]
  108. Perry AE, Joubert PN. 1963. Rough-wall boundary layers in adverse pressure gradients. J. Fluid Mech. 17:193–211
    [Google Scholar]
  109. Piomelli U. 2018. Recent advances in the numerical simulation of rough-wall boundary layers. Phys. Chem. Earth 113:63–72
    [Google Scholar]
  110. Placidi M, Ganapathisubramani B. 2015. Effects of frontal and plan solidities on aerodynamic parameters and the roughness sublayer in turbulent boundary layers. J. Fluid Mech. 782:541–66
    [Google Scholar]
  111. Pokrajac D, Campbell LJ, Nikora V, Manes C, McEwan I 2007. Quadrant analysis of persistent spatial velocity perturbations over square-bar roughness. Exp. Fluids 42:413–23
    [Google Scholar]
  112. Pokrajac D, Finnigan JJ, Manes C, McEwan I, Nikora V 2006. On the definition of the shear velocity in rough bed open channel flows. River Flow 2006: Proceedings of the International Conference on Fluvial Hydraulics RML Ferreira, ECTL Alves, JGAB Leal, AH Cardoso 89–98 London: Taylor & Francis
    [Google Scholar]
  113. Prandtl L, Schlichting H. 1934. Das Widerstandsgesetz rauher Platten. Werft Reeder. Hafen 15:11–4
    [Google Scholar]
  114. Pullin DI, Hutchins N, Chung D 2017. Turbulent flow over a long flat plate with uniform roughness. Phys. Rev. Fluids 2:082601
    [Google Scholar]
  115. Raupach MR. 1994. Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Bound.-Layer Meteorol. 71:211–16
    [Google Scholar]
  116. Raupach MR, Antonia RA, Rajagopalan S 1991. Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44:1–25
    [Google Scholar]
  117. Raupach MR, Thom AS, Edwards I 1980. A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces. Bound.-Layer Meteorol 18:373–97
    [Google Scholar]
  118. Rouhi A, Chung D, Hutchins N 2019. Direct numerical simulation of open-channel flow over smooth-to-rough and rough-to-smooth step changes. J. Fluid Mech. 866:450–86
    [Google Scholar]
  119. Sarakinos S, Busse A. 2019. Influence of spatial distribution of roughness elements on turbulent flow past a biofouled surface. Proceedings of the 11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11) http://www.tsfp-conference.org/proceedings/2019/238.pdf
    [Google Scholar]
  120. Schlichting H. 1937. Experimental investigation of the problem of surface roughness Tech. Memo. 823, Natl. Adv. Comm. Aeronaut Washington, DC:
    [Google Scholar]
  121. Schultz MP, Bendick JA, Holm ER, Hertel WM 2011. Economic impact of biofouling on a naval surface ship. Biofouling 27:87–98
    [Google Scholar]
  122. Schultz MP, Flack KA. 2007. The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580:381–405
    [Google Scholar]
  123. Schultz MP, Flack KA. 2009. Turbulent boundary layers on a systematically varied rough wall. Phys. Fluids 21:015104
    [Google Scholar]
  124. Schultz MP, Flack KA. 2013. Reynolds-number scaling of turbulent channel flow. Phys. Fluids 25:025104
    [Google Scholar]
  125. Schultz MP, Walker JM, Steppe CN, Flack KA 2015. Impact of diatomaceous biofilms on the frictional drag of fouling-release coatings. Biofouling 31:759–73
    [Google Scholar]
  126. Sharma A, Garca-Mayoral R. 2020. Turbulent flows over dense filament canopies. J. Fluid Mech. 888:A2
    [Google Scholar]
  127. Shockling MA, Allen JJ, Smits AJ 2006. Roughness effects in turbulent pipe flow. J. Fluid Mech. 564:267–85
    [Google Scholar]
  128. Sigal A, Danberg JE. 1990. New correlation of roughness density effect on the turbulent boundary layer. AIAA J 28:554–56
    [Google Scholar]
  129. Spalart PR, Garbaruk A, Howerton BM 2017. CFD analysis of an installation used to measure the skin-friction penalty of acoustic treatments Paper presented at 23rd AIAA/CEAS Aeroacoustics Conference Denver, CO: AIAA Pap. 2017-3691
    [Google Scholar]
  130. Spalart PR, McLean JD. 2011. Drag reduction: enticing turbulence, and then an industry. Philos. Trans. R. Soc. A 369:1556–69
    [Google Scholar]
  131. Squire DT, Morrill-Winter C, Hutchins N, Schultz MP, Klewicki JC, Marusic I 2016. Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers. J. Fluid Mech. 795:210–40
    [Google Scholar]
  132. Sridhar A, Pullin DI, Cheng W 2017. Rough-wall turbulent boundary layers with constant skin friction. J. Fluid Mech. 818:26–45
    [Google Scholar]
  133. Stevens RJAM, Meneveau C. 2017. Flow structure and turbulence in wind farms. Annu. Rev. Fluid Mech. 49:311–39
    [Google Scholar]
  134. Stewart MT, Cameron SM, Nikora VI, Zampiron A, Marusic I 2019. Hydraulic resistance in open-channel flows over self-affine rough beds. J. Hydraul. Res. 57:183–96
    [Google Scholar]
  135. Stimpson CK, Snyder JC, Thole KA, Mongillo D 2017. Scaling roughness effects on pressure loss and heat transfer of additively manufactured channels. J. Turbomach. 139:021003
    [Google Scholar]
  136. Stroh A, Schäfer K, Frohnapfel B, Forooghi P 2020. Rearrangement of secondary flow over spanwise heterogeneous roughness. J. Fluid Mech. 885:R5
    [Google Scholar]
  137. Thakkar M, Busse A, Sandham ND 2017. Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces. J. Turbul. 18:138–69
    [Google Scholar]
  138. Thakkar M, Busse A, Sandham ND 2018. Direct numerical simulation of turbulent channel flow over a surrogate for Nikuradse-type roughness. J. Fluid Mech. 837:R1
    [Google Scholar]
  139. Townsend AA. 1956. The Structure of Turbulent Shear Flow Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  140. Townsin RL. 2003. The ship hull fouling penalty. Biofouling 19:9–15
    [Google Scholar]
  141. van Rij JA, Belnap BJ, Ligrani PM 2002. Analysis and experiments on three-dimensional and irregular surface roughness. J. Fluids Eng. 124:671–77
    [Google Scholar]
  142. Vanderwel C, Ganapathisubramani B. 2015. Effects of spanwise spacing on large-scale secondary flows in rough-wall turbulent boundary layers. J. Fluid Mech. 774:R2
    [Google Scholar]
  143. Voermans JJ, Ghisalberti M, Ivey GN 2017. The variation of flow and turbulence across the sediment–water interface. J. Fluid Mech. 824:413–37
    [Google Scholar]
  144. Volino RJ, Schultz MP. 2018. Determination of wall shear stress from mean velocity and Reynolds shear stress profiles. Phys. Rev. Fluids 3:034606
    [Google Scholar]
  145. Walsh MJ, Weinstein LM. 1979. Drag and heat-transfer characteristics of small longitudinally ribbed surfaces. AIAA J 17:770–71
    [Google Scholar]
  146. Wangsawijaya DD, Baidya R, Chung D, Marusic I, Hutchins N 2020. The effect of spanwise wavelength of surface heterogeneity on turbulent secondary flows. J. Fluid Mech. 894:A7
    [Google Scholar]
  147. Womack KM, Meneveau C, Schultz MP 2019. Comprehensive shear stress analysis of turbulent boundary layer profiles. J. Fluid Mech. 879:360–89
    [Google Scholar]
  148. Xie YC, Xia KQ. 2017. Turbulent thermal convection over rough plates with varying roughness geometries. J. Fluid Mech. 825:573–99
    [Google Scholar]
  149. Yaglom AM 1979. Similarity laws for constant-pressure and pressure-gradient turbulent wall flows. Annu. Rev. Fluid Mech 11:505–40
    [Google Scholar]
  150. Yang J, Anderson W. 2018. Numerical study of turbulent channel flow over surfaces with variable spanwise heterogeneities: Topographically-driven secondary flows affect outer-layer similarity of turbulent length scales. Flow Turbul. Combust. 100:1–17
    [Google Scholar]
  151. Yang XIA, Sadique J, Mittal R, Meneveau C 2016. Exponential roughness layer and analytical model for turbulent boundary layer flow over rectangular-prism roughness elements. J. Fluid Mech. 789:127–65
    [Google Scholar]
  152. Yuan J, Piomelli U. 2014a. Estimation and prediction of the roughness function on realistic surfaces. J. Turbul. 15:350–65
    [Google Scholar]
  153. Yuan J, Piomelli U. 2014b. Roughness effects on the Reynolds stress budgets in near-wall turbulence. J. Fluid Mech. 760:R1
    [Google Scholar]
  154. Zhu X, Verschoof RA, Bakhuis D, Huisman SG, Verzicco R et al. 2018. Wall roughness induces asymptotic ultimate turbulence. Nat. Phys. 14:417–23
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-062520-115127
Loading
/content/journals/10.1146/annurev-fluid-062520-115127
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error