1932

Abstract

From intracellular protein signaling to embryonic symmetry-breaking, fluid transport ubiquitously drives biological events in living systems. We provide an overview of the fundamental fluid mechanics and transport phenomena across a range of length scales in cellular systems, with emphasis on how cellular functions are influenced by fluid transport. We also highlight how understanding the physical basis of these fluid dynamic phenomena can be implemented to engineer increasingly complex multicellular systems that recapitulate tissue-level functions. Examples discussed include the manipulation of intracellular fluid volume to achieve cell differentiation/dedifferentiation and the use of microfluidic systems to control the spatial and temporal distribution of morphogens and fluid forces to generate vascularized organoids.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-072220-013845
2021-01-05
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/fluid/53/1/annurev-fluid-072220-013845.html?itemId=/content/journals/10.1146/annurev-fluid-072220-013845&mimeType=html&fmt=ahah

Literature Cited

  1. Abe Y, Watanabe M, Chung S, Kamm RD, Tanishita K, Sudo R 2019. Balance of interstitial flow magnitude and vascular endothelial growth factor concentration modulates three-dimensional microvascular network formation. APL Bioeng. 3:036102
    [Google Scholar]
  2. Alberti S, Dormann D. 2019. Liquid–liquid phase separation in disease. Annu. Rev. Genet. 53:171–94
    [Google Scholar]
  3. Angelini TE, Hannezo E, Trepat X, Marquez M, Fredberg JJ, Weitz DA 2011. Glass-like dynamics of collective cell migration. PNAS 108:4714–19
    [Google Scholar]
  4. Atia L, Bi D, Sharma Y, Mitchel JA, Gweon B et al. 2018. Geometric constraints during epithelial jamming. Nat. Phys. 14:613–20
    [Google Scholar]
  5. Bao M, Xie J, Piruska A, Huck WT 2017. 3D microniches reveal the importance of cell size and shape. Nat. Commun. 8:1962
    [Google Scholar]
  6. Bausch AR, Möller W, Sackmann E 1999. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76:573–79
    [Google Scholar]
  7. Berger E, Magliaro C, Paczia N, Monzel AS, Antony P et al. 2018. Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab. Chip 18:3172–83
    [Google Scholar]
  8. Bi D, Lopez J, Schwarz JM, Manning ML 2015. A density-independent rigidity transition in biological tissues. Nat. Phys. 11:1074–79
    [Google Scholar]
  9. Bilitewski U, Genrich M, Kadow S, Mersal G 2003. Biochemical analysis with microfluidic systems. Anal. Bioanal. Chem. 377:556–69
    [Google Scholar]
  10. Brangwynne CP, Mitchison TJ, Hyman AA 2011. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. PNAS 108:4334–39
    [Google Scholar]
  11. Brassard JA, Lutolf MP. 2019. Engineering stem cell self-organization to build better organoids. Cell Stem Cell 24:860–76
    [Google Scholar]
  12. Cai D, Feliciano D, Dong P, Flores E, Gruebele M et al. 2019. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol. 21:1578–89
    [Google Scholar]
  13. Carmeliet P, Jain RK. 2000. Angiogenesis in cancer and other diseases. Nature 407:249–57
    [Google Scholar]
  14. Chan CJ, Costanzo M, Ruiz-Herrero T, Monke G, Petrie RJ et al. 2019. Hydraulic control of mammalian embryo size and cell fate. Nature 571:112–16
    [Google Scholar]
  15. Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison T 2005. Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435:365–69
    [Google Scholar]
  16. Chowdhury F, Na S, Li D, Poh Y-C, Tanaka TS et al. 2010. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat. Mater. 9:82–88
    [Google Scholar]
  17. Chuai M, Hughes D, Weijer CJ 2012. Collective epithelial and mesenchymal cell migration during gastrulation. Curr. Genom. 13:267–77
    [Google Scholar]
  18. Chung K, Kim Y, Kanodia JS, Gong E, Shvartsman SY, Lu H 2011. A microfluidic array for large-scale ordering and orientation of embryos. Nat. Methods 8:171–76
    [Google Scholar]
  19. Colantonio JR, Vermot J, Wu D, Langenbacher AD, Fraser S et al. 2009. The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear. Nature 457:205–9
    [Google Scholar]
  20. Delarue M, Hartung J, Schreck C, Gniewek P, Hu L et al. 2016. Self-driven jamming in growing microbial populations. Nat. Phys. 12:762–66
    [Google Scholar]
  21. Desmond ME, Jacobson AG. 1977. Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev. Biol. 57:188–98
    [Google Scholar]
  22. Dewey CF, Bussolari SR, Gimbrone MA, Davies PF 1981. The dynamic response of vascular endothelial-cells to fluid shear-stress. J. Biomech. Eng. 103:177–85
    [Google Scholar]
  23. Doyle AD, Yamada KM. 2010. Sensing tension. Nature 466:192–93
    [Google Scholar]
  24. Ehrlicher AJ, Krishnan R, Guo M, Bidan CM, Weitz DA, Pollak MR 2015. Alpha-actinin binding kinetics modulate cellular dynamics and force generation. PNAS 112:6619–24
    [Google Scholar]
  25. Elbaum-Garfinkle S. 2019. Matter over mind: liquid phase separation and neurodegeneration. J. Biol. Chem. 294:7160–68
    [Google Scholar]
  26. Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ 2001. Scaling the microrheology of living cells. Phys. Rev. Lett. 87:148102
    [Google Scholar]
  27. Farahat WA, Wood LB, Zervantonakis IK, Schor A, Ong S et al. 2012. Ensemble analysis of angiogenic growth in three-dimensional microfluidic cell cultures. PLOS ONE 7:e37333
    [Google Scholar]
  28. Fischkoff S, Vanderkooi JM. 1975. Oxygen diffusion in biological and artificial membranes determined by the fluorochrome pyrene. J. Gen. Physiol. 65:663–76
    [Google Scholar]
  29. Fletcher AG, Osterfield M, Baker RE, Shvartsman SY 2014. Vertex models of epithelial morphogenesis. Biophys. J. 106:2291–304
    [Google Scholar]
  30. Fodor É, Guo M, Gov N, Visco P, Weitz D, van Wijland F 2015. Activity-driven fluctuations in living cells. EPL 110:48005
    [Google Scholar]
  31. Freund JB, Goetz JG, Hill KL, Vermot J 2012. Fluid flows and forces in development: functions, features and biophysical principles. Development 139:1229–45
    [Google Scholar]
  32. Galie PA, Nguyen DHT, Choi CK, Cohen DM, Janmey PA, Chen CS 2014. Fluid shear stress threshold regulates angiogenic sprouting. PNAS 111:227968–73
    [Google Scholar]
  33. Garcia KE, Stewart WG, Espinosa MG, Gleghorn JP, Taber LA 2019. Molecular and mechanical signals determine morphogenesis of the cerebral hemispheres in the chicken embryo. Development 146:dev174318
    [Google Scholar]
  34. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS et al. 1999. The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–27
    [Google Scholar]
  35. Graner F, Glazier JA. 1992. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69:2013
    [Google Scholar]
  36. Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M et al. 2010. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–66
    [Google Scholar]
  37. Grebenyuk S, Ranga A. 2019. Engineering organoid vascularization. Front. Bioeng. Biotechnol. 7:39
    [Google Scholar]
  38. Grek CL, Rhett JM, Bruce JS, Abt MA, Ghatnekar GS, Yeh ES 2015. Targeting connexin 43 with α–connexin carboxyl-terminal (ACT1) peptide enhances the activity of the targeted inhibitors, tamoxifen and lapatinib, in breast cancer: clinical implication for ACT1. BMC Cancer 15:296
    [Google Scholar]
  39. Grimes DR, Kelly C, Bloch K, Partridge M 2014. A method for estimating the oxygen consumption rate in multicellular tumour spheroids. J. R. Soc. Interface 11:20131124
    [Google Scholar]
  40. Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Cunningham CC, Käs J 2001. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81:767–84
    [Google Scholar]
  41. Guo L, Giasson BI, Glavis-Bloom A, Brewer MD, Shorter J et al. 2014. A cellular system that degrades misfolded proteins and protects against neurodegeneration. Mol. Cell 55:15–30
    [Google Scholar]
  42. Guo M, Ehrlicher AJ, Jensen MH, Renz M, Moore JR et al. 2014. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158:822–32
    [Google Scholar]
  43. Guo M, Ehrlicher AJ, Mahammad S, Fabich H, Jensen MH et al. 2013. The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. Biophys. J. 105:1562–68
    [Google Scholar]
  44. Guo M, Pegoraro AF, Mao A, Zhou EH, Arany PR et al. 2017. Cell volume change through water efflux impacts cell stiffness and stem cell fate. PNAS 114:E8618–27
    [Google Scholar]
  45. Gupta SK, Guo M. 2017. Equilibrium and out-of-equilibrium mechanics of living mammalian cytoplasm. J. Mech. Phys. Solids 107:284–93
    [Google Scholar]
  46. Gupta SK, Li Y, Guo M 2019. Anisotropic mechanics and dynamics of a living mammalian cytoplasm. Soft Matter 15:190–99
    [Google Scholar]
  47. Haase K, Kamm RD. 2017. Advances in on-chip vascularization. Regen. Med. 12:285–302
    [Google Scholar]
  48. Haeger A, Krause M, Wolf K, Friedl P 2014. Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim. Biophys. Acta 1840:2386–95
    [Google Scholar]
  49. Han YL, Pegoraro AF, Li H, Li K, Yuan Y et al. 2020. Cell swelling, softening and invasion in a three-dimensional breast cancer model. Nat. Phys. 16:101–8
    [Google Scholar]
  50. Han YL, Ronceray P, Xu G, Malandrino A, Kamm RD et al. 2018. Cell contraction induces long-ranged stress stiffening in the extracellular matrix. PNAS 115:4075–80
    [Google Scholar]
  51. Haselwandter CA, Phillips R. 2013. Connection between oligomeric state and gating characteristics of mechanosensitive ion channels. PLOS Comput. Biol. 9:e1003055
    [Google Scholar]
  52. Haswell ES, Phillips R, Rees DC 2011. Mechanosensitive channels: What can they do and how do they do it. ? Structure 19:1356–69
    [Google Scholar]
  53. He B, Doubrovinski K, Polyakov O, Wieschaus E 2014. Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation. Nature 508:392–96
    [Google Scholar]
  54. Heisenberg C-P, Bellaïche Y. 2013. Forces in tissue morphogenesis and patterning. Cell 153:948–62
    [Google Scholar]
  55. Hoffman BD, Crocker JC. 2009. Cell mechanics: dissecting the physical responses of cells to force. Annu. Rev. Biomed. Eng. 11:259–88
    [Google Scholar]
  56. Hoffman BD, Massiera G, Van Citters KM, Crocker JC 2006. The consensus mechanics of cultured mammalian cells. PNAS 103:10259–64
    [Google Scholar]
  57. Hoffmann EK, Lambert IH, Pedersen SF 2009. Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89:193–277
    [Google Scholar]
  58. Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M et al. 2019. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods 16:255–62
    [Google Scholar]
  59. Hsu YH, Moya ML, Abiri P, Hughes CCW, George SC, Lee AP 2013. Full range physiological mass transport control in 3D tissue cultures. Lab. Chip 13:81–89
    [Google Scholar]
  60. Hu J, Jafari S, Han Y, Grodzinsky AJ, Cai S, Guo M 2017. Size- and speed-dependent mechanical behavior in living mammalian cytoplasm. PNAS 114:9529–34
    [Google Scholar]
  61. Hu J, Li Y, Hao Y, Zheng T, Gupta SK et al. 2019. High stretchability, strength, and toughness of living cells enabled by hyperelastic vimentin intermediate filaments. PNAS 116:17175–80
    [Google Scholar]
  62. Huang CP, Lu J, Seon H, Lee AP, Flanagan LA et al. 2009. Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab. Chip 9:1740–48
    [Google Scholar]
  63. Huang Y, Chen X, Che J, Zhan Q, Ji J, Fan Y 2019. Shear stress promotes arterial endothelium-oriented differentiation of mouse-induced pluripotent stem cells. Stem Cells Int 2019:1847098
    [Google Scholar]
  64. Hui T, Zhou Z, Qian J, Lin Y, Ngan A, Gao H 2014. Volumetric deformation of live cells induced by pressure-activated cross-membrane ion transport. Phys. Rev. Lett. 113:118101
    [Google Scholar]
  65. Jackrel ME, DeSantis ME, Martinez BA, Castellano LM, Stewart RM et al. 2014. Potentiated Hsp104 variants antagonize diverse proteotoxic misfolding events. Cell 156:170–82
    [Google Scholar]
  66. Jalali S, del Pozo MA, Chen K, Miao H, Li Y et al. 2001. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. PNAS 98:1042–46
    [Google Scholar]
  67. Janmey PA, Winer JP, Murray ME, Wen Q 2009. The hard life of soft cells. Cell Motil. Cytoskelet. 66:597–605
    [Google Scholar]
  68. Kamm RD. 2002. Cellular fluid mechanics. Annu. Rev. Fluid Mech. 34:211–32
    [Google Scholar]
  69. Kim C, Lee KS, Bang JH, Kim YE, Kim MC et al. 2011. 3-Dimensional cell culture for on-chip differentiation of stem cells in embryoid body. Lab. Chip 11:874–82
    [Google Scholar]
  70. Kim KM, Choi YJ, Hwang JH, Kim AR, Cho HJ et al. 2014. Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation. PLOS ONE 9:e92427
    [Google Scholar]
  71. Kim S, Chung M, Ahn J, Lee S, Jeon NL 2016. Interstitial flow regulates the angiogenic response and phenotype of endothelial cells in a 3D culture model. Lab. Chip 16:4189–99
    [Google Scholar]
  72. Lang F, Busch GL, Ritter M, Volkl H, Waldegger S et al. 1998. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78:247–306
    [Google Scholar]
  73. Lee H-P, Stowers R, Chaudhuri O 2019. Volume expansion and TRPV4 activation regulate stem cell fate in three-dimensional microenvironments. Nat. Commun. 10:529
    [Google Scholar]
  74. Lee SH, Hong S, Song J, Cho B, Han EJ et al. 2018. Microphysiological analysis platform of pancreatic islet β-cell spheroids. Adv. Healthc. Mater. 7:1701111
    [Google Scholar]
  75. Levario TJ, Lim B, Shvartsman SY, Lu H 2016a. Microfluidics for high-throughput quantitative studies of early development. Annu. Rev. Biomed. Eng. 18:285–309
    [Google Scholar]
  76. Levario TJ, Zhao C, Rouse T, Shvartsman SY, Lu H 2016b. An integrated platform for large-scale data collection and precise perturbation of live Drosophila embryos. Sci. Rep. 6:21366
    [Google Scholar]
  77. Li R, Serrano JC, Xing H, Lee TA, Azizgolshani H et al. 2018. Interstitial flow promotes macrophage polarization toward an M2 phenotype. Mol. Biol. Cell 29:1927–40
    [Google Scholar]
  78. Li Y, Chen M, Hu J, Sheng R, Lin Q et al. 2020a. Volumetric compression induces intracellular crowding to control intestinal organoid growth via Wnt/β-catenin signaling. Cell Stem Cell In press
    [Google Scholar]
  79. Li Y, Guo F, Hao Y, Gupta SK, Hu J et al. 2019. Helical nanofiber yarn enabling highly stretchable engineered microtissue. PNAS 116:9245–50
    [Google Scholar]
  80. Li Y, Mao AS, Seo BR, Zhao X, Gupta SK et al. 2020b. Compression-induced dedifferentiation of adipocytes promotes tumor progression. Sci. Adv. 6:eaax5611
    [Google Scholar]
  81. Loewenstein WR, Rose B. 1992. The cell-cell channel in the control of growth. Semin. Cell Biol. 3:159–79
    [Google Scholar]
  82. Magliaro C, Rinaldo A, Ahluwalia A 2019. Allometric scaling of physiologically-relevant organoids. Sci. Rep. 9:11890
    [Google Scholar]
  83. Manfrin A, Tabata Y, Paquet ER, Vuaridel AR, Rivest FR et al. 2019. Engineered signaling centers for the spatially controlled patterning of human pluripotent stem cells. Nat. Methods 16:640–48
    [Google Scholar]
  84. Marimuthu M, Rousset N, St-Georges-Robillard A, Lateef MA, Ferland M et al. 2018. Multi-size spheroid formation using microfluidic funnels. Lab. Chip 18:304–14
    [Google Scholar]
  85. McLachlan E, Shao Q, Wang H-L, Langlois S, Laird DW 2006. Connexins act as tumor suppressors in three-dimensional mammary cell organoids by regulating differentiation and angiogenesis. Cancer Res 66:9886–94
    [Google Scholar]
  86. McMurtrey RJ. 2016. Analytic models of oxygen and nutrient diffusion, metabolism dynamics, and architecture optimization in three-dimensional tissue constructs with applications and insights in cerebral organoids. Tissue Eng. C 22:221–49
    [Google Scholar]
  87. Moeendarbary E, Valon L, Fritzsche M, Harris AR, Moulding DA et al. 2013. The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12:253–61
    [Google Scholar]
  88. Mongera A, Rowghanian P, Gustafson HJ, Shelton E, Kealhofer DA et al. 2018. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561:401–5
    [Google Scholar]
  89. Mosaliganti KR, Swinburne IA, Chan CU, Obholzer ND, Green AA et al. 2019. Size control of the inner ear via hydraulic feedback. eLife 8:e39596
    [Google Scholar]
  90. Müller P, Rogers KW, Jordan BN, Lee JS, Robson D et al. 2012. Differential diffusivity of nodal and lefty underlies a reaction-diffusion patterning system. Science 336:6082721–24
    [Google Scholar]
  91. Murthy SE, Dubin AE, Patapoutian A 2017. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat. Rev. Mol. Cell Biol. 18:771–83
    [Google Scholar]
  92. Needleman D, Shelley M. 2019. The stormy fluid dynamics of the living cell. Phys. Today 72:32–38
    [Google Scholar]
  93. Nelson CM, Gleghorn JP, Pang MF, Jaslove JM, Goodwin K et al. 2017. Microfluidic chest cavities reveal that transmural pressure controls the rate of lung development. Development 144:4328–35
    [Google Scholar]
  94. Nerem RM, Levesque MJ, Cornhill JF 1981. Vascular endothelial morphology as an indicator of the pattern of blood-flow. J. Biomech. Eng.-Trans. Asme 103:172–76
    [Google Scholar]
  95. Nestor-Bergmann A, Johns E, Woolner S, Jensen O 2018. Mechanical characterization of disordered and anisotropic cellular monolayers. Phys. Rev. E 97:052409
    [Google Scholar]
  96. Ng CP, Hinz B, Swartz MA 2005. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell Sci. 118:4731–39
    [Google Scholar]
  97. Ng CP, Swartz MA. 2003. Fibroblast alignment under interstitial fluid flow using a novel 3-D tissue culture model. Am. J. Physiol. Heart Circ. Physiol. 284:H1771–77
    [Google Scholar]
  98. Noble FL, Fleury V, Pries A, Corvol P, Eichmann A, Reneman RS 2005. Control of arterial branching morphogenesis in embryogenesis: Go with the flow. Cardiovasc. Res. 65:3619–28
    [Google Scholar]
  99. Nonaka S, Shiratori H, Saijoh Y, Hamada H 2002. Determination of left–right patterning of the mouse embryo by artificial nodal flow. Nature 418:96–99
    [Google Scholar]
  100. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A et al. 1998. Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–37
    [Google Scholar]
  101. Okada Y, Takeda S, Tanaka Y, Belmonte JCI, Hirokawa N 2005. Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 121:633–44
    [Google Scholar]
  102. O'Sullivan MJ, Mitchel JA, Das A, Koehler S, Levine H et al. 2020. Irradiation induces epithelial cell unjamming. Front. Cell Dev. Biol. 8:21
    [Google Scholar]
  103. Palamidessi A, Malinverno C, Frittoli E, Corallino S, Barbieri E et al. 2019. Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma. Nat. Mater. 18:1252–63
    [Google Scholar]
  104. Park J-A, Kim JH, Bi D, Mitchel JA, Qazvini NT et al. 2015. Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 14:1040–48
    [Google Scholar]
  105. Park MG, Jang H, Lee SH, Lee CJ 2017. Flow shear stress enhances the proliferative potential of cultured radial glial cells possibly via an activation of mechanosensitive calcium channel. Exp. Neurobiol. 26:71–81
    [Google Scholar]
  106. Patra B, Chen YH, Peng CC, Lin SC, Lee CH, Tung YC 2013. A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis. Biomicrofluidics 7:54114
    [Google Scholar]
  107. Polacheck WJ, Charest JL, Kamm RD 2011. Interstitial flow influences direction of tumor cell migration through competing mechanisms. PNAS 108:11115–20
    [Google Scholar]
  108. Potente M, Mäkinen T. 2017. Vascular heterogeneity and specialization in development and disease. Nat. Rev. Mol. Cell Biol. 18:477–94
    [Google Scholar]
  109. Poujade M, Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P et al. 2007. Collective migration of an epithelial monolayer in response to a model wound. PNAS 104:15988–93
    [Google Scholar]
  110. Purcell EM. 1977. Life at low Reynolds number. Am. J. Phys. 45:3–11
    [Google Scholar]
  111. Rejniak KA, Estrella V, Chen T, Cohen AS, Lloyd MC, Morse DL 2013. The role of tumor tissue architecture in treatment penetration and efficacy: an integrative study. Front. Oncol. 3:111
    [Google Scholar]
  112. Ridge KM, Shumaker D, Robert A, Hookway C, Gelfand VI et al. 2016. Methods for determining the cellular functions of vimentin intermediate filaments. Methods Enzymol 568:389–426
    [Google Scholar]
  113. Rigato A, Miyagi A, Scheuring S, Rico F 2017. High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nat. Phys. 13:771–75
    [Google Scholar]
  114. Risek B, Guthrie S, Kumar N, Gilula NB 1990. Modulation of gap junction transcript and protein expression during pregnancy in the rat. J. Cell Biol. 110:269–82
    [Google Scholar]
  115. Röding M, Guo M, Weitz DA, Rudemo M, Särkkä A 2014. Identifying directional persistence in intracellular particle motion using Hidden Markov Models. Math. Biosci. 248:140–45
    [Google Scholar]
  116. Sadati M, Qazvini NT, Krishnan R, Park CY, Fredberg JJ 2013. Collective migration and cell jamming. Differentiation 86:121–25
    [Google Scholar]
  117. Samal P, van Blitterswijk C, Truckenmuller R, Giselbrecht S 2019. Grow with the flow: when morphogenesis meets microfluidics. Adv. Mater. 31:e1805764
    [Google Scholar]
  118. Schwarz-Romond T, Merrifield C, Nichols BJ, Bienz M 2005. The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles. J. Cell Sci. 118:5269–77
    [Google Scholar]
  119. Serra D, Mayr U, Boni A, Lukonin I, Rempfler M et al. 2019. Self-organization and symmetry breaking in intestinal organoid development. Nature 569:66–72
    [Google Scholar]
  120. Shao Y, Taniguchi K, Townshend RF, Miki T, Gumucio DL, Fu J 2017. A pluripotent stem cell-based model for post-implantation human amniotic sac development. Nat. Commun. 8:208
    [Google Scholar]
  121. Sharei A, Zoldan J, Adamo A, Sim WY, Cho N et al. 2013. A vector-free microfluidic platform for intracellular delivery. PNAS 110:2082–87
    [Google Scholar]
  122. Shemesh J, Jalilian I, Shi A, Yeoh GH, Tate MLK, Warkiani ME 2015. Flow-induced stress on adherent cells in microfluidic devices. Lab. Chip 15:4114–27
    [Google Scholar]
  123. Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA 2007. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11:526–38
    [Google Scholar]
  124. Shin Y, Berry J, Pannucci N, Haataja MP, Toettcher JE, Brangwynne CP 2017. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168:159–71.e14
    [Google Scholar]
  125. Shin Y, Brangwynne CP. 2017. Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382
    [Google Scholar]
  126. Shirure VS, Bi Y, Curtis MB, Lezia A, Goedegebuure MM et al. 2018. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab. Chip 18:3687–702
    [Google Scholar]
  127. Sidar B, Jenkins BR, Huang S, Spence JR, Walk ST, Wilking JN 2019. Long-term flow through human intestinal organoids with the gut organoid flow chip (GOFlowChip). Lab. Chip 19:3552–62
    [Google Scholar]
  128. Smith DJ, Montenegro-Johnson TD, Lopes SS 2019. Symmetry-breaking cilia-driven flow in embryogenesis. Annu. Rev. Fluid Mech. 51:105–28
    [Google Scholar]
  129. Song JW, Munn LL. 2011. Fluid forces control endothelial sprouting. PNAS 108:15342–47
    [Google Scholar]
  130. Spurlin JW, Siedlik MJ, Nerger BA, Pang M-F, Jayaraman S et al. 2019. Mesenchymal proteases and tissue fluidity remodel the extracellular matrix during airway epithelial branching in the embryonic avian lung. Development 146:dev175257
    [Google Scholar]
  131. Staehelin LA. 1972. Three types of gap junctions interconnecting intestinal epithelial cells visualized by freeze-etching. PNAS 69:1318–21
    [Google Scholar]
  132. Stewart MP, Helenius J, Toyoda Y, Ramanathan SP, Muller DJ, Hyman AA 2011. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469:226–30
    [Google Scholar]
  133. Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH 2017. Phase separation drives heterochromatin domain formation. Nature 547:241–45
    [Google Scholar]
  134. Taghibakhshi A, Barisam M, Saidi MS, Kashaninejad N, Nguyen NT 2019. Three-dimensional modeling of avascular tumor growth in both static and dynamic culture platforms. Micromachines 10:580
    [Google Scholar]
  135. Tao T, Wang Y, Chen W, Li Z, Su W et al. 2019. Engineering human islet organoids from iPSCs using an organ-on-chip platform. Lab. Chip 19:948–58
    [Google Scholar]
  136. Tarbell JM, Weinbaum S, Kamm RD 2005. Cellular fluid mechanics and mechanotransduction. Ann. Biomed. Eng. 33:1719–23
    [Google Scholar]
  137. Temme A, Buchmann A, Gabriel H-D, Nelles E, Schwarz M, Willecke K 1997. High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin32. Curr. Biol. 7:713–16
    [Google Scholar]
  138. Thiery JP, Acloque H, Huang RY, Nieto MA 2009. Epithelial-mesenchymal transitions in development and disease. Cell 139:871–90
    [Google Scholar]
  139. Toh AG, Wang Z, Yang C, Nguyen N-T 2014. Engineering microfluidic concentration gradient generators for biological applications. Microfluid. Nanofluid. 16:1–18
    [Google Scholar]
  140. Trepat X, Fredberg JJ. 2011. Plithotaxis and emergent dynamics in collective cellular migration. Trends Cell Biol 21:638–46
    [Google Scholar]
  141. Trepat X, Sahai E. 2018. Mesoscale physical principles of collective cell organization. Nat. Phys. 14:671–82
    [Google Scholar]
  142. Turing AM. 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237:37–72
    [Google Scholar]
  143. Uchida K, Matsuyama K, Tanaka K, Doi K 1992. Diffusion coefficient for O2 in plasma and mitochondrial membranes of rat cardiomyocytes. Respir. Physiol. 90:351–62
    [Google Scholar]
  144. Uzel SG, Amadi OC, Pearl TM, Lee RT, So PT, Kamm RD 2016. Simultaneous or sequential orthogonal gradient formation in a 3D cell culture microfluidic platform. Small 12:612–22
    [Google Scholar]
  145. Vale RD. 2003. The molecular motor toolbox for intracellular transport. Cell 112:467–80
    [Google Scholar]
  146. Vickerman V, Kamm RD. 2012. Mechanism of a flow-gated angiogenesis switch: early signaling events at cell–matrix and cell–cell junctions. Integr. Biol. 4:863–74
    [Google Scholar]
  147. Wade MH, Trosko JE, Schindler M 1986. A fluorescence photobleaching assay of gap junction-mediated communication between human cells. Science 232:525–28
    [Google Scholar]
  148. Wimmer RA, Leopoldi A, Aichinger M, Wick N, Hantusch B et al. 2019. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565:505–10
    [Google Scholar]
  149. Wong IY, Javaid S, Wong EA, Perk S, Haber DA et al. 2014. Collective and individual migration following the epithelial–mesenchymal transition. Nat. Mater. 13:1063–71
    [Google Scholar]
  150. Wu D, Freund JB, Fraser SE, Vermot J 2011. Mechanistic basis of otolith formation during teleost inner ear development. Dev. Cell 20:271–78
    [Google Scholar]
  151. Wu P-H, Aroush DR-B, Asnacios A, Chen W-C, Dokukin ME et al. 2018. A comparison of methods to assess cell mechanical properties. Nat. Methods 15:491–98
    [Google Scholar]
  152. Yoshiba S, Hamada H. 2014. Roles of cilia, fluid flow, and Ca2+ signaling in breaking of left–right symmetry. Trends Genet 30:10–17
    [Google Scholar]
  153. Yourek G, McCormick SM, Mao JJ, Reilly GC 2010. Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen. Med. 5:713–24
    [Google Scholar]
  154. Zehnder SM, Suaris M, Bellaire MM, Angelini TE 2015. Cell volume fluctuations in MDCK monolayers. Biophys. J. 108:247–50
    [Google Scholar]
  155. Zhou Y, Basu S, Wohlfahrt KJ, Lee SF, Klenerman D et al. 2016. A microfluidic platform for trapping, releasing and super-resolution imaging of single cells. Sens. Actuators B 232:680–91
    [Google Scholar]
  156. Zhu C, Bao G, Wang N 2000. Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2:189–226
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-072220-013845
Loading
/content/journals/10.1146/annurev-fluid-072220-013845
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error