1932

Abstract

This review surveys the dramatic variations in wake structures and flow transitions, in addition to body forces, that appear as the motion of bluff bodies through a fluid occurs increasingly closer to a solid wall. In particular, we discuss the two cases of bluff bodies translating parallel to solid walls at varying heights and bluff bodies impacting on solid walls. In the former case, we highlight the changes to the wake structures as the flow varies from that of an isolated body to that of a body on or very close to the wall, including the effects when the body is rotating. For the latter case of an impacting body, we review the flow structures following impact and their transition to three-dimensionality. We discuss the issue of whether there is solid–solid contact between the bluff body and a wall and its importance to body motion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-072220-123637
2021-01-05
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/fluid/53/1/annurev-fluid-072220-123637.html?itemId=/content/journals/10.1146/annurev-fluid-072220-123637&mimeType=html&fmt=ahah

Literature Cited

  1. Ardekani AM, Rangel H. 2008. Numerical investigation of particle–particle and particle–wall collisions in a viscous fluid. J. Fluid Mech. 596:437–66
    [Google Scholar]
  2. Ashmore J, del Pino C, Mullin T 2005. Cavitation in a lubrication flow between a moving sphere and a boundary. Phys. Rev. Lett. 94:124501
    [Google Scholar]
  3. Barkley D, Henderson RD. 1996. Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322:215–41
    [Google Scholar]
  4. Bearman PW. 1984. Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16:195–222
    [Google Scholar]
  5. Berger E, Wille R. 1972. Periodic flow phenomena. Annu. Rev. Fluid Mech. 4:313–40
    [Google Scholar]
  6. Birwa SK, Rajalakshmi G, Govindarajan R 2018. Solid-on-solid contact in a sphere-wall collision in a viscous fluid. Phys. Rev. Fluids 3:004302
    [Google Scholar]
  7. Bourguet R, Lo Jacono D 2014. Flow-induced vibrations of a rotating cylinder. J. Fluid Mech. 740:342–80
    [Google Scholar]
  8. Brändle de Motta JC, Breugem W-P, Gazanion B, Estivalezes J-L, Vincent S, Climent E 2013. Numerical modelling of finite-size particle collisions in a viscous fluid. Phys. Fluids 25:083302
    [Google Scholar]
  9. Brennen CE. 1982. A review of added mass and fluid inertial forces Tech. Rep. N62583-81-MR-554, Naval Civil Eng. Lab Port Hueneme, CA:
    [Google Scholar]
  10. Brenner H. 1961. The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci. 16:242–51Lubrication theory for a sphere impacting on a wall.
    [Google Scholar]
  11. Brøns M, Thompson MC, Leweke T, Hourigan K 2014. Vorticity generation and conservation for two-dimensional interfaces and boundaries. J. Fluid Mech. 758:63–93
    [Google Scholar]
  12. Brücker C. 2001. Spatio-temporal reconstruction of vortex dynamics in axisymmetric wakes. J. Fluids Struct. 5:543–54
    [Google Scholar]
  13. Carty JJ. 1957. Resistance coefficients for spheres on a plane boundary BSc Thesis, MIT Cambridge, MA:
    [Google Scholar]
  14. Chaplin JR, Teigen P. 2003. Steady flow past a vertical surface-piercing circular cylinder. J. Fluids Struct. 18:271–85
    [Google Scholar]
  15. Cherukat P, McLaughlin JB. 1994. The inertial lift on a rigid sphere in a linear shear flow field near a flat wall. J. Fluid Mech. 263:1–18
    [Google Scholar]
  16. Chomaz JM, Bonneton P, Hopfinger EJ 1993. The structure of the near wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech. 254:1–21
    [Google Scholar]
  17. Choi H, Jeon W-P, Kim J 2008. Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40:113–19
    [Google Scholar]
  18. Clark HM. 1992. The influence of the flow field in slurry erosion. Wear 152:223–40
    [Google Scholar]
  19. Davis RH. 1987. Elastohydrodynamic collisions of particles. PCH Physicochem. Hydrodyn. 9:41–52Along with Davis et al. (1986): elastohydrodynamic modeling of sphere rebound.
    [Google Scholar]
  20. Davis RH, Serayssol JM, Hinch EJ 1986. The elastohydrodynamic collision of two spheres. J. Fluid Mech. 163:479–97
    [Google Scholar]
  21. Dobson J, Ooi A, Poon EKW 2014. The flow structures of a transversely rotating sphere at high rotation rates. Comput. Fluids 102:170–81
    [Google Scholar]
  22. Dušek J, Le Gal P, Fraunié P 1994. A numerical and theoretical study of the first Hopf bifurcation in a cylinder wake. J. Fluids Mech. 264:59–80
    [Google Scholar]
  23. Eames I, Dalziel SB. 1999. Resuspension by an impacting sphere. Phys. Fluids 11:S11
    [Google Scholar]
  24. Ern P, Risso F, Fabre D, Magnaudet J 2012. Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech. 44:97–121
    [Google Scholar]
  25. Galilei G. 1914 (1638). Dialogues Concerning Two New Sciences transl. H Crew, A de Salvio New York: Macmillan
    [Google Scholar]
  26. Galvin KP, Zhao Y, Davis RH 2001. Time-averaged hydrodynamic roughness of a non-colloidal sphere in low Reynolds number motion down an inclined plane. Phys. Fluids A 13:3108–9
    [Google Scholar]
  27. Garde RJ, Sethuraman S. 1969. Variation of the drag coefficient of a sphere rolling along a boundary. Houille Blanche 7:727–32
    [Google Scholar]
  28. Ghidersa B, Dušek J. 2000. Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere. J. Fluid Mech. 423:33–69
    [Google Scholar]
  29. Giacobello M, Ooi A, Balachandar S 2009. Wake structure of a transversely rotating sphere at moderate Reynolds numbers. J. Fluid Mech. 621:103–30
    [Google Scholar]
  30. Goldman AJ, Cox RG, Brenner H 1967. Slow viscous motion of a sphere parallel to a plane wall—I. Motion through a quiescent fluid. Chem. Eng. Sci. 22:637–51Lubrication theory for a sphere moving along a wall.
    [Google Scholar]
  31. Gondret P, Hallouin E, Lance M, Petit L 1999. Experiments on the motion of a solid sphere toward a wall: from viscous dissipation to elasto-hydrodynamic bouncing. Phys. Fluids 11:2803–5
    [Google Scholar]
  32. Gondret P, Lance M, Petit L 2002. Bouncing motion of spherical particles in fluids. Phys. Fluids 14:643–52
    [Google Scholar]
  33. He W, Gioria R, Pérez J, Theofilis V 2017. Linear instability of low Reynolds number massively separated flow around three NACA airfoils. J. Fluid Mech. 811:701–41
    [Google Scholar]
  34. Henderson RD. 1997. Nonlinear dynamics and pattern formation in turbulent wake transition. J. Fluid Mech. 353:65–112
    [Google Scholar]
  35. Houdroge FY, Leweke T, Hourigan K, Thompson MC 2017. Two- and three-dimensional wake transitions of an impulsively started uniformly rolling circular cylinder. J. Fluid Mech. 826:32–59
    [Google Scholar]
  36. Houdroge FY, Leweke T, Hourigan K, Thompson MC 2020. Wake dynamics and flow-induced vibration of a freely rolling cylinder. J. Fluid Mech. 903:A48
    [Google Scholar]
  37. Huang WX, Sung HJ. 2007. Vortex shedding from a circular cylinder near a moving wall. J. Fluids Struct. 23:1064–76
    [Google Scholar]
  38. Hunt JCR, Wray AA, Moin P 1988. Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Research Proceedings of the Summer Program 1988193–208 Stanford, CA: Cent. Turbul. Res.
    [Google Scholar]
  39. Jan C-D, Shen H-W. 1995. Drag coefficients for a sphere rolling down an inclined channel. J. Chin. Inst. Eng. 18:493–507
    [Google Scholar]
  40. Jeong J, Hussain F. 1995. On the identification of a vortex. J. Fluid Mech. 285:69–94
    [Google Scholar]
  41. Johnson TA, Patel VC. 1999. Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378:19–70
    [Google Scholar]
  42. Joseph GG, Zenit R, Hunt ML, Rosenwinkel AM 2001. Particle–wall collisions in a viscous fluid. J. Fluid Mech. 433:329–46
    [Google Scholar]
  43. Kawamura T, Mayer S, Garapon A, Sorensen L 2002. Large eddy simulation of a flow past free surface piercing circular cylinders. ASME J. Fluids Eng. 124:91–101
    [Google Scholar]
  44. Kerswell RR. 2002. Elliptical instability. Annu. Rev. Fluid Mech. 34:83–113
    [Google Scholar]
  45. Kim D. 2009. Laminar flow past a sphere rotating in the transverse direction. J. Mech. Sci. Technol. 23:578–89
    [Google Scholar]
  46. King MR, Leighton DT Jr 1997. Measurement of the inertial lift on a moving sphere in contact with a plane wall in a shear flow. Phys. Fluids 9:1248–55
    [Google Scholar]
  47. Koo B, Yang J, Yeon SM, Stern F 2004. Reynolds and Froude number effect on the flow past an interface-piercing circular cylinder. Int. J. Nav. Archit. Ocean Eng. 6:529–61
    [Google Scholar]
  48. Lecoq N, Anthore R, Cichocki K, Szymczak P, Feuillebois F 2004. Drag force on a sphere moving towards a corrugated wall. J. Fluid Mech. 513:247–64
    [Google Scholar]
  49. Legendre D, Daniel C, Guiraud P 2005. Experimental study of a drop bouncing on a wall in a liquid. Phys. Fluids 17:097105
    [Google Scholar]
  50. Leweke T, Le Dizès S, Williamson CHK 2016. Dynamics and instabilities of vortex pairs. Annu. Rev. Fluid Mech. 48:507–41
    [Google Scholar]
  51. Leweke T, Schouveiler L, Thompson MC, Hourigan K 2008. Unsteady flow around impacting bluff bodies. J. Fluids Struct. 24:1194–203
    [Google Scholar]
  52. Leweke T, Thompson MC, Hourigan K 2004a. Touchdown of a sphere. Phys. Fluids 16:S5
    [Google Scholar]
  53. Leweke T, Thompson MC, Hourigan K 2004b. Vortex dynamics associated with the collision of a sphere with a wall. Phys. Fluids 16:L74–77
    [Google Scholar]
  54. Leweke T, Thompson MC, Hourigan K 2006. Instability of the flow around an impacting sphere. J. Fluids Struct. 22:961–71
    [Google Scholar]
  55. Li X, Hunt ML, Colonius T 2012. A contact model for normal immersed collisions between a particle and a wall. J. Fluid Mech. 691:123–45
    [Google Scholar]
  56. Lian G, Adams MJ, Thornton C 1996. Elastohydrodynamic collisions of solid spheres. J. Fluid Mech. 311:141–52
    [Google Scholar]
  57. Lim TT. 1989. An experimental study of a vortex ring interacting with an inclined wall. Exp. Fluids 7:453–63
    [Google Scholar]
  58. Lim TT, Nichols TB, Chong MS 1991. A note on the cause of the rebound in the head-on collision of a vortex ring with a wall. Exp. Fluids 12:41–48
    [Google Scholar]
  59. Magarvey RH, Bishop RL. 1961a. Transition ranges for three-dimensional wakes. Can. J. Phys. 39:1418–22
    [Google Scholar]
  60. Magarvey RH, Bishop RL. 1961b. Wakes in liquid-liquid systems. Phys. Fluids 4:800–5
    [Google Scholar]
  61. Masuda N, Yoshida J, Ito B, Furuya T, Sano O 2012. Collision of a vortex ring on granular material. Part I. Interaction of the vortex ring with the granular layer. Fluid Dyn. Res. 44:015501
    [Google Scholar]
  62. Merlen A, Frankiewicz C. 2011. Cylinder rolling on a wall at low Reynolds numbers. J. Fluid Mech. 685:461–94Lubrication theory for a cylinder moving along a wall.
    [Google Scholar]
  63. Mittal R. 1999. Planar symmetry in the unsteady wake of a sphere. AIAA J 37:388–90
    [Google Scholar]
  64. Mittal S, Kumar B. 2003. Flow past a rotating cylinder. J. Fluid Mech. 476:303–34
    [Google Scholar]
  65. Oertel H. 1990. Wakes behind blunt bodies. Annu. Rev. Fluid Mech. 22:539–64
    [Google Scholar]
  66. Orlandi P, Verzicco R. 1993. Vortex rings impinging on walls: axisymmetric and three-dimensional simulations. J. Fluid Mech. 256:615–46
    [Google Scholar]
  67. Poon EKW, Ooi ASH, Giacobello M, Iaccarino G, Chung D 2014. Flow past a transversely rotating sphere at Reynolds numbers above the laminar regime. J. Fluid Mech. 759:751–81
    [Google Scholar]
  68. Pralits JO, Brandt L, Giannetti F 2010. Instability and sensitivity of the flow around a rotating circular cylinder. J. Fluid Mech. 650:513–36
    [Google Scholar]
  69. Prasad A, Williamson CHK. 1997. The instability of the shear layer separating from a bluff body. J. Fluid Mech. 333:375–402
    [Google Scholar]
  70. Prokunin AN. 2003. On a paradox in the motion of a rigid particle along a wall in a fluid. Fluid Dyn 38:443–57
    [Google Scholar]
  71. Prokunin AN. 2004. Microcavitation in the slow motion of a solid spherical particle along a wall in a fluid. Fluid Dyn 39:771–78
    [Google Scholar]
  72. Rajamuni MM, Thompson MC, Hourigan K 2018. Vortex-induced vibration of a transversely rotating sphere. J. Fluid Mech. 847:786–820
    [Google Scholar]
  73. Rao A, Passaggia P-Y, Bolnot H, Thompson MC, Leweke T, Hourigan K 2012. Transition to chaos in the wake of a rolling sphere. J. Fluid Mech. 695:135–48
    [Google Scholar]
  74. Rao A, Radi A, Leontini J, Thompson MC, Sheridan J, Hourigan K 2015a. A review of rotating cylinder wake transitions. J. Fluids Struct. 53:2–14
    [Google Scholar]
  75. Rao A, Stewart BE, Thompson MC, Leweke T, Hourigan K 2011. Flows past rotating cylinders next to a wall. J. Fluids Struct. 27:668–79
    [Google Scholar]
  76. Rao A, Thompson MC, Leweke T, Hourigan K 2013. The flow past a circular cylinder translating at different heights above a wall. J. Fluids Struct. 41:9–21
    [Google Scholar]
  77. Rao A, Thompson MC, Leweke T, Hourigan K 2015b. Flow past a rotating cylinder translating at different gap heights along a wall. J. Fluids Struct. 57:314–30Survey of cylinder wake instability modes as function of rotation rate and wall proximity [Rao et al. (2015a) provide the case without a wall].
    [Google Scholar]
  78. Reichl P, Hourigan K, Thompson MC 2003. The unsteady wake of a circular cylinder near a free surface. Flow Turbul. Combust. 71:347–59
    [Google Scholar]
  79. Reichl P, Hourigan K, Thompson MC 2005. Flow past a cylinder close to a free surface. J. Fluid Mech. 533:269–96
    [Google Scholar]
  80. Robichaux J, Balachandar S, Vanka SP 1999. Three-dimensional Floquet instability of the wake of square cylinder. Phys. Fluids A 11:560–78
    [Google Scholar]
  81. Ruiz-Angulo A, Hunt ML. 2010. Measurements of the coefficient of restitution for particle collisions with ductile surfaces in a liquid. Granul. Matter 12:185–91
    [Google Scholar]
  82. Sareen A, Zhao J, Sheridan J, Hourigan K, Thompson MC 2018. Vortex-induced vibrations of a sphere close to a free surface. J. Fluid Mech. 846:1023–58
    [Google Scholar]
  83. Seddon JRT, Mullin T. 2006. Reverse rotation of a cylinder near a wall. Phys. Fluids 18:041703
    [Google Scholar]
  84. Shao Y, Zhang Y-P, Zhu DZ, Zhang T-Q 2013. Drag force on a free surface-piercing yawed circular cylinder in steady flow. J. Fluids Struct. 43:145–63
    [Google Scholar]
  85. Sheard GJ. 2011. Wake stability features behind a square cylinder: focus on small incidence angles. J. Fluids Struct. 27:734–42
    [Google Scholar]
  86. Sheard GJ, Leweke T, Thompson MC, Hourigan K 2007. Flow around an impulsively arrested circular cylinder. Phys. Fluids 19:083601
    [Google Scholar]
  87. Sheard GJ, Thompson MC, Hourigan K, Leweke T 2005. The evolution of a subharmonic mode in a vortex street. J. Fluid Mech. 534:23–38
    [Google Scholar]
  88. Sheridan J, Lin J-C, Rockwell D 1997. Flow past a cylinder close to a free surface. J. Fluid Mech. 330:269–96
    [Google Scholar]
  89. Smart JR, Beimfohr S, Leighton DT 1993. Measurement of the translational and rotational velocities of a non-colloidal sphere rolling down a smooth inclined plane at low Reynolds number. Phys. Fluids A 5:13–24
    [Google Scholar]
  90. Smart JR, Leighton DT. 1989. Measurement of the hydrodynamic surface roughness of non-colloidal spheres. Phys. Fluids A 1:52–60
    [Google Scholar]
  91. Stewart BE. 2008. The dynamics and stability of flows around rolling bluff bodies PhD Thesis, Monash Univ./Univ. Provence Aix-Marseille I, Melb Aust./Marseille, Fr:.
    [Google Scholar]
  92. Stewart BE, Hourigan K, Thompson MC, Leweke T 2006. Flow dynamics and forces associated with a cylinder rolling along a wall. Phys. Fluids 18:111701
    [Google Scholar]
  93. Stewart BE, Leweke T, Hourigan K, Thompson MC 2008. Wake formation behind a rolling sphere. Phys. Fluids 20:071704
    [Google Scholar]
  94. Stewart BE, Thompson MC, Leweke T, Hourigan K 2010a. Numerical and experimental studies of the rolling sphere wake. J. Fluid Mech. 643:137–62
    [Google Scholar]
  95. Stewart BE, Thompson MC, Leweke T, Hourigan K 2010b. The wake behind a cylinder rolling on a wall at varying rotation rates. J. Fluid Mech. 648:225–56
    [Google Scholar]
  96. Stojković D, Breuer M, Durst F 2002. Effect of high rotation rates on the laminar flow around a circular cylinder. Phys. Fluids 14:3160–78
    [Google Scholar]
  97. Stojković D, Schön P, Breuer M, Durst F 2003. On the new vortex shedding mode past a rotating circular cylinder. Phys. Fluids 15:1257–60
    [Google Scholar]
  98. Swearingen JD, Crouch JD, Handler RA 2000. Dynamics and stability of a vortex ring impacting a solid boundary. J. Fluid Mech. 297:1–28
    [Google Scholar]
  99. Taneda S. 1965. Experimental investigation of vortex streets. J. Phys. Soc. Jpn. 20:1714–21First visualization of the wake of a cylinder moving parallel to a wall.
    [Google Scholar]
  100. Tatsuno M, Taneda S. 1971. Visualization of the unsteady flow past cylinders and plates decelerated from a steady speed. J. Phys. Soc. Jpn. 31:1266–74
    [Google Scholar]
  101. Taylor GI. 1963. Cavitation of a viscous fluid in narrow passages. J. Fluid Mech. 16:595–619
    [Google Scholar]
  102. Terrington SJ, Hourigan K, Thompson MC 2020. The generation and conservation of vorticity: deforming interfaces and boundaries in two-dimensional flows. J. Fluid Mech. 890:A5
    [Google Scholar]
  103. Thompson MC, Hourigan K. 2005. The shear layer instability of a circular cylinder wake. Phys. Fluids 17:021702
    [Google Scholar]
  104. Thompson MC, Hourigan K, Cheung, Leweke T 2006a. Hydrodynamics of a particle impact on a wall. Appl. Math. Mod. 30:1356–69
    [Google Scholar]
  105. Thompson MC, Hourigan K, Ryan K, Sheard GJ 2006b. Wake transition of two-dimensional cylinders and axisymmetric bluff bodies. J. Fluids Struct. 22:793–806
    [Google Scholar]
  106. Thompson MC, Hourigan K, Sheridan J 1996. Three-dimensional instabilities in the wake of a circular cylinder. Exp. Therm. Fluid Sci. 12:190–96
    [Google Scholar]
  107. Thompson MC, Leweke T, Hourigan K 2007. Sphere-wall collisions: vortex dynamics and stability. J. Fluid Mech. 575:121–48Comprehensive study of the flow generated by the wall impact of a sphere.
    [Google Scholar]
  108. Thompson MC, Leweke T, Provansal M 2001. Kinematics and dynamics of sphere wake transition. J. Fluid Struct. 15:575–86
    [Google Scholar]
  109. Tomboulides AG, Orszag SA. 2000. Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech. 416:45–73
    [Google Scholar]
  110. Verekar PK, Arakeri JH. 2010. Sphere rolling down an incline submerged in a liquid. Proceedings of the 37th International and 4th National Conference on Fluid Mechanics and Fluid Power Pap. FMFP10-AM-01 Chennai, India: Indian Inst. Technol. Madras
    [Google Scholar]
  111. Vlachos PP, Tellionis D. 2004. The effect of free surface on the vortex shedding from inclined circular cylinders. ASME J. Fluids Eng. 130:021103
    [Google Scholar]
  112. Walker JD, Smith CR, Cerra AW, Doligalski TL 1987. The impact of a vortex ring on a wall. J. Fluid Mech. 181:99–140
    [Google Scholar]
  113. Wang W, Dalton C. 1991. Numerical solutions for impulsively started and decelerated viscous flow past a circular cylinder. Int. J. Numer. Methods Fluids 12:383–400
    [Google Scholar]
  114. Willetts B. 1998. Aeolian and fluvial grain transport. Philos. Trans. R. Soc. Lond. A 356:2497–513
    [Google Scholar]
  115. Williamson CHK. 1989. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206:579–627
    [Google Scholar]
  116. Williamson CHK. 1996a. Three-dimensional wake transition. J. Fluid Mech. 328:345–407
    [Google Scholar]
  117. Williamson CHK. 1996b. Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28:477–539
    [Google Scholar]
  118. Williamson CHK, Govardhan R. 2004. Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36:413–55
    [Google Scholar]
  119. Yildirim B, Yang H, Gouldstone A, Müftü S 2017. Rebound mechanics of micrometre-scale, spherical particles in high-velocity impacts. Proc. R. Soc. A 473:20160936
    [Google Scholar]
  120. Yoon H, Lee J, Seo J, Park H 2010. Characteristics for flow and heat transfer around a circular cylinder near a moving wall in wide range of low Reynolds number. Int. J. Heat Mass Transf. 53:5111–20
    [Google Scholar]
  121. Zeng L, Balachandar S, Fischer P 2005. Wall-induced forces on a rigid sphere at finite Reynolds number. J. Fluid Mech. 536:1–25
    [Google Scholar]
  122. Zeng L, Najjar F, Balachandar S, Fischer P 2009. Forces on a finite-sized particle located close to a wall in a linear shear flow. Phys. Fluids 21:033302
    [Google Scholar]
  123. Zhao J, Lo Jacono D, Sheridan J, Hourigan K, Thompson MC 2018. Experimental investigation of in-line flow-induced vibration of a rotating circular cylinder. J. Fluid Mech. 847:664–99
    [Google Scholar]
  124. Zhao Y, Galvin KP, Davis RH 2002. Motion of a sphere down a rough plane in a viscous fluid. Int. J. Multiph. Flow 28:1787–800
    [Google Scholar]
  125. Ziskind G. 2006. Particle resuspension from surfaces: revisited and re-evaluated. Rev. Chem. Eng. 22:1–123
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-072220-123637
Loading
/content/journals/10.1146/annurev-fluid-072220-123637
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error